Bioengineering / Biyomühendislik
Permanent URI for this collectionhttps://hdl.handle.net/11147/4529
Browse
Browsing Bioengineering / Biyomühendislik by Scopus Q "Q1"
Now showing 1 - 20 of 76
- Results Per Page
- Sort Options
Article Citation - WoS: 11Citation - Scopus: 143D Bioprinting of mouse pre-osteoblasts and human MSCs using bioinks consisting of gelatin and decellularized bone particles(Iop Publishing Ltd, 2024) Kara, Aylin; Distler, Thomas; Akkineni, Ashwini Rahul; Tihminlioglu, Funda; Gelinsky, Michael; Boccaccini, Aldo R.; 03.02. Department of Chemical Engineering; 03.01. Department of Bioengineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyOne of the key challenges in biofabrication applications is to obtain bioinks that provide a balance between printability, shape fidelity, cell viability, and tissue maturation. Decellularization methods allow the extraction of natural extracellular matrix, preserving tissue-specific matrix proteins. However, the critical challenge in bone decellularization is to preserve both organic (collagen, proteoglycans) and inorganic components (hydroxyapatite) to maintain the natural composition and functionality of bone. Besides, there is a need to investigate the effects of decellularized bone (DB) particles as a tissue-based additive in bioink formulation to develop functional bioinks. Here we evaluated the effect of incorporating DB particles of different sizes (<= 45 and <= 100 mu m) and concentrations (1%, 5%, 10% (wt %)) into bioink formulations containing gelatin (GEL) and pre-osteoblasts (MC3T3-E1) or human mesenchymal stem cells (hTERT-MSCs). In addition, we propose a minimalistic bioink formulation using GEL, DB particles and cells with an easy preparation process resulting in a high cell viability. The printability properties of the inks were evaluated. Additionally, rheological properties were determined with shear thinning and thixotropy tests. The bioprinted constructs were cultured for 28 days. The viability, proliferation, and osteogenic differentiation capacity of cells were evaluated using biochemical assays and fluorescence microscopy. The incorporation of DB particles enhanced cell proliferation and osteogenic differentiation capacity which might be due to the natural collagen and hydroxyapatite content of DB particles. Alkaline phosphatase activity is increased significantly by using DB particles, notably, without an osteogenic induction of the cells. Moreover, fluorescence images display pronounced cell-material interaction and cell attachment inside the constructs. With these promising results, the present minimalistic bioink formulation is envisioned as a potential candidate for bone tissue engineering as a clinically translatable material with straightforward preparation and high cell activity.Conference Object Akt Inhibitor Arq 092 and Sorafenib Additively Inhibit Progression of Hepatocellular Carcinoma and Improve Immune System in Cirrhotic Rat Model(Elsevier, 2017) Jilkova, Z. M.; Zeybek Kuyucu, Ayça; Kurma, K.; Pour, S. T. A.; Roth, G. S.; Abbadessa, G.; Decaens, T.; 03.01. Department of Bioengineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyBackground and Aims: Hepatocellular carcinoma (HCC) is often diagnosed at advanced stages with limited number of therapeutic options. Longer exposure to classical treatment of advanced HCC, sorafenib, often over-activates AKT pathway, leading to HCC resistance. Moreover, AKT pathway itself is activated in almost half of HCC cases. Therefore, we investigated the efficacy of combination of Sorafenib with allosteric Akt inhibitor ARQ 092 in a DEN-induced cirrhotic rat model with HCC.Article Citation - WoS: 16Citation - Scopus: 17Antiproliferative Activity of (r)-4 '-methylklavuzon on Hepatocellular Carcinoma Cells and Epcam(+)/Cd133(+) Cancer Stem Cells Via Sirt1 and Exportin-1 (crm1) Inhibition(Elsevier Ltd., 2019-10) Delman, Murat; Avcı, Sanem Tercan; Akçok, İsmail; Kanbur, Tuğçe; Erdal, Esra; Çağır, Ali; 04.01. Department of Chemistry; 01. Izmir Institute of Technology; 04. Faculty of ScienceCytotoxic effects of (R)-4'-methylklavuzon were investigated on hepatocellular carcinoma cells (HuH-7 and HepG2) and HuH-7 EpCAM(+)/CD133(+) cancer stem cells. IC50 of (R)-4'-methylklavuzon was found as 1.25 mu M for HuH-7 parental cells while it was found as 2.50 mu M for HuH-7 EpCAM(+)/CD133(+) cancer stem cells. (R)-4'-methylklavuzon tended to show more efficient in vitro cytotoxicity with its lower IC50 values on hepatocellular carcinoma cell lines compared to its lead molecule, goniothalamin and FDA-approved drugs, sorafenib and regorafenib. Cell-based Sirtuin/HDAC enzyme activity measurements revealed that endogenous Sirtuin/HDAC enzymes were reduced by 40% compared to control. SIRT1 protein levels were upregulated indicating triggered DNA repair mechanism. p53 was overexpressed in HepG2 cells. (R)-4'methylklavuzon inhibited CRM1 protein providing increased retention of p53 and RIOK2 protein in the nucleus. HuH-7 parental and EpCAM(+)/CD133(+) cancer stem cell spheroids lost intact morphology. 3D HepG2 spheroid viabilities were decreased in a correlation with upregulation in p53 protein levels. (C) 2019 Elsevier Masson SAS. All rights reserved.Article Citation - WoS: 14Citation - Scopus: 16Bacterial Cellulose Based Facial Mask With Antioxidant Property and High Moisturizing Capacity(Springer, 2021) Bilgi, Eyüp; Homan Gökçe, Evren; Bayır, Ece; Şendemir, Aylin; Özgen Özer, Kevser; Hames Tuna, Elif Esin; 03.01. Department of Bioengineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyBacterial cellulose (BC) produced by certain bacteria has the potential to be used in many different areas. Despite its advantageous properties compared to plant cellulose, such as high purity, mechanical strength, nanofiber mesh structure, and high-water holding capacity, its production through a biotechnological process prevents it from competing with plant counterparts in terms of cost-effectiveness. Therefore, studies have focused on the development of culture media with cost-effective BC production methods and the production of high value-added products from BC. In this study, it was aimed to develop a taurine-loaded moisturizing facial mask with antioxidant properties based on BC's high-water retention and chemical retention capacity. BC facial mask samples were characterized by Scanning Electron Microscopy (SEM) imaging, Fourier Transform Infrared (FTIR) Spectroscopy, Differential Scanning Calorimetry (DSC), Liquid Chromatography-Mass spectrometry (LC-MS), microbial and mechanical stability tests, as well as cytotoxicity tests. According to our results, produced facial mask samples did not show any cytotoxic effect on human keratinocyte (HS2) or mouse fibroblast (L-929) cell lines; it has high thermal stability, which makes it suitable for different sterilization techniques including sterilization by heat treatment. Taurine release (over 2 mu g/mL in 5 min) and microbial stability tests (no bacterial growth observed) of packaged products kept at 40 and 25 degrees C for 6 months have shown that the product preserves its characteristics for a long time. In conclusion bacterial cellulose-based facial masks are suitable for use as a facial mask, and they can be used for moisturizing and antioxidant properties by means of taurine.Article Citation - WoS: 5Citation - Scopus: 5Basidiomycota Species in Drosophila Gut Are Associated With Host Fat Metabolism(Nature Research, 2023) Bozkurt, Berkay; Terlemez, Gamze; Sezgin, Efe; 03.08. Department of Food Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe importance of bacterial microbiota on host metabolism and obesity risk is well documented. However, the role of fungal microbiota on host storage metabolite pools is largely unexplored. We aimed to investigate the role of microbiota on D. melanogaster fat metabolism, and examine interrelatedness between fungal and bacterial microbiota, and major metabolic pools. Fungal and bacterial microbiota profiles, fat, glycogen, and trehalose metabolic pools are measured in a context of genetic variation represented by whole genome sequenced inbred Drosophila Genetic Reference Panel (DGRP) samples. Increasing Basidiomycota, Acetobacter persici, Acetobacter pomorum, and Lactobacillus brevis levels correlated with decreasing triglyceride levels. Host genes and biological pathways, identified via genome-wide scans, associated with Basidiomycota and triglyceride levels were different suggesting the effect of Basidiomycota on fat metabolism is independent of host biological pathways that control fungal microbiota or host fat metabolism. Although triglyceride, glycogen and trehalose levels were highly correlated, microorganisms’ effect on triglyceride pool were independent of glycogen and trehalose levels. Multivariate analyses suggested positive interactions between Basidiomycota, A. persici, and L. brevis that collectively correlated negatively with fat and glycogen pools. In conclusion, fungal microbiota can be a major player in host fat metabolism. Interactions between fungal and bacterial microbiota may exert substantial control over host storage metabolite pools and influence obesity risk. © 2023, Springer Nature Limited.Article Citation - WoS: 12Citation - Scopus: 16Biocompatibility of Silicon Nitride Produced Via Partial Sintering & Tape Casting(Elsevier Ltd., 2021) Çeçen, Berivan; Topateş, Gülsüm; Kara, Aylin; Akbulut, Serdar Onat; Havıtçıoğlu, Hasan; Kozacı, Leyla Didem; 03.01. Department of Bioengineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThe biocompatibility of silicon nitride ceramics was proven by several studies however this study is apart from the literature in the manner of production routes that are tape casting and partial sintering. We report the tape casting route was chosen and a porous structure was obtained by partial sintering technique. Tape casting brought a smooth surface to the samples. Density and pore size distribution analysis showed that the scaffolds have low density because of the porous structure. XRD and SEM analyses were carried out to reveal the phase and microstructural characteristics of porous ceramic samples. Static contact angle measurement was done for the characterization of the wettability of the scaffolds. It revealed that the surface of the scaffolds was highly hydrophilic which is a desirable characteristic for the protein and cell adhesion. The mechanical characteristics of the scaffolds were analyzed by compression tests. Human osteosarcoma cells were used for in vitro studies. Cell-proliferation and cytotoxicity were analyzed by WST-1 and LDH, respectively. The osteoblastic behavior of the cells on the surface of the scaffolds was identified by alkaline phosphatase activity. BCA analysis was used for total protein content. The BCA and ALP results showed an increasing trend which is directly correlated with cell proliferation. Cells on the surface of the silicon nitride scaffolds were visualized by SEM and fluorescence microscopy where the images supported the in vitro analysis. Therefore, porous silicon nitride scaffolds fabricated via tape casting and partial sintering were biocompatible and they are possible candidates as bone substitute elements. © 2020 Elsevier Ltd and Techna Group S.r.l.Conference Object Bioethanol Production From Low Cost Agro-Industrial Waste Products(Elsevier, 2012) Evcan, Ezgi; Tarı, Canan; Özen, Banu; 03.08. Department of Food Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyIn recent years, the rapid increase in environmental problems, greenhouse gas emissions, fuel prices and the unlimited consumption of limited fossil fuel stocks made people search for some alternative energy sources. Bioethanol is one of the most popular alternative source with its many beneficial features. Besides, bioethanol which will be obtained from low cost raw materials will be more attractive. Bioethanol produced from lignocellulosic biomass sources, such as agricultural residues, offers unique environmental and economic benefits.Article Citation - WoS: 76Citation - Scopus: 90Biofabrication of in Situ Self Assembled 3d Cell Cultures in a Weightlessness Environment Generated Using Magnetic Levitation(Nature Publishing Group, 2018-12) Anıl İnevi, Müge; Yaman, Sena; Arslan Yıldız, Ahu; Meşe, Gülistan; Yalçın Özuysal, Özden; Tekin, Hüseyin Cumhur; Özçivici, Engin; 03.01. Department of Bioengineering; 04.03. Department of Molecular Biology and Genetics; 03. Faculty of Engineering; 04. Faculty of Science; 01. Izmir Institute of TechnologyMagnetic levitation though negative magnetophoresis is a novel technology to simulate weightlessness and has recently found applications in material and biological sciences. Yet little is known about the ability of the magnetic levitation system to facilitate biofabrication of in situ three dimensional (3D) cellular structures. Here, we optimized a magnetic levitation though negative magnetophoresis protocol appropriate for long term levitated cell culture and developed an in situ 3D cellular assembly model with controlled cluster size and cellular pattern under simulated weightlessness. The developed strategy outlines a potential basis for the study of weightlessness on 3D living structures and with the opportunity for real-time imaging that is not possible with current ground-based simulated weightlessness techniques. The low-cost technique presented here may offer a wide range of biomedical applications in several research fields, including mechanobiology, drug discovery and developmental biology.Conference Object Biofabrication of Scaffold-Free 3d Cellular Structures Using Magnetic Levitational Assembly To Study Cardiac Toxicity(Mary Ann Liebert, 2023) Yıldız, Ahu Arslan; Arslan Yıldız, Ahu; Onbaş, Rabia; 03.01. Department of Bioengineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologySpheroids are one of the well-characterized 3D cell culture approaches for drug screening and therapeutic studies. Magnetic levitation (MagLev) is a newly developing approach to form 3D cellular structures and spheroids [1,2,3]. Magnetic levitational assembly of cells provides rapid, simple, cost-effective 3D cell culture formation while ensuring scaffold-free microenvironment. Here, our efforts are summarized in designing new magnetic levitation platform and biofabrication of 3D cellular entities via magnetic levitation for tissue engineering. Magnetic levitation and guidance of cells were provided by using a paramagnetic agent to fabricate scaffold-free 3D cellular structures. The parameters of cell density, paramagnetic agent concentration, and culturing time were optimized to obtain 3D cardiac cellular structures with tunable size, circularity, and high cell viability. Cellular and extracellular components of the 3D cellular structures were demonstrated via immunofluorescent staining. Also, 3D cardiac cellular structures showed more resistance to drug exposure compared to 2D control. In conclusion, MagLev methodology offers an easy and efficient way to fabricate 3D cellular structures for drug screening studies.Article Citation - WoS: 34Citation - Scopus: 38Biomedical Nanomaterials: Applications, Toxicological Concerns, and Regulatory Needs(Informa Healthcare, 2020) Öksel Karakuş, Ceyda; Bilgi, Eyüp; Winkler, David; 03.01. Department of Bioengineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyAdvances in cutting-edge technologies such as nano- and biotechnology have created an opportunity for re-engineering existing materials and generating new nano-scale products that can function beyond the limits of conventional ones. While the step change in the properties and functionalities of these new materials opens up new possibilities for a broad range of applications, it also calls for structural modifications to existing safety assessment processes that are primarily focused on bulk material properties. Decades after the need to modify existing risk management practices to include nano-specific behaviors and exposure pathways was recognized, relevant policies for evaluating, and controlling health risks of nano-enabled materials is still lacking. This review provides an overview of current progress in the field of nanobiotechnology rather than intentions and aspirations, summarizes long-recognized but still unresolved issues surrounding materials safety at the nanoscale, and discusses key barriers preventing generation and integration of reliable data in bio/nano-safety domain. Particular attention is given to nanostructured materials that are commonly used in biomedical applications. © 2020 Informa UK Limited, trading as Taylor & Francis Group.Article Citation - WoS: 34Citation - Scopus: 35Biomimetic Hybrid Scaffold Consisting of Co-Electrospun Collagen and Pllcl for 3d Cell Culture(Elsevier Ltd., 2019) Türker, Esra; Yıldız, Ümit Hakan; Arslan Yıldız, Ahu; 04.01. Department of Chemistry; 03.01. Department of Bioengineering; 01.01. Units Affiliated to the Rectorate; 01. Izmir Institute of Technology; 03. Faculty of Engineering; 04. Faculty of ScienceElectrospun collagen is commonly used as a scaffold in tissue engineering applications since it mimics the content and morphology of native extracellular matrix (ECM) well. This report describes "toxic solvent free" fabrication of electrospun hybrid scaffold consisting of Collagen (Col) and Poly(L-lactide-co-epsilon-caprolactone) (PLLCL) for three-dimensional (3D) cell culture. Biomimetic hybrid scaffold was fabricated via co-spinning approach where simultaneous electrospinning of PLLCL and Collagen was mediated by polymer sacrificing agent Polyvinylpyrrolidone (PVP). Acidified aqueous solution of PVP was used to solubilize collagen without using toxic solvents for electrospinning, and then PVP was readily removed by rinsing in water. Mechanical characterizations, protein adsorption, as well as biodegradation analysis have been conducted to investigate feasibility of biomimetic hybrid scaffold for 3D cell culture applications. Electrospun biomimetic hybrid scaffold, which has 3D-network structure with 300-450 nm fiber diameters, was found to be maximizing cell adhesion through assisting NIH 3T3 mouse fibroblast cells. 3D cell culture studies confirmed that presence of collagen in biomimetic hybrid scaffold have created a major impact on cell proliferation compared to conventional 2D systems on long-term, also cell viability increased with the increasing amount of collagen. (c) 2019 Elsevier B.V. All rights reserved.Article Citation - WoS: 3Citation - Scopus: 4Biopatterning of 3d Cellular Model by Contactless Magnetic Manipulation for Cardiotoxicity Screening(Mary Ann Liebert, Inc, 2023) Önbaş, Rabia; Arslan Yıldız, Ahu; 03.01. Department of Bioengineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyPatterning cells to create three-dimensional (3D) cell culture models by magnetic manipulation is a promising technique, which is rapid, simple, and cost-effective. This study introduces a new biopatterning approach based on magnetic manipulation of cells with a bioink that consists alginate, cells, and magnetic nanoparticles. Plackett-Burman and Box-Behnken experimental design models were used to optimize bioink formulation where NIH-3T3 cells were utilized as a model cell line. The patterning capability was confirmed by light microscopy through 7 days culture time. Then, biopatterned 3D cardiac structures were formed using H9c2 cardiomyocyte cells. Cellular and extracellular components, F-actin and collagen Type I, and cardiac-specific biomarkers, Troponin T and MYH6, of biopatterned 3D cardiac structures were observed successfully. Moreover, Doxorubicin (DOX)-induced cardiotoxicity was investigated for developed 3D model, and IC50 value was calculated as 8.1 μM for biopatterned 3D cardiac structures, which showed higher resistance against DOX-exposure compared to conventional two-dimensional cell culture. Hereby, developed biopatterning methodology proved to be a simple and rapid approach to fabricate 3D cardiac models, especially for drug screening applications. Copyright 2023, Mary Ann Liebert, Inc., publishers.Conference Object Biopatterning of 3d Cellular Structures Via Contactless Magnetic Manipulation for Drug Screening(Mary Ann Liebert, 2023) Önbaş, Rabia; Arslan Yıldız, Ahu; 03.01. Department of Bioengineering; 03. Faculty of Engineering; 01. Izmir Institute of Technology"Patterning and manipulation techniques have been used to fabricate 3D cell cultures in tissue engineering. The contactless magnetic manipulation approach is a rapid, simple, and cost-effective method that requires paramagnetic agents [1-3] or magnetic materials [4]. Here, to obtain patterned 3D cellular structures a new alginate-based bio-ink formulation was developed to fabricate 3D cellular structures using contactless magnetic manipulation. 3D cardiac model was obtained by patterning rat cardiomyocytes. Cellular and extracellular components and cardiac-specific markers of patterned 3D cellular structures were indicated successfully. Drug response of patterned 3D cellular structures was evaluated by applying doxorubicin. Patterned 3D cardiac cellular structures showed significantly different drug response compared to conventional 2D cell cultures. In conclusion, this technique provides an easy, efficient, and low-cost methodology to fabricate 3D cardiac structures for drug screening.Conference Object Biopatterning of 3d Cellular Structures Via Contactless Magnetic Manipulation for Drug Screening(Mary Ann Liebert, 2023) Onbas, Rabia; Arslan Yıldız, Ahu; 03.01. Department of Bioengineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyArticle Citation - WoS: 19Citation - Scopus: 23Biotransformation of Neoruscogenin by the Endophytic Fungus Alternaria Eureka(American Chemical Society, 2018-06) Özçınar, Özge; Tağ, Özgür; Yusufoğlu, Hasan; Kıvçak, Bijen; Bedir, Erdal; 03.01. Department of Bioengineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyBiotransformation of neoruscogenin (NR, 1, spirosta-5,25(27)-diene-1β,3β-diol), the major bioactive sapogenin of Ruscus preparations, was carried out with the endophytic fungus Alternaria eureka. Fourteen new biotransformation products (2-15) were isolated, and their structures were elucidated by NMR and HRESIMS data analyses. A. eureka affected mainly oxygenation, oxidation, and epoxidation reactions on the B and C rings of the sapogenin to afford compounds 8-15. In addition to these, cleavage of the spiroketal system as in compounds 2-7 and subsequent transformations provided unusual metabolites. This is the first study reporting conversion of the spirostanol skeleton to cholestane-type metabolites 2-5. Additionally, the cleavage of the C-22/C-26 oxygen bridge yielding a furostanol-type steroidal framework and subsequent formation of the epoxy bridge between C-18 and C-22 in 7 was encountered for the first time in steroid chemistry.Article Citation - WoS: 5Citation - Scopus: 6Boosting Up Printability of Biomacromolecule Based Bio-Ink by Modulation of Hydrogen Bonding Pairs(Elsevier Ltd., 2020) Köksal, Büşra; Önbaş, Rabia; Başkurt, Mehmet; Şahin, Hasan; Arslan Yıldız, Ahu; Yıldız, Ümit Hakan; 04.01. Department of Chemistry; 04.04. Department of Photonics; 03.01. Department of Bioengineering; 03. Faculty of Engineering; 04. Faculty of Science; 01. Izmir Institute of TechnologyThis study describes low dose UV curable and bioprintable new bioink made of hydrogen bond donor-acceptor adaptor molecule 2-isocyanatoethyl methacrylate (NCO)modified gelatin (NCO-Gel). Our theoretical calculations demonstrate that insertion of 2-isocyanatoethyl methacrylate doubles the interaction energy (500 meV) between gelatin chains providing significant contribution in interchain condensation and self-organization as compared to methacrylic anhydride modified gelatin (GelMA). The NCO-Gel exhibits peak around 1720 cm?1 referring to bidentate hydrogen bonding between H-NCO and its counterpart O[dbnd]CN[sbnd]H. These strong interchain interactions drive chains to be packed and thereby facilitating UV crosslinking. The NCO-Gel is exhibiting a rapid, 10 s gelation process by the exposure of laser (3 W, 365 nm). The dynamic light scattering characterization also reveals that NCO-Gel has faster sol to gel transition as compared to GelMA depending on the UV curing time. The NCO-Gel was found to be more firm and mechanically strong that provides advantages in molding as well as bioprinting processes. Bioprinted NCO-Gel has shown sharp borders and stable 3D geometry as compared to GelMA ink under 10 s UV curing time. The cell viability tests confirm that NCO-Gel facilitates cell proliferation and supports cell viability. We foresee that NCO-Gel bioink formulation provides a promising opportunity when low dose UV curing and rapid printing are required. © 2020 Elsevier LtdConference Object Comparative Study of the Cytotoxicity of Hydroxyapatite, Tricalcium Phosphate and Calcium Phosphate Nanomaterials on Panc-1 and Hek293 Cell Line(Elsevier, 2022-09) Çeşmeli, Selin; Öksel Karakuş, Ceyda; 01. Izmir Institute of Technology; 03.01. Department of Bioengineering; 03. Faculty of EngineeringCalcium phosphate-based bioceramic nanoparticles have been actively used in a range of therapeutic applications. Although they are mostly considered as biocompatible materials, the circulation of nanoparticles in the bloodstream raise further questions as to what degree of cellular damage they are capable of causing once carried out to vital organs such as kidney and pancreas. Therefore, there is a clear need to explore potential cellular damage induced by commercially used bioceramic nanoparticles such as hydroxyapatite (HAp), tricalcium phosphate (TCP) and calcium phosphate (CaP).Conference Object Computational Nanotoxicology: a Case Study With Silver and Zinc Nanomaterials(Elsevier, 2022-09) Bilgi, Eyüp; Öksel Karakuş, Ceyda; 03.01. Department of Bioengineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyNanomaterials (NMs) have been the focus of basic and applied research for more than two decades. According to the updated consumer materials inventory, over 1800 commercial NMs have taken their place in the market, 42% of which are in health and wellness category1. The widespread use of NMs in health-related products made not only the human exposure to the (residues of) NMs inevitable but also the long-recognized concerns over their safety a priority. Despite this pressing need, more than 70% of commercially available nano-containing products do not include sufficient information about their physicochemical and/or toxicological characteristics.Article Citation - WoS: 15Citation - Scopus: 17Connexin 32 Induces Pro-Tumorigenic Features in Mcf10a Normal Breast Cells and Mda-Mb Metastatic Breast Cancer Cells(Elsevier, 2020) Yalçın Özuysal, Özden; Adak, Aslı; Ünal, Yağmur Ceren; Yücel, Simge; Vural, Zehra; Turan, Fatma Başak; Meşe, Gülistan; 01. Izmir Institute of Technology; 04.03. Department of Molecular Biology and Genetics; 04. Faculty of ScienceConnexins (Cx), the basic subunit of gap junctions, play important roles in cell homeostasis, and their abnormal expression and function are associated with human hereditary diseases and cancers. In tumorigenesis, connexins were observed to have both anti-tumorigenic and pro-tumorigenic roles in a context- and stage-dependent manner. Initially, Cx26 and Cx43 were thought to be the only connexins involved in normal breast homeostasis and breast cancer. Later on, association of Cx32 expression with lymph node metastasis of breast cancer and subsequent demonstration of its expression in normal breast tissue suggested that Cx32 contributes to breast tissue homeostasis. Here, we aimed to determine the effects of Cx32 on normal breast cells, MCF10A, and on breast cancer cells, MDA-MB-231. Cx32 overexpression had profound effects on MCF10A cells, decreasing cell proliferation by increasing the doubling time of MCF10A. Furthermore, MCF10A cells acquired mesenchymal-like appearance upon Cx32 expression and had increased migration capacity and expression of both E-cadherin and vimentin. In contrast, Cx32 overexpression altered the EMT markers of MDA-MB-231 by increasing the expression of mesenchymal markers, such as slug and vimentin, and decreasing E-cadherin expression without affecting their proliferation and morphology. Our results indicate, for the first time in the literature, that Cx32 has tumor-promoting roles in MCF10A and MDA-MB-231 cells.Correction Citation - WoS: 1Citation - Scopus: 1Correction: Scaffold-Free Three-Dimensional Cell Culturing Using Magnetic Levitation(Royal Society of Chemistry, 2018) Türker, Esra; Demircak, Nida; Arslan Yıldız, Ahu; 03.01. Department of Bioengineering; 01.01. Units Affiliated to the Rectorate; 01. Izmir Institute of Technology; 03. Faculty of EngineeringThe authors regret the inclusion of an incorrect figure caption for Fig. 2. The corrected figure caption for Fig. 2 is shown below. Fig. 2 Evaluation of levitation height (z) and density profiles through magnetic levitation. (A) Gd(III) chelates were named as Gx (Gadovist/Gadobutrol), Dx (Dotarem/Gadoteric acid) and Ox (Omniscan/Gadodiamide). (B) Standard curve for PE bead density against levitation height; linear curve fitting gives the standard function for the corresponding curve. (C–E) Levitation height profiles of single NIH 3T3 cells under 30/50/100/200 mM Gd concentrations. Single cell density profiles calculated through standard function of linear fitting.