Teaching Accelerated Computing With Hands-On Experience

dc.contributor.author Oz, Isil
dc.contributor.other 01. Izmir Institute of Technology
dc.contributor.other 03. Faculty of Engineering
dc.contributor.other 03.04. Department of Computer Engineering
dc.date.accessioned 2025-09-25T18:56:10Z
dc.date.available 2025-09-25T18:56:10Z
dc.date.issued 2025
dc.description IEEE Technical Committee on Parallel Processing (TCPP) en_US
dc.description.abstract Heterogeneous computing systems maintain high-performance executions with parallel hardware resources. Graphics Processing Units (GPUs) with many parallel efficient cores and high-bandwidth memory structures enable accelerated computing for high-performance, deep learning, and embedded programs from diverse domains. The expertise in GPU programming requires a significant effort to utilize parallel computational units efficiently. Teaching programming for heterogeneous systems also becomes difficult due to dedicated hardware requirements and up-to-date course materials. In this paper, we present our teaching experience in an undergraduate parallel programming course, where we adopt NVIDIA Deep Learning Institute workshop and teaching kit contents and GPU devices at different scales to expose students to a set of hardware platforms with hands-on coding experience. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1109/IPDPSW66978.2025.00100
dc.identifier.isbn 9798331526436
dc.identifier.scopus 2-s2.0-105015418370
dc.identifier.uri https://doi.org/10.1109/IPDPSW66978.2025.00100
dc.identifier.uri https://hdl.handle.net/11147/18459
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof -- 2025 IEEE International Parallel and Distributed Processing Symposium Workshops, IPDPSW 2025 -- Milan -- 211372 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Accelerated Computing en_US
dc.subject Gpu Programming en_US
dc.subject Nvidia Deep Learning Institute en_US
dc.subject Computer Graphics en_US
dc.subject Computer Graphics Equipment en_US
dc.subject Computer Systems Programming en_US
dc.subject Curricula en_US
dc.subject Deep Learning en_US
dc.subject Embedded Systems en_US
dc.subject Parallel Programming en_US
dc.subject Program Processors en_US
dc.subject Students en_US
dc.subject Teaching en_US
dc.subject Accelerated Computing en_US
dc.subject Graphic Processing Unit Programming en_US
dc.subject Graphics Processing en_US
dc.subject Hardware Resources en_US
dc.subject Heterogeneous Computing System en_US
dc.subject High Bandwidth en_US
dc.subject Nvidia Deep Learning Institute en_US
dc.subject Parallel Hardware en_US
dc.subject Performance en_US
dc.subject Processing Units en_US
dc.subject Graphics Processing Unit en_US
dc.title Teaching Accelerated Computing With Hands-On Experience
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Öz, Işıl
gdc.author.scopusid 37097877800
gdc.author.scopusid 60093489600
gdc.description.department İzmir Institute of Technology en_US
gdc.description.departmenttemp [Oz] Isil, Department of Computer Engineering, Izmir Yüksek Teknoloji Enstitüsü, Izmir, Turkey; [null] null, NVIDIA, Santa Clara, United States en_US
gdc.description.endpage 649 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 642 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4413144334
gdc.openalex.collaboration international
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.0
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
relation.isAuthorOfPublication e0de33d0-b187-47e9-bae7-9b17aaabeb67
relation.isAuthorOfPublication.latestForDiscovery e0de33d0-b187-47e9-bae7-9b17aaabeb67
relation.isOrgUnitOfPublication 9af2b05f-28ac-4003-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4004-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication 9af2b05f-28ac-4014-8abe-a4dfe192da5e
relation.isOrgUnitOfPublication.latestForDiscovery 9af2b05f-28ac-4003-8abe-a4dfe192da5e

Files