Bilgilendirme: Sürüm Güncellemesi ve versiyon yükseltmesi nedeniyle, geçici süreyle zaman zaman kesintiler yaşanabilir ve veri içeriğinde değişkenlikler gözlemlenebilir. Göstereceğiniz anlayış için teşekkür ederiz.
 

Material Model Calibration of Fiber Reinforced Concrete Using Deep Neural Network

No Thumbnail Available

Date

2023-07

Journal Title

Journal ISSN

Volume Title

Publisher

01. Izmir Institute of Technology

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

The numerical modeling of fiber reinforced concrete (FRC) structures is quite challenging due to the material's heterogeneous and anisotropic nature. The majority of material models that are suitable for regular concrete are not able to account for the FRC material's increased tensile capacity and ductility. In this study, a calibration method is proposed that is simple and effective for modeling FRC structures using a selected concrete material model. The Karagozian and Case (K&C) material model in LS-DYNA is capable of representing the ductile nature of FRC, and its parameters related to tensile behavior were calibrated to reflect the tensile-softening behavior. The calibration process was executed using the uniaxial direct tension test results of two different FRC mixtures. In addition, single element numerical models were constructed using LS-DYNA under uniaxial tension. The tensile parameters of K&C were varied over a wide range using single elements to form a database. Then, a Deep Neural Network (DNN) was constructed to pass the database through and find the K&C parameters that best matched the experimental uniaxial test results. The proposed methodology was tested under static and high-strain rate loading conditions, and the results were compared to the experimental findings. The performance of the DNN-achieved parameters was found to be satisfactory. The results showed that the DNN-calibrated parameters were able to accurately predict the behavior of FRC structures under static and dynamic loading conditions.
Fiber takviyeli beton yapıların sayısal modellemesi, normal betona göre daha zordur. Normal beton için uygun olan malzeme modellerinin çoğu, fiber takviyeli beton malzemenin yüksek çekme kapasitesini ve arttırılmış sünek davranışını hesaba katamaz. Bu çalışmada, fiber takviyeli beton yapılarının modellenmesi için basit ve etkili bir malzeme modeli kalibrasyon yöntemi önerilmiştir. Bunun için LS-DYNA'daki normal beton malzeme modeli olan Karagozian ve Case (K&C) malzeme modeli seçilmiştir. Fiber takviyeli betonun sünek doğasını yansıtabilecek çekme davranışıyla ilgili K&C parametreleri, çekme yumuşatması davranışını yansıtacak şekilde kalibre edilmiştir. Kalibrasyon işlemi, iki farklı fiber takviyeli beton karışımının direk çekme testi sonuçları kullanılarak gerçekleştirilmiştir. Ayrıca, LS-DYNA ile direk çekme gerilimi altında tek eleman sayısal modelleri oluşturulmuştur. Bir veri tabanı oluşturmak amacı ile K&C'nin çekme parametreleri geniş bir aralıkta değiştirilmiştir. Veri tabanı, oluşturulan Derin Sinir Ağı'ndan geçirilip deneysel tek eksenli test sonuçlarına en iyi uyan K&C parametrelerini bulunmuştur. Önerilen metodoloji statik ve yüksek şekil değiştirme yükleme koşulları altında test edilmiş ve sonuçlar deneysel bulgularla karşılaştırılmıştır. Derin Sinir Ağı tarafından elde edilen parametrelerin performansının kabul edilebilir olduğu bulunmuştur. Sonuçlar, Derin Sinir Ağı ile kalibre edilen parametrelerin, statik ve dinamik şekil değiştirme yükleme koşulları altında fiber takviyeli beton yapılarının davranışını doğru bir şekilde tahmin edebildiğini göstermiştir.

Description

Thesis (Doctoral)--İzmir Institute of Technology, Civil Engineering, Izmir, 2023
Includes bibliographical references (leaves. 74-87)
Text in English; Abstract: Turkish and English

Keywords

Deep neural networks, Fiber-reinforced concrete, Model calibration and validation, LS-DYNA

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

N/A

Source

Volume

Issue

Start Page

End Page

Page Views

130

checked on Sep 17, 2025

Downloads

83

checked on Sep 17, 2025

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.