Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/11041
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Tanoğlu, Gamze | - |
dc.contributor.author | İmamoğlu Karabaş, Neslişah | en_US |
dc.date.accessioned | 2021-08-05T13:37:49Z | - |
dc.date.available | 2021-08-05T13:37:49Z | - |
dc.date.issued | 2020-12 | en_US |
dc.identifier.citation | İmamoğlu Karabaş, N. (2020). Analysis and application of linearization technique for nonlinear problems. Unpublished doctoral dissertation, Izmir Institute of Technology, Izmir, Turkey | - |
dc.identifier.uri | https://hdl.handle.net/11147/11041 | - |
dc.description | Thesis (Doctoral)--Izmir Institute of Technology, Mathematics, Izmir, 2020 | en_US |
dc.description | Includes bibliographical references (leaves: 49-51) | - |
dc.description | Text in English; Abstract: Turkish and English | - |
dc.description.abstract | The purpose of this thesis is to investigate the implementation of linearization technique combining with the multiquadric radial basis function method to nonlinear problems which appears in engineering and physics. Presented linearization technique is formed by the Frechet derivatives and Newton Raphson method. This technique is applied to Burgers' equation, Coupled Burgers' equation and 2-D cubic nonlinear Schrödinger equation. From the numerical results of the problems, it is believed that this technique can be used to solve other nonlinear and system of nonlinear partial differential equations numerically. | en_US |
dc.description.abstract | Bu tezin amacı mühendislikte ve fizikte görülen doğrusal olmayan problemlere multiquadric radyal baz fonksiyonları ile birlikte doğrusallaştırma tekniğini uygulanışını araştırmaktır. Sununulan doğrusallaştırma tekniği Fr\`{e}chet türevi ve Newton Raphson metodu baz almaktadır. Bu teknik Burger denklemine, Coupled Burger denklemine ve 2-D kübik doğrusal olmayan Schr\"{o}dinger denklemine uygunlanmıştır. Problemlerin sayısal sonuçlarından, bu tekniğin başka doğrusal olmayan denklemleri ve doğrusal olmayan kısmi türevli denklem sistemlerini sayısal olarak çözmek için kullanılabileceğine inanılmaktadır. | en_US |
dc.format.extent | viii, 80 leaves | - |
dc.language.iso | en | en_US |
dc.publisher | Izmir Institute of Technology | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Nonlinear theories | en_US |
dc.subject | Linearization technique | en_US |
dc.title | Analysis and application of linearization technique for nonlinear problems | en_US |
dc.title.alternative | Doğrusal olmayan problemler için bir doğrusallaştırma tekniğinin uygulanması ve analizi | en_US |
dc.type | Doctoral Thesis | en_US |
dc.authorid | 0000-0002-3306-8656 | en_US |
dc.department | Thesis (Doctoral)--İzmir Institute of Technology, Mathematics | en_US |
dc.contributor.affiliation | Izmir Institute of Technology | en_US |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
item.fulltext | With Fulltext | - |
item.openairetype | Doctoral Thesis | - |
item.languageiso639-1 | en | - |
Appears in Collections: | Phd Degree / Doktora |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
10373875.pdf | DoctoralThesis | 708.34 kB | Adobe PDF | View/Open |
CORE Recommender
Page view(s)
494
checked on Nov 18, 2024
Download(s)
936
checked on Nov 18, 2024
Google ScholarTM
Check
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.