Photonics / Fotonik
Permanent URI for this collectionhttps://hdl.handle.net/11147/2590
Browse
Browsing Photonics / Fotonik by WoS Q "Q3"
Now showing 1 - 18 of 18
- Results Per Page
- Sort Options
Article Citation - WoS: 16Citation - Scopus: 19Aluminum and Lithium Sulfur Batteries: a Review of Recent Progress and Future Directions(IOP Publishing, 2021) Akgenç, Berna; Sarıkurt, Sevil; Yağmurcukardeş, Mehmet; Ersan, Fatih; 04.04. Department of Photonics; 04. Faculty of Science; 01. Izmir Institute of TechnologyAdvanced materials with various micro-/nanostructures have attracted plenty of attention for decades in energy storage devices such as rechargeable batteries (ion- or sulfur based batteries) and supercapacitors. To improve the electrochemical performance of batteries, it is uttermost important to develop advanced electrode materials. Moreover, the cathode material is also important that it restricts the efficiency and practical application of aluminum-ion batteries. Among the potential cathode materials, sulfur has become an important candidate material for aluminum-ion batteries cause of its considerable specific capacity. Two-dimensional materials are currently potential candidates as electrodes from lab-scale experiments to possible pragmatic theoretical studies. In this review, the fundamental principles, historical progress, latest developments, and major problems in Li-S and Al-S batteries are reviewed. Finally, future directions in terms of the experimental and theoretical applications have prospected.Article Citation - WoS: 8Citation - Scopus: 9Cesium Manganese Chloride: Stable Lead-Free Perovskite From Bulk To Single Layer(Elsevier, 2021) Sözen, Yiğit; Özen, Sercan; Şahin, Hasan; 01. Izmir Institute of Technology; 04.04. Department of Photonics; 04. Faculty of ScienceMotivated by the recent advances in perovskite-based solar cells, here we investigate stability, electronic properties and vibrational characteristics of lead-free perovskite, CsMnCl3, and its low dimensional forms by means of first-principles calculations. Structural optimizations reveal that, regardless of whether it is bulk or ultra-thin single layer cubic perovskite structure, CsMnCl3 crystal exhibit robust antiferromagnetism in its ground state due to oppositely aligned magnetic moments of Mn atoms. In addition to total energy calculations, phonon band dispersions indicate that CsMnCl3 structure sustains its dynamical stability down to its thinnest single layer crystal structures. The calculated Raman spectrums state that while the first-order Raman scattering is forbidden for bulk CsMnCl3 due to the cubic symmetry; dimensional-reduction-driven symmetry breaking leads to emergence of experimentally-observable distinctive Raman active modes in bilayer and single-layer crystal structures. Moreover, the electronic band dispersions reveal that from its bulk to ultra-thin single layer structures CsMnCl3 crystals are robust antiferromagnetic insulators. Multiple valid features like controllable dimensionality, robust antiferromagnetism and wide electronic band gap make cubic CsMnCl3 crystal as a potential candidate for nano-scale optoelectronic applications.Article Citation - WoS: 5Citation - Scopus: 6Contribution of O-2 Plasma Treatment and Amine Modified Gos on Film Properties of Conductive Pedot:pss: Application in Indium Tin Oxide Free Solution Processed Blue Oled(Elsevier, 2019) Diker, Halide; Yeşil, Fatih; Varlıklı, Canan; 01. Izmir Institute of Technology; 04.04. Department of Photonics; 04. Faculty of SciencePrimary (n-propyl amine, n-PRYLA), secondary (dipropyl amine, DPRYLA) and alcohol (propanol amine, PRPOHA) amine derivatives were used as amine sources in graphene oxide (GO) modification and obtained samples were named as nPRYLA-GO, DPRYLA-GO and PRPOHA-GO, respectively. Modified graphene oxide (mGO) derivatives were doped in poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PH1000) and O-2 plasma treatment (70W, 3 min) was applied on the spin casted films. PH1000:mGO films presented high optical transparency values (> 90%) and low resistivity (177-183 Q/sq). The roughness values were increased especially when the hydrophobic alkyl chain containing DPRYLA-GO and nPRYLA-GO were doped in PH1000. Prepared films were utilized as anode in solution processed blue organic light emitting diode. PH1000:PRPOHA-GO anode presented more than 30 nm of decrement in full with at half maximum and 1.6, 1.5 and 1.9 fold enhancements in current, power and external quantum efficiency values, compared to those of ITO anode, respectively.Article Citation - WoS: 19Citation - Scopus: 20Controlling the Distribution of Oxygen Functionalities on Go and Utilization of Pedot:pss-Go Composite as Hole Injection Layer of a Solution Processed Blue Oled(Elsevier Ltd., 2017-04) Diker, Halide; Durmaz, Gamze Belkis; Bozkurt, Hakan; Yeşil, Fatih; Varlıklı, Canan; 01. Izmir Institute of Technology; 04.04. Department of Photonics; 04. Faculty of ScienceGraphene oxide (GO) was synthesis by Tour method. Particle size distribution effects of raw graphite on the resulting structural, morphological, optical and electrical properties of GO samples and their poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) composites are studied for the graphite particle distributions of <150, 45–75 and 25–45 μm. It is determined that particle size of raw graphite have an impact on oxidation degree, the chemical nature of oxygen functional groups on GO and it also affects the lateral size of obtained GO. PEDOT:PSS-GO composites are utilized as hole injection layer (HIL) in a solution process blue organic light emitting diode. Presence of GO caused negative differential resistance (NDR) and NDR intensity was decreased with the decrease in lateral size of GO, increase in the graphite particle size and carboxyl% of obtained GO. All PEDOT:PSS-GO composite based devices presented better performance than the bare PEDOT:PSS based reference device. The maximum luminous and external quantum efficiency values of the device that contain HIL of PEDOT:PSS-GO(150) were more than 40% and 50% higher than that of the reference, respectively. Two folds of increase in these performance values were able to be reached with the concentration optimization of GO/150 in PEDOT:PSS.Article Citation - WoS: 89Citation - Scopus: 83Cspbbr3 Perovskites: Theoretical and Experimental Investigation on Water-Assisted Transition From Nanowire Formation To Degradation(American Physical Society, 2018) Akbalı, Barış; Topçu, Gökhan; Güner, Tuğrul; Özcan, Mehmet; Demir, Mustafa Muammer; Şahin, Hasan; 04.04. Department of Photonics; 03.09. Department of Materials Science and Engineering; 03. Faculty of Engineering; 04. Faculty of Science; 01. Izmir Institute of TechnologyRecent advances in colloidal synthesis methods have led to an increased research focus on halide perovskites. Due to the highly ionic crystal structure of perovskite materials, a stability issue pops up, especially against polar solvents such as water. In this study, we investigate water-driven structural evolution of CsPbBr3 by performing experiments and state-of-the-art first-principles calculations. It is seen that while an optical image shows the gradual degradation of the yellowish CsPbBr3 structure under daylight, UV illumination reveals that the degradation of crystals takes place in two steps: transition from a blue-emitting to green-emitting structure and and then a transition from a green-emitting phase to complete degradation. We found that as-synthesized CsPbBr3 nanowires (NWs) emit blue light under a 254 nm UV source. Before the degradation, first, CsPbBr3 NWs undergo a water-driven structural transition to form large bundles. It is also seen that formation of such bundles provides longer-term environmental stability. In addition theoretical calculations revealed the strength of the interaction of water molecules with ligands and surfaces of CsPbBr3 and provide an atomistic-level explanation to a transition from ligand-covered NWs to bundle formation. Further interaction of green-light-emitting bundles with water causes complete degradation of CsPbBr3 and the photoluminescence signal is entirely quenched. Moreover, Raman and x-ray-diffraction measurements revealed that completely degraded regions are decomposed to PbBr2 and CsBr precursors. We believe that the findings of this study may provide further insight into the degradation mechanism of CsPbBr3 perovskite by water.Article Citation - WoS: 5Citation - Scopus: 5Functionalization of Single-Layer Tas2 and Formation of Ultrathin Janus Structures(Cambridge University Press, 2020) Kahraman, Zeynep; Yağmurcukardeş, Mehmet; Şahin, Hasan; 04.04. Department of Photonics; 04. Faculty of Science; 01. Izmir Institute of TechnologyAb initio calculations are performed to investigate the structural, vibrational, electronic, and piezoelectric properties of functionalized single layers of TaS2. We find that single-layer TaS2 is a suitable host material for functionalization via fluorination and hydrogenation. The one-side fluorinated (FTaS2) and hydrogenated (HTaS2) single layers display indirect gap semiconducting behavior in contrast to bare metallic TaS2. On the other hand, it is shown that as both surfaces of TaS2 are saturated anti-symmetrically, the formed Janus structure is a dynamically stable metallic single layer. In addition, it is revealed that out-of-plane piezoelectricity is created in all anti-symmetric structures. Furthermore, the Janus-type single-layer has the highest specific heat capacity to which longitudinal and transverse acoustical phonon modes have contribution at low temperatures. Our findings indicate that single-layer TaS2 is suitable for functionalization via H and F atoms that the formed, anti-symmetric structures display distinctive electronic, vibrational, and piezoelectric properties.Article Citation - WoS: 31Citation - Scopus: 34Highly Efficient Supercapacitor Using Single-Walled Carbon Nanotube Electrodes and Ionic Liquid Incorporated Solid Gel Electrolyte(SAGE Publications, 2018-10) Siyahjani, Shirin; Öner, Saliha; Singh, Pramod K.; Varlıklı, Canan; 04.04. Department of Photonics; 04. Faculty of Science; 01. Izmir Institute of TechnologyGel polymer electrolyte (GPE) comprising a low viscosity ionic liquid, that is, 1-propyl-3-methyl imidazolium bis(trifluoromethyl sulfonyl)imide (PMI-TFSI, viscosity 38 cP at 20°C) and a polymer, that is, polyvinyl alcohol (PVA) have been prepared using solution cast technique and characterized by impedance spectroscopy, X-ray diffraction, differential scanning calorimetry, optical microscopy, and Fourier transform infrared spectroscopy. Blending PMI-TFSI with PVA matrix hindered the crystallinity of polymer matrix and presented remarkable enhancement in electrical conductivity with a conductivity maxima at 250 wt% PMI-TFSI. The prepared electric double-layer capacitor using single-walled carbon nanotube as symmetric electrodes and PVA:250 wt% PMI-TFSI as GPE presented a capacitance value of about 28 F g−Article Citation - WoS: 2Citation - Scopus: 3Soluble Cytotoxic Ruthenium(ii) Complexes With 2-Hydrazinopyridine(Pleiades Publishing, 2019) Soliman, A. A.; Attaby, F. A.; Alajrawy, O., I; Majeed, S. R.; Şahin, C.; Varlıklı, Canan; 04.04. Department of Photonics; 04. Faculty of Science; 01. Izmir Institute of TechnologyNew water soluble Ru(II) binary complex [Ru(C5H7N3)(X)(H2O)(2)] with 2-hydrazinopyridine and its ternary complexes with X = dichloride, oxalate, malonate or pyrophosphate ligands have been synthesized. The complexes have been characterized using elemental analyses, mass, IR, and UV-Vis. spectroscopies, cyclic voltammetry, magnetic susceptibility, and thermal analysis. The complexes are diamagnetic and the electronic spectral data showed that peaks are due to low spin octahedral Ru(II) complexes. The optimized structures of the complexes 1-4 indicate distorted octahedral geometry with bond angles around the ruthenium atom ranged from 80.44 degrees to 99.64 degrees. The values of the electronic energies (-635 to -1145 a.u.), the highest occupied molecular orbital energies (-0.181 to 0.073 a.u.) and lowest unoccupied molecular orbital energies (-0.056 to 0.167 a.u.) indicate the stability of the complexes. The complexes are polarized as indicated from the dipole moment values (9.39-14.27 Debye). The complexes have noticeable cytotoxicity with IC50 (mu M): 0.011-0.062 (HepG-2), 0.015-0.080 (MCF-7), 0.015-0.116 (HCT-116), and PC-3 (0.034-0.125).Article Citation - WoS: 8Citation - Scopus: 10Stability, Electronic and Phononic Properties of Ss and 1t Structures of Sitex (x = 1, 2) and Their Vertical Heterostructures(IOP Publishing Ltd., 2017-08) Kandemir, Ali; İyikanat, Fadıl; Şahin, Hasan; 04.04. Department of Photonics; 04. Faculty of Science; 01. Izmir Institute of TechnologyBy performing first-principles calculations, we predict a novel, stable single layer phase of silicon ditelluride, 1T-SiTe2, and its possible vertical heterostructures with single layer β-SiTe. Structural optimization and phonon calculations reveal that 1T-SiTe2 structure has a dynamically stable ground state. Further analysis of the vibrational spectrum at the - point shows that single layer 1T-SiTe2 has characteristic phonon modes at 80, 149, 191 and 294 cm-1. Electronic-band structure demonstrates that 1T-SiTe2 phase exhibits a nonmagnetic metallic ground state with a negligible intrinsic spinorbit splitting. Moreover, it is shown that similar structural parameters of 1T-SiTe2 and existing β-SiTe phases allows construction of 1T-β heterostructures with a negligible lattice mismatch. In this regard, it is found that two energetically favorable stacking orders, namely AA and ATB, have distinctive shear and layer breathing phonon modes. It is important to note that the combination of semiconducting β-SiTe and metallic 1T-SiTe2 building blocks forms ultra-thin Schottky barriers that can be used in nanoscale optoelectronic device technologies.Article Citation - WoS: 2Citation - Scopus: 2Stable Single Layer Structures of Aluminum Oxide: Vibrational and Electronic Characterization of Magnetic Phases(Elsevier, 2022-11) Özyurt, A. Kutay; Molavali, Deniz; Şahin, Hasan; 01. Izmir Institute of Technology; 04.04. Department of Photonics; 04. Faculty of ScienceThe structural, magnetic, vibrational and electronic properties of single layer aluminum oxide (AlO2) are investigated by performing state-of-the-art first-principles calculations. Total energy optimization and phonon calculations reveal that aluminum oxide forms a distorted octahedral structure (1T′-AlO2) in its single layer limit. It is also shown that surfaces of 1T′-AlO2 display magnetic behavior originating from the O atoms. While the ferromagnetic (FM) state is the most favorable magnetic order for 1T′-AlO2, transformation to a dynamically stable antiferromagnetic (AFM) state upon a slight distortion in the crystal structure is also possible. It is also shown that Raman activities (350–400 cm−1) obtained from the vibrational spectrum can be utilized to distinguish the possible magnetic phases of the crystal structure. Electronically, both FM and the AFM phases are semiconductors with an indirect band gap and they can form a type-III vdW heterojunction with graphene-like ultra-thin materials. Moreover, it is predicted that presence of oxygen defects that inevitably occur during synthesis and production do not alter the magnetic state, even at high vacancy density. Apparently, ultra-thin 1T′-AlO2 with its stable crystal structure, semiconducting nature and robust magnetic state is a quite promising material for nanoscale device applications.Article Citation - WoS: 7Citation - Scopus: 7Stable Ultra-Thin Cdte Crystal: a Robust Direct Gap Semiconductor(IOP Publishing Ltd., 2017-11) İyikanat, Fadıl; Akbalı, Barış; Kang, J.; Senger, Ramazan Tuğrul; Selamet, Yusuf; Şahin, Hasan; 04.04. Department of Photonics; 04.05. Department of Pyhsics; 04. Faculty of Science; 01. Izmir Institute of TechnologyEmploying density functional theory based calculations, we investigate structural, vibrational and strain-dependent electronic properties of an ultra-thin CdTe crystal structure that can be derived from its bulk counterpart. It is found that this ultra-thin crystal has an 8-atom primitive unit cell with considerable surface reconstructions. Dynamic stability of the structure is predicted based on its calculated vibrational spectrum. Electronic band structure calculations reveal that both electrons and holes in single layer CdTe possess anisotropic in-plane masses and mobilities. Moreover, we show that the ultra-thin CdTe has some interesting electromechanical features, such as strain-dependent anisotropic variation of the band gap value, and its rapid increase under perpendicular compression. The direct band gap semiconducting nature of the ultra-thin CdTe crystal remains unchanged under all types of applied strain. With a robust and moderate direct band gap, single-layer CdTe is a promising material for nanoscale strain dependent device applications.Article Citation - WoS: 106Citation - Scopus: 106Structural, Electronic and Phononic Properties of Ptse2: From Monolayer To Bulk(IOP Publishing Ltd., 2018-06) Kandemir, Ali; Akbalı, Barış; Kahraman, Z.; Badalov, S. V.; Özcan, Mehmet; İyikanat, Fadıl; Şahin, Hasan; 04.04. Department of Photonics; 04. Faculty of Science; 01. Izmir Institute of TechnologyThe layer dependent structural, electronic and vibrational properties of the 1T phase of two dimensional (2D) platinum diselenide are investigated by means of state-of-the-art first-principles calculations. The main findings of the study are: (i) monolayer platinum diselenide has a dynamically stable 2D octahedral structure with 1.66 eV indirect band gap, (ii) the semiconducting nature of 1T-PtSe2 monolayers remains unaffected even at high biaxial strains, (iii) top-to-top (AA) arrangement is found to be energetically the most favorable stacking of 1T-PtSe2 layers, (iv) the lattice constant (layer-layer distance) increases (decreases) with increasing number of layers, (v) while monolayer and bilayer 1T-PtSe2 are indirect semiconductors, bulk and few-layered 1T-PtSe2 are metals, (vi) Raman intensity and peak positions of the A1g and Eg modes are found to be highly dependent on the layer thickness of the material, hence; the number of layers of the material can be determined via Raman measurements.Article Citation - WoS: 1Citation - Scopus: 1Structural, Electronic and Vibrational Properties of Ultra-Thin Octahedrally Coordinated Structure of Euo2(Elsevier, 2020) Özcan, Mehmet; Özen, Sercan; Yağmurcukardeş, Mehmet; Şahin, Hasan; 04.04. Department of Photonics; 04. Faculty of Science; 01. Izmir Institute of TechnologyNovel stable ultra-thin phases of europium oxide are investigated by means of state-of-the-art first principles calculations. Total energy calculations show that single layers of EuO2 and Eu(OH)(2) can be stabilized in an octahedrally coordinated (1T) atomic structure. However, phonon calculations reveal that although both structures are energetically feasible, only the 1T-EuO2 phase has dynamical stability. The phonon spectrum of 1T-EuO2 displays three Raman active modes; a non-degenerate out-of-plane A(1g) mode at 353.5 cm(-1) and two doubly-degenerate in-plane E-g modes at 304.3 cm(-1). Furthermore, magnetic ground state and electronic band dispersion calculations show that the single layer EuO2 is a metal with net magnetic moment of 5(mu B) per unitcell resulting in a half-metallic ferrimagnetic behavior. Moreover, robustness of the half-metallic ferrimagnetic characteristics of EuO2 is confirmed by the application of electric field and charging. Single layer 1T-EuO2, with its stable ultra-thin structure and half-metallic ferrimagnetic feature, is a promising novel material for nanoscale electronic and spintronic applications.Article Citation - WoS: 21Citation - Scopus: 25Surface Functionalization of the Honeycomb Structure of Zinc Antimonide (znsb) Monolayer: a First-Principles Study(Elsevier, 2021) Bafekry, A.; Shahrokhi, M.; Yağmurcukardeş, Mehmet; Gogova, D.; Ghergherehchi, M.; Akgenç, B.; Feghhi, S. A. H.; 04.04. Department of Photonics; 04. Faculty of Science; 01. Izmir Institute of TechnologyStructural, electronic, optic and vibrational properties of Zinc antimonide (ZnSb) monolayers and their func-tionalized (semi-fluorinated and fully chlorinated) structures are investigated by means of the first-principles calculations. The phonon dispersion curves reveal the presence of imaginary frequencies and thus confirm the dynamical instability of ZnSb monolayer. The calculated electronic band structure corroborates the metallic character with fully-relativistic calculations. Moreover, we analyze the surface functionalization effect on the structural, vibrational, and electronic properties of the pristine ZnSb monolayer. The semi-fluorinated and fully-chlorinated ZnSb monolayers are shown to be dynamically stable in contrast to the ZnSb monolayer. At the same time, semi-fluorination and fully-chlorination of ZnSb monolayer could effectively modulate the metallic elec-tronic properties of pristine ZnSb. In addition, a magnetic metal to a nonmagnetic semiconductor transition with a band gap of 1 eV is achieved via fluorination, whereas a transition to a semiconducting state with 1.4 eV band gap is found via chlorination of the ZnSb monolayer. According to the optical properties analysis, the first ab-sorption peaks of the fluorinated-and chlorinated-ZnSb monolayers along the in-plane polarization are placed in the infrared range of spectrum, while they are in the middle ultraviolet for the out-of-plane polarization. Interestingly, the optically anisotropic behavior of these novel monolayers along the in-plane polarizations is highly desirable for design of polarization-sensitive photodetectors. The results of the calculations clearly proved that the tunable electronic properties of the ZnSb monolayer can be realized by chemical functionalization for application in the next generation nanoelectronic devices.Article Citation - WoS: 12Citation - Scopus: 11Theoretical and Experimental Investigation of Conjugation of 1,6-Hexanedithiol on Mos2(IOP Publishing Ltd., 2018-03) Gül, Aytaç; Bacaksız, Cihan; Ünsal, Emre; Akbalı, Barış; Tomak, Aysel; Zareie, Hadi M.; Şahin, Hasan; 03.01. Department of Bioengineering; 04.04. Department of Photonics; 03. Faculty of Engineering; 04. Faculty of Science; 01. Izmir Institute of TechnologyWe report an experimental and theoretical investigation of conjugation of 1,6-Hexaneditihiol (HDT) on MoS2 which is prepared by mixing MoS2 structure and HDT molecules in proper solvent. Raman spectra and the calculated phonon bands reveal that the HDT molecules bind covalently to MoS2. Surface morphology of MoS2/HDT structure is changed upon conjugation of HDT on MoS2 and characterized by using Scanning Electron Microscope (SEM). Density Functional Theory (DFT) based calculations show that HOMO-LUMO band gap of HDT is altered after the conjugation and two-S binding (handle-like) configuration is energetically most favorable among three different structures. This study displays that the facile thiol functionalization process of MoS2 is promising strategy for obtaining solution processable MoS2.Article Citation - WoS: 12Citation - Scopus: 12A Theoretical Investigation on the Physical Properties of Zirconium Trichalcogenides, Zrs3, Zrse3 and Zrte3 Monolayers(MDPI, 2022-08) Mortazavi, Bohayra; Shojaei, Fazel; Yağmurcukardeş, Mehmet; Makaremi, Meysam; Zhuang, Xiaoying; 04.04. Department of Photonics; 04. Faculty of Science; 01. Izmir Institute of TechnologyIn a recent advance, zirconium triselenide (ZrSe3) nanosheets with anisotropic and strain-tunable excitonic response were experimentally fabricated. Motivated by the aforementioned progress, we conduct first-principle calculations to explore the structural, dynamic, Raman response, electronic, single-layer exfoliation energies, and mechanical features of the ZrX3 (X = S, Se, Te) monolayers. Acquired phonon dispersion relations reveal the dynamical stability of the ZrX3 (X = S, Se, Te) monolayers. In order to isolate single-layer crystals from bulk counterparts, exfoliation energies of 0.32, 0.37, and 0.4 J/m2 are predicted for the isolation of ZrS3, ZrSe3, and ZrTe3 monolayers, which are comparable to those of graphene. ZrS3 and ZrSe3 monolayers are found to be indirect gap semiconductors, with HSE06 band gaps of 1.93 and 1.01 eV, whereas the ZrTe3 monolayer yields a metallic character. It is shown that the ZrX3 nanosheets are relatively strong, but with highly anisotropic mechanical responses. This work provides a useful vision concerning the critical physical properties of ZrX3 (X = S, Se, Te) nanosheets.Article Citation - WoS: 3Citation - Scopus: 3Thickness-Dependent Piezoelecticity of Black Arsenic From Few-Layer To Monolayer(Elsevier, 2023) Akgenç Hanedar, Berna; Ersan, Fatih; Altalhi, Tariq; Yağmurcukardeş, Mehmet; Yakobson, Boris; 04.04. Department of Photonics; 04. Faculty of Science; 01. Izmir Institute of TechnologyUltra-thin forms of black phosphorus (b-P) have been widely investigated due to its unique properties arising from the in-plane anisotropy in its crystal structure. Recently, two-dimensional (2D) forms of black arsenic (b-As) have also been added to the 2D family. In this study, the thickness-dependent structural, electronic, and piezoelectric properties of layered b-As are investigated by means of ab-initio calculations. The structural optimizations confirm the van der Waals type layered structure for both these structures. In addition, increasing the thickness is shown to result in the decreasing of the band gap arising from the confinement of electrons in the layers. In contrast to the case of b-P, it is revealed that a transition from indirect-to-direct band gap behavior can be found in b-As which can be important for optically identifying the single-layer structure. Moreover, the piezoelectric properties are investigated as a function of the number of layers. It is shown that while a single-layer of b-As does not exhibit piezoelectric features, even in the case of bilayer structures the piezoelectricity is created. Our results revealed the strong in-plane anisotropy in piezoelectric coefficients for the three-layer and thicker structures. We have shown that the out-of-plane piezoelectric properties can be achieved by non-centrosymmetric features in the out-of-plane direction in thicker structures of b-As.Article Citation - WoS: 2Citation - Scopus: 1Transition Metal Salt Promoted, Green, and High-Yield Synthesis of Silver Nanowires for Flexible Transparent Conductive Electrodes(Wiley-Blackwell, 2021-11) Sarısözen, Sema; Tertemiz, Necip Ayhan; Arıca, Tuğçe Aybüke; Polat, Nahit; Kocabaş, Çoşkun; Mert Balcı, Fadime; Balcı, Sinan; 04.04. Department of Photonics; 04.01. Department of Chemistry; 04. Faculty of Science; 01. Izmir Institute of TechnologySilver nanowires (AgNWs) have attracted considerable interest from both academia and industry owing to their excellent electrical, optical, and chemical properties. For large-scale synthesis of AgNWs, the polyol method involving ethylene glycol, a toxic alcohol, has been widely used. We herein report on a facile, green, high yield, transition metal salt promoted, open atmosphere method for the synthesis of high quality AgNWs in a glycerol-water mixture. We have shown that transition metal salts have a strong influence on the morphology of AgNWs. Importantly, in the presence of copper(II) chloride, AgNWs with a high aspect ratio of around 400 (length, 36 μm; diameter, 90 nm) were obtained. Additionally, for the first time, we have demonstrated AgNWs based flexible transparent conductive electrodes (TCEs) on poly(sodium 4-styrenesulfonate) (PSS) treated polyethylene terephthalate (PET) substrate with a sheet resistance of 34 Ω/sq and transmittance of 91 % at 550 nm. The PSS layer on the PET substrate generated a highly hydrophilic surface, which boosts interaction of AgNWs with the PET surface. We envision that our results would play a significant role both in the synthesis of AgNWs with high aspect ratio and also in designing new rigid and flexible TCEs having high transmittance and low sheet resistance for applications especially in printable solar cells, organic light emitting diodes, and high performance flexible electronics.