Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/10163
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAyakdaş, Ozan-
dc.contributor.authorAydın, Levent-
dc.contributor.authorSavran, Melih-
dc.contributor.authorKüçükdoğan, Nilay-
dc.contributor.authorÖztürk, Savaş-
dc.date.accessioned2021-01-24T18:32:40Z-
dc.date.available2021-01-24T18:32:40Z-
dc.date.issued2019-
dc.identifier.issn2148-9807-
dc.identifier.issn2149-4088-
dc.identifier.urihttps://doi.org/10.17515/resm2019.65is0909-
dc.identifier.urihttps://hdl.handle.net/11147/10163-
dc.identifier.urihttps://search.trdizin.gov.tr/yayin/detay/347785-
dc.description.abstractIn this study, the main objective is to minimize the failure index of a cylindrical laminated composite hydrogen storage tank under internal pressure. The first step is to obtain the distribution of stress components based on Classical Laminated Plate Theory (CLPT). The second is to evaluate the burst pressure of the tank according to three different first ply failure criteria and then to compare the results with the experimental and numerical ones from literature. In the final part of the study, the best possible combination of winding angles, stacking sequences and thicknesses of laminates satisfying minimum possible stress concentration will be obtained for different Carbon/Epoxy materials by Differential Evolution Method. The stress components and, the burst pressures reached according to Hashin-Rotem, Maximum Stress, and Tsai-Wu first-ply failure criteria, have been complied with experimental and numerical results in the literature for Type III pressure vessels. Manufacturable Type-III tank designs have been proposed satisfying the 35 MPa burst pressure for different Carbon/Epoxy materials.en_US
dc.language.isoenen_US
dc.publisherMIM Research Groupen_US
dc.relation.ispartofResearch on Engineering Structures and Materialsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectOptimizationen_US
dc.subjectFailure analysisen_US
dc.subjectComposite pressure vesselen_US
dc.titleOptimal design of the type III hydrogen storage tank for different carbon/epoxy materials by modified differential evolution methoden_US
dc.typeArticleen_US
dc.institutionauthorAyakdaş, Ozan-
dc.departmentİzmir Institute of Technology. Mechanical Engineeringen_US
dc.identifier.volume5en_US
dc.identifier.issue2en_US
dc.identifier.startpage189 - 201en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.doi10.17515/resm2019.65is0909-
dc.relation.doi10.17515/resm2019.65is0909en_US
dc.coverage.doi10.17515/resm2019.65is0909en_US
dc.identifier.trdizinid347785en_US
dc.identifier.wosqualityN/A-
dc.identifier.scopusqualityQ3-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.openairetypeArticle-
Appears in Collections:Mechanical Engineering / Makina Mühendisliği
TR Dizin İndeksli Yayınlar / TR Dizin Indexed Publications Collection
Files in This Item:
File SizeFormat 
cfadc1e2-97e8-4d4b-be54-8ab51655ed2e.pdf1.73 MBAdobe PDFView/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

5
checked on Jul 13, 2024

Page view(s)

344
checked on Jul 15, 2024

Download(s)

280
checked on Jul 15, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.