Performance Evaluation of Filter-Based Gene Selection Methods in Cancer Classification

dc.contributor.author Gokalp, Osman
dc.contributor.other 01. Izmir Institute of Technology
dc.contributor.other 03. Faculty of Engineering
dc.contributor.other 03.04. Department of Computer Engineering
dc.date.accessioned 2025-09-25T18:56:09Z
dc.date.available 2025-09-25T18:56:09Z
dc.date.issued 2025
dc.description Isik University en_US
dc.description.abstract With the advances in microarray technology, gene expression levels can be measured efficiently, and this data can be used to solve important problems such as cancer classification. However, microarray data suffers from the high-dimensionality problem and requires dimensionality reduction techniques such as feature selection. This study addresses the cancer classification problem using microarray datasets and comparatively evaluates the performance of different filter-based gene (feature) selection methods. To this end, 11 microarray datasets have been evaluated using 6 different filter methods, and experimental results are presented. According to the findings, the gene selection methods used can improve classification performance by 5% to 30%. Using 5-fold cross-validation, the highest accuracy rates were achieved with 32 genes selected by the gain ratio filter for the Breast and Colon datasets, and with 8 genes selected by the information gain filter for the CNS dataset. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/SIU66497.2025.11112199
dc.identifier.isbn 9798331566555
dc.identifier.scopus 2-s2.0-105015415098
dc.identifier.uri https://doi.org/10.1109/SIU66497.2025.11112199
dc.identifier.uri https://hdl.handle.net/11147/18457
dc.language.iso tr en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 33rd IEEE Conference on Signal Processing and Communications Applications, SIU 2025 -- Istanbul; Isik University Sile Campus -- 211450 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Cancer Classification en_US
dc.subject Dimensionality Reduction en_US
dc.subject Filter-Based Methods en_US
dc.subject Gene Selection en_US
dc.subject Microarray Data en_US
dc.subject Classification (Of Information) en_US
dc.subject Dimensionality Reduction en_US
dc.subject Feature Extraction en_US
dc.subject Gene Expression en_US
dc.subject Microarrays en_US
dc.subject Cancer Classification en_US
dc.subject Filter-Based en_US
dc.subject Filter-Based Method en_US
dc.subject Gene Selection en_US
dc.subject Microarray Dataset en_US
dc.subject Microarray Technologies en_US
dc.subject Microarrays Data en_US
dc.subject Performances Evaluation en_US
dc.subject Selection Methods en_US
dc.subject Diseases en_US
dc.title Performance Evaluation of Filter-Based Gene Selection Methods in Cancer Classification
dc.title.alternative Kanser Sınıflandırmada Filtre Tabanlı Gen Seçim Yöntemlerinin Performans Değerlendirmesi
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Gökalp, Osman
gdc.author.scopusid 55364706100
gdc.description.department İzmir Institute of Technology en_US
gdc.description.departmenttemp [Gokalp] Osman, Department of Computer Engineering, Izmir Yüksek Teknoloji Enstitüsü, Izmir, Turkey en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.wosquality N/A
gdc.identifier.openalex W4413461790
gdc.openalex.collaboration national
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
relation.isAuthorOfPublication 0f644810-1b1a-4bef-8288-a61e7d4c0124
relation.isAuthorOfPublication.latestForDiscovery 0f644810-1b1a-4bef-8288-a61e7d4c0124
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4014-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4003-8abe-a4dfe192da5e

Files