Evaluating the Seismic Performance of Advanced Tuned Mass Dampers Considering Soil–Structure Interaction Effect

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Science and Business Media Deutschland GmbH

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

This study examines the seismic effectiveness of four different tuned mass damper (TMD) configurations: classical TMD, Tuned Mass Damper Inerter (TMDI), Elastoplastic Tuned Mass Damper Inerter (PTMDI), and Dual-Stiffness Tuned Mass Damper (DSTMD), focusing on their ability to reduce structural responses. A model of a 10-story steel shear frame is used, accounting for soil–structure interaction (SSI) effect to represent realistic conditions. The damper parameters are optimized using the Mouth Brooding Fish (MBF) algorithm with a hybrid objective function combining normalized peak displacement and kinetic energy reduction. The optimization process is tested against fourteen near- and far-field earthquake scenarios, with an additional ten records used to validate performance. The findings reveal that, under fixed-base conditions, TMD and TMDI achieve the largest displacement reductions (37.6% and 37.5%, respectively), while PTMDI provides the greatest kinetic energy mitigation (56.4%). DSTMD shows moderate reductions in both responses (≈ 23% displacement, 29.3% energy). When soil–structure interaction is considered, the efficiency of all systems decreases. TMDI maintains the best displacement reduction (12.9%), whereas PTMDI offers the highest energy reduction (25.5%). Additional assessments of roof acceleration and base shear highlight important trade-offs, stressing the importance of a multidimensional evaluation. In summary, this research underscores the significance of energy-based metrics and the influence of the SSI effect in evaluating dampers. Instead of advocating for or against any specific system, the analysis offers a comparative perspective on their performance under various conditions, helping to inform decisions in performance-based seismic design. © 2025 Elsevier B.V., All rights reserved.

Description

Keywords

Dual-Stiffness Tuned Mass Damper, Elastoplastic Tuned Mass Damper Inerter, Mouth Brooding Fish Algorithm, Seismic Response Mitigation, Soil-Structure Interaction

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

Q2

Source

Iranian Journal of Science and Technology - Transactions of Civil Engineering

Volume

Issue

Start Page

End Page

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

2

ZERO HUNGER
ZERO HUNGER Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

13

CLIMATE ACTION
CLIMATE ACTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo