Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/10714
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Baştanlar, Yalın | - |
dc.contributor.author | Temizel, Alptekin | - |
dc.contributor.author | Yardımcı, Y. | - |
dc.contributor.author | Sturm, P. | - |
dc.date.accessioned | 2021-01-24T18:47:37Z | - |
dc.date.available | 2021-01-24T18:47:37Z | - |
dc.date.issued | 2012 | - |
dc.identifier.issn | 0262-8856 | - |
dc.identifier.issn | 1872-8138 | - |
dc.identifier.uri | https://doi.org/10.1016/j.imavis.2012.06.001 | - |
dc.identifier.uri | https://hdl.handle.net/11147/10714 | - |
dc.description.abstract | We describe a pipeline for structure-from-motion (SfM) with mixed camera types, namely omnidirectional and perspective cameras. For the steps of this pipeline, we propose new approaches or adapt the existing perspective camera methods to make the pipeline effective and automatic. We model our cameras of different types with the sphere camera model. To match feature points, we describe a preprocessing algorithm which significantly increases scale invariant feature transform (SIFT) matching performance for hybrid image pairs. With this approach, automatic point matching between omnidirectional and perspective images is achieved. We robustly estimate the hybrid fundamental matrix with the obtained point correspondences. We introduce the normalization matrices for lifted coordinates so that normalization and denormalization can be performed linearly for omnidirectional images. We evaluate the alternatives of estimating camera poses in hybrid pairs. A weighting strategy is proposed for iterative linear triangulation which improves the structure estimation accuracy. Following the addition of multiple perspective and omnidirectional images to the structure, we perform sparse bundle adjustment on the estimated structure by adapting it to use the sphere camera model. Demonstrations of the end-to-end multi-view SfM pipeline with the real images of mixed camera types are presented. (C) 2012 Elsevier B.V. All rights reserved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier Ltd. | en_US |
dc.relation.ispartof | Image and Vision Computing | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Omnidirectional cameras | en_US |
dc.subject | Hybrid camera systems | en_US |
dc.subject | Feature matching | en_US |
dc.subject | Epipolar geometry | en_US |
dc.subject | Multi-view | en_US |
dc.subject | Structure-from-motion | en_US |
dc.title | Multi-view structure-from-motion for hybrid camera scenarios | en_US |
dc.type | Article | en_US |
dc.institutionauthor | Baştanlar, Yalın | - |
dc.department | İzmir Institute of Technology. Computer Engineering | en_US |
dc.identifier.volume | 30 | en_US |
dc.identifier.issue | 8 | en_US |
dc.identifier.startpage | 557 | en_US |
dc.identifier.endpage | 572 | en_US |
dc.identifier.wos | WOS:000308904100016 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.identifier.doi | 10.1016/j.imavis.2012.06.001 | - |
dc.relation.doi | 10.1016/j.imavis.2012.06.001 | en_US |
dc.coverage.doi | 10.1016/j.imavis.2012.06.001 | en_US |
dc.identifier.wosquality | Q1 | - |
dc.identifier.scopusquality | Q1 | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.languageiso639-1 | en | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
crisitem.author.dept | 03.04. Department of Computer Engineering | - |
Appears in Collections: | WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
CORE Recommender
SCOPUSTM
Citations
20
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
15
checked on Nov 9, 2024
Page view(s)
65,920
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.