Please use this identifier to cite or link to this item:
https://hdl.handle.net/11147/10537
Title: | Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV | Authors: | CMS Collaboration | Publisher: | American Physical Society | Abstract: | The study of the spin-parity and tensor structure of the interactions of the recently discovered Higgs boson is performed using the H -> ZZ, Z gamma*, gamma*gamma* -> 4l, H -> WW -> l(nu)l(nu), and H -> gamma gamma decay modes. The full data set recorded by the CMS experiment during the LHC run 1 is used, corresponding to an integrated luminosity of up to 5.1 fb(-1) at a center-of-mass energy of 7 TeV and up to 19.7 fb(-1) at 8 TeV. A wide range of spin-two models is excluded at a 99% confidence level or higher, or at a 99.87% confidence level for the minimal gravitylike couplings, regardless of whether assumptions are made on the production mechanism. Any mixed-parity spin-one state is excluded in the ZZ and WW modes at a greater than 99.999% confidence level. Under the hypothesis that the resonance is a spin-zero boson, the tensor structure of the interactions of the Higgs boson with two vector bosons ZZ, Z gamma, gamma gamma, and WW is investigated and limits on eleven anomalous contributions are set. Tighter constraints on anomalous HVV interactions are obtained by combining the HZZ and HWW measurements. All observations are consistent with the expectations for the standard model Higgs boson with the quantum numbers J(PC) = 0(++). | URI: | https://doi.org/10.1103/PhysRevD.92.012004 https://hdl.handle.net/11147/10537 |
ISSN: | 2470-0010 2470-0029 |
Appears in Collections: | Rectorate / Rektörlük WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Show full item record
CORE Recommender
SCOPUSTM
Citations
248
checked on Nov 15, 2024
WEB OF SCIENCETM
Citations
223
checked on Oct 26, 2024
Page view(s)
184
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.