PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Permanent URI for this collectionhttps://hdl.handle.net/11147/7645
Browse
Browsing PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection by Journal "ACS Omega"
Now showing 1 - 20 of 32
- Results Per Page
- Sort Options
Article Citation - WoS: 25Citation - Scopus: 29Antibiotic-Resistant Staphylococcus Aureus Does Not Develop Resistance To Vanillic Acid and 2-Hydroxycinnamic Acid After Continuous Exposure in Vitro(American Chemical Society, 2019) Keman, Deniz; Soyer, FerdaDevelopment of resistance to antibiotics is one of the major reasons of difficulties in treatments of diseases caused by antibiotic-resistant bacteria, and this resistance makes the investigation of alternative antimicrobials a key priority. Phenolic acids are plant- and fungi-originating natural antimicrobial products, and there is no known bacterial resistance after exposure to them. The purpose of this study was to investigate the resistance ability of bacteria against phenolic acids. Therefore, the ability of methicillin-resistant Staphylococcus aureus and methicillin-susceptible S. aureus to gain resistance against two phenolic acids and an antibiotic upon exposure to subinhibitory concentrations was tested. Herein, we evaluated the minimum inhibitory concentrations (MICs) of vanillic acid (VA), 2-hydroxycinnamic acid (2-HCA), and vancomycin in the beginning of the experiment and the MICs were found to be 2.5 mg/mL VA, 1.6 mg/mL 2-HCA, and 0.01 mg/mL vancomycin for both bacteria. Following continuous treatments with increasing subinhibitory concentrations, MICs were evaluated once more. Exposure to subinhibitory concentrations of vancomycin induced the development of resistance immediately; however, resistance to both phenolic acids could not be induced. These data indicated the potential of phenolic acids to be used as effective antimicrobials in the inhibition of antibiotic-resistant pathogenic bacteria.Article Citation - WoS: 17Citation - Scopus: 15Antiproliferative and Apoptotic Effects of Olive Leaf Extract Microcapsules on Mcf-7 and A549 Cancer Cells(American Chemical Society, 2023) Bal, Yıldız; Sürmeli, Yusuf; Şanlı Mohamed, GülşahAlginate microcapsules are a talented means for the delivery of broad curative biomacromolecules. In this study, we immobilized olive leaf extract (OLE) by calcium alginate (CA) and chitosan-coated CA (CCA) and characterized the OLE-loaded CA and CCA. The cytotoxic effect, the cell cycle arrest, and the apoptotic effect of OLE and its microcapsules were investigated against breast adenocarcinoma (MCF-7) and lung carcinoma (A549). As a result, the loading capacity of OLE-CA and OLE-CCA was found to be 80 and 99%, respectively, in optimal conditions. Also, OLE-CA and OLE-CCA were characterized by unique FTIR peaks and morphological display relative to the empty CCA microcapsules. The cytotoxicity analysis showed that the IC50 values of OLE-CA and OLE-CCA were determined to be 312 and 0.94 μg mL-1 against A549, respectively, whereas these were found to be 865.4 and 425.5 μg mL-1 for MCF-7 cells. On the other hand, the OLE microcapsules did not possess in any concentration of cytotoxic influence on the BEAS 2B healthy cell line. Also, the exposure of OLE-CCA to MCF-7 and A549 resulted in the arrest of more MCF-7 and A549 cells at the G0/G1 phase compared to the OLE. A549 and MCF-7 cells were predominantly found in the late apoptosis phase and necrosis phase, respectively. Optical microscopy images confirmed that OLE microcapsules were more effective against MCF-7 and A549 than free OLE. The present work suggested that the OLE microcapsules might be administered as nutrition supplements for cancer therapy. © 2023 The Authors. Published by American Chemical Society.Article Citation - WoS: 10Citation - Scopus: 11Box-Behnken Design for Hydrogen Evolution From Sugar Industry Wastewater Using Solar-Driven Hybrid Catalysts(American Chemical Society, 2022-11) Orak, Ceren; Yüksel, AslıHydrogen is a clean and green fuel and can be produced from renewable sources via photocatalysis. Solar-driven hybrid catalysts were synthesized and characterized (scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, and UV-vis diffuse reflectance spectroscopy (DSR)), and the results implied that graphene-supported LaRuO3is a more promising photocatalyst to produce hydrogen and was used to produce hydrogen from sugar industry wastewater. To investigate the main and interaction effects of reaction parameters (pH, catalyst amount, and [H2O2]0) on the evolved hydrogen amount, the Box-Behnken experimental design model was used. The highest hydrogen evolution obtained was 6773 μmol/gcatfrom sugar industry wastewater at pH 3, 0.15 g/L GLRO, and 15 mM H2O2. Based on the Pareto chart for the evolved hydrogen amount using GLRO, among the main effects, the only effective parameter was the catalyst amount for the photocatalytic hydrogen evolution from sugar industry wastewater. In addition, the squares of pH and two-way interaction of pH and [H2O2]0were also statistically efficient over the evolved hydrogen amount.Article Comparison of Cell-Penetrating and Fusogenic Tat-Ha2 Peptide Performance in Peptideplex, Multicomponent, and Conjugate Sirna Delivery Systems(Amer Chemical Soc, 2024) Uz, Metin; Bulmus, Volga; Altinkaya, Sacide AlsoyIn this study, the performance of the cell-penetrating and fusogenic peptide, TAT-HA2, which consists of a cell-permeable HIV trans-activator of transcription (TAT) protein transduction domain and a pH-responsive influenza A virus hemagglutinin protein (HA2) domain, was comparatively evaluated for the first time in peptideplex, multicomponent, and conjugate siRNA delivery systems. TAT-HA2 in all three systems protected siRNA from degradation, except in the conjugate system with a low Peptide/siRNA ratio. The synergistic effect of different peptide domains enhanced the transfection efficiency of multicomponent and conjugate systems compared to that of peptideplexes, which was attributed to the surface configuration of TAT-HA2 peptides depending on the nature of attachment. Particularly, the multicomponent system showed better cellular uptake and endosomal escape than the peptideplexes, resulting in enhanced siRNA delivery in the cytoplasm. In addition, the presence of cleavable disulfide bonds in multicomponent and conjugate systems promoted the effective siRNA delivery in the cytoplasm, resulting in improved gene silencing activity. The multicomponent system reduced the level of luciferase expression in SKOV3 cells to 45% (+/- 4). In contrast, the conjugate system and the commercially available siRNA transfection agent, Lipofectamine RNAiMax, caused luciferase suppression down to 55% (+/- 2) at a siRNA dose of 100 nM. For the same dose, the peptideplex system could only reduce the luciferase expression to 65% (+/- 5). None of the developed systems showed significant toxicity at any dose. Overall, the TAT-HA2 peptide is promising as a siRNA delivery vector; however, its performance depends on the nature of attachment and, as a result, its surface configuration on the developed delivery system.Article Citation - WoS: 11Citation - Scopus: 13Countrywide Spatial Variation of Potentially Toxic Element Contamination in Soils of Turkey and Assessment of Population Health Risks for Nondietary Ingestion(American Chemical Society, 2022-10) Gören, Ayşegül Yağmur; Genişoğlu, Mesut; Kazancı, Yiğithan; Sofuoğlu, Sait CemilCountrywide surface soil concentrations of potentially toxic elements (PTEs) in Turkey were reviewed in the Web of Science database. A total of 93 papers were investigated to compose a PTE dataset for determining spatial variations and estimating exposure and health risks. Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were selected as PTEs in surface soil. A compiled PTE concentration dataset was used to estimate chronic toxic risks (CTRs) and carcinogenic risks (CRs) according to the deterministic and probabilistic approaches. While the CTR and CR levels of age and sex groups were estimated using a deterministic approach, population risks were estimated using a probabilistic approach. CTR and CR levels in lower age groups and female sex groups were estimated to be higher than those in higher age groups and associated male sex groups. The average CTR levels of the nondietary ingestion of As-containing soil in <11 year age groups were near/just above the threshold level, while As-associated average CR levels of adults and other age groups were estimated to be in the acceptable risk range (10-6 < CR < 10-5) and low priority risk range (10-5 < CR < 10-4), respectively. As-, Cr(VI)-, and Pb-associated upper-bound CR levels of the Turkish population were simulated to be 5.14 × 10-4, 6.23 × 10-5, and 2.34 × 10-6, respectively. Health risk models show the significance of As in both chronic toxic and carcinogenic effects.Article Citation - WoS: 7Citation - Scopus: 7Cross-Linked Phosphorylated Cellulose as a Potential Sorbent for Lithium Extraction From Water: Dynamic Column Studies and Modeling(American Chemical Society, 2022-11) Recepoğlu, Yaşar Kemal; Yüksel, AslıPhosphorylated functional cellulose was cross-linked with epichlorohydrin at different ratios because it is a very hydrophilic substance that instantly swells to form a hydrogel when it comes into contact with water. It was aimed to utilize a continuously packed bed column to recover lithium from water under varying operating conditions such as flow rate and bed height. The characterization results confirmed cross-linking based on morphology, structure, surface area, and thermal stability differences. Lithium recovery was more efficient with a low flow rate, but the dynamic sorption process was independent of bed height. The total capacities at the three flow rates with 1.5 cm bed height were 33.56, 30.15, and 25.54 mg g-1, and the total saturation times at the three different bed heights with 0.5 mL min-1 flow rate were 659, 1001, and 1007 min, respectively. Only 15.75 mL of 5% H2SO4 solution was required to desorb approximately 100% of Li from the saturated sorbent.Article Citation - WoS: 8Citation - Scopus: 8Design and Performance Comparison of Polymer-Derived Ceramic Ambigels and Aerogels(American Chemical Society, 2023) Soraru, Gian Domenico; İçin, Öykü; Semerci, Tuğçe; Ahmetoğlu, Çekdar VakıfThis work reports the synthesis and characterization of preceramic-and polymer-derived SiOC aerogels obtained from a commercial siloxane resin. The preceramic aerogels were obtained by ambient pressure drying (ambigels) and CO2 supercritical drying. Despite different drying processes, the final ceramic ambi/aerogels have very similar microstructural features in density, porosity, pore size, and specific surface area. Both materials have shown promising results for oil sorption and water cleaning. Supercritically dried-SiOC aerogel had low thermal conductivity with 0.046 W.m(-1).K-1 at RT and 0.073 W.m(-1).K-1 at 500 degrees C. These results suggest that substituting the rather complicated and expensive CO2-SC drying with the more friendly and cheap ambient pressure drying can be done without having to accept significant microstructural/property degradation.Article Citation - WoS: 4Citation - Scopus: 5Development of Ab3-Type Novel Phthalocyanine and Porphyrin Photosensitizers Conjugated With Triphenylphosphonium for Higher Photodynamic Efficacy(American Chemical Society, 2022-11) Albakour, Mohamad; Önal, Emel; Tüncel, Özge; Erdoğan, İpek; Gümüşgöz Çelik, Gizem; Küçük, Tuǧba; Akgül, Bünyamin; Gürek, Ayşe Gül; Özçelik, SerdarThere are a number of lipophilic cations that can be chosen; the triphenylphosphonium (TPP) ion is particularly unique for mitochondrion targeting, mainly due to its simplicity in structure and ease to be linked to the target molecules. In this work, mitochondrion-targeted AB3-type novel phthalocyanine and porphyrin photosensitizers (PSs) were synthesized and their photophysical photochemical properties were defined. Fluorescence quantum yields (φF) are 0.009, 0.14, 0.13, and 0.13, and the singlet-oxygen quantum yields (φΔ) are 0.27, 0.75, 0.57, and 0.58 for LuPcPox(OAc), AB3TPP-Pc, AB3TPP-Por-C4, and AB3TPP-Por-C6, respectively. To evaluate the photodynamic efficacy of the TPP-conjugated PS cell viabilities of A549 and BEAS-2B lung cells were comparatively measured and IC-50 values were determined. AB3TPP-Por-C4, AB3TPP-Por-C6, and AB3TPP-Pc compounds compared to the reference molecules ZnPc and H2TPP were found to be highly cytotoxic (sub-micromolar concentration) under the light. LuPcPox(OAc) is the most effective molecule regarding cell killing (the activity). The cell killing of the TPP-conjugated porphyrin derivatives exhibits a similar response compared to LuPcPox(OAc) when the light absorbing factor of the PS is normalized at 660 nm: TPP-conjugated porphyrins absorb less light (lower extinction coefficient) but produce more radical species (higher singlet-oxygen quantum yield) and therefore effectively kill the cells. The singlet oxygen-producing capacity of AB3TPP-Pc is almost 3 times higher compared to LuPcPox(OAc) and 50% more efficient with respect to ZnPc, suggesting that TPP-conjugated phthalocyanine may serve as a good photosensitizer for photodynamic therapy (PDT). The high singlet oxygen generation capacity of these novel TPP-conjugated porphyrin and phthalocyanine PS suggests that they might be useful for PDT requiring lower photosensitizer concentration and reduced energy deposited through less light exposure.Article Citation - WoS: 13Citation - Scopus: 14Development of Cissus Quadrangularis-Loaded Poss-Reinforced Chitosan-Based Bilayer Sponges for Wound Healing Applications: Drug Release and in Vitro Bioactivity(American Chemical Society, 2023) Değer Aker, Sibel; Tamburacı, Sedef; Tıhmınlıoğlu, FundaNowadays, antibiotic-loaded biomaterials have been widelyusedin wound healing applications. However, the use of natural extractshas come into prominence as an alternative to these antimicrobialagents in the recent period. Among natural sources, Cissus quadrangularis (CQ) herbal extract is usedfor treatment of bone and skin diseases in ayurvedic medicine dueto its antibacterial and anti-inflammatory effects. In this study,chitosan-based bilayer wound dressings were fabricated with electrospinningand freeze-drying techniques. CQ extract-loaded chitosan nanofiberswere coated on chitosan/POSS nanocomposite sponges using an electrospinningmethod. The bilayer sponge is designed to treat exudate wounds whilemimicking the layered structure of skin tissue. Bilayer wound dressingswere investigated with regard to the morphology and physical and mechanicalproperties. In addition, CQ release from bilayer wound dressings and in vitro bioactivity studies were performed to determinethe effect of POSS nanoparticles and CQ extract loading on NIH/3T3and HS2 cells. The morphology of nanofibers was investigated withSEM analysis. Physical characteristics of bilayer wound dressingswere determined with FT-IR analysis, swelling study, open porositydetermination, and mechanical test. The antimicrobial activity ofCQ extract released from bilayer sponges was investigated with a discdiffusion method. Bilayer wound dressings' in vitro bioactivity was examined using cytotoxicity determination, woundhealing assay, proliferation, and the secretion of biomarkers forskin tissue regeneration. The nanofiber layer diameter was obtainedin the range of 77.9-97.4 nm. The water vapor permeabilityof the bilayer dressing was obtained as 4021 to 4609 g/m(2)day, as it is in the ideal range for wound repair. The release ofthe CQ extract over 4 days reached 78-80% cumulative release.The release media were found to be antibacterial against Gram-negativeand Gram-positive bacteria. In vitro studies showedthat both CQ extract and POSS incorporation induced cell proliferationas well as wound healing activity and collagen deposition. As a result,CQ-loaded bilayer CHI-POSS nanocomposites were found as a potentialcandidate for wound healing applications.Article Durable ZrB2–ZrC Composite Materials as Advanced Electrodes for High-Performance Supercapacitors(Amer Chemical Soc, 2025) Paksoy, Aybike; Gungor, Ahmet; Yildirim, Ipek Deniz; Arabi, Seyedehnegar; Erdem, Emre; Balci-Cagiran, OzgeBoride and carbide-based materials attract increasing attention as promising options for energy storage applications. This research focuses on synthesizing pure boride and carbide compounds of zirconium (ZrB2 and ZrC) and their composite powders using mechanical activation-assisted route and subsequent heating processes. The chemical and microstructural characterization results indicate that the synthesized composite powders are of high purity, possess submicron-scale particle sizes (below 400 nm), and exhibit a high surface area of up to 9.41 m2/g. Supercapacitor devices, using the resulting powders as symmetrical electrodes, exhibit high energy density values ranging from 5.8 to 8.8 Wh/kg. The ZrB2-15 wt % ZrC composite sample achieves the highest power density at 155 W/kg, compared to 118 W/kg for the pure ZrB2 sample. Cycling tests demonstrate exceptional capacitance retention (99.4-99.9%) and cyclic stability, even after 5000 cycles, highlighting the high durability of the composite samples. These findings show that ZrB2-ZrC composites exhibit high energy and power density values and excellent cycling performance, making them strong candidates for use in high-performance supercapacitor devices.Article Citation - WoS: 13Citation - Scopus: 19Effect of Fomes Fomentarius Cultivation Conditions on Its Adsorption Performance for Anionic and Cationic Dyes(American Chemical Society, 2022) Henning, Laura M.; Simon, Ulla; Abdullayev, Amanmyrat; Schmidt, Bertram; Pohl, Carsten; Nunez Guitar, Tamara; Ahmetoğlu, Çekdar Vakıf; Meyer, Vera; Bekheet, Maged F.; Gurlo, AleksanderLab-cultivated mycelia of Fomes fomentarius (FF), grown on a solid lignocellulose medium (FF-SM) and a liquid glucose medium (FF-LM), and naturally grown fruiting bodies (FF-FB) were studied as biosorbents for the removal of organic dyes methylene blue and Congo red (CR). Both the chemical and microstructural differences were revealed using X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, zeta potential analysis, and scanning electron microscopy, illuminating the superiority of FF-LM and FF-SM over FF-FB in dye adsorption. The adsorption process of CR on FF-LM and FF-SM is best described by the Redlich-Peterson model with β constants close to 1, that is, approaching the monolayer Langmuir model, which reach maximum adsorption capacities of 48.8 and 13.4 mg g-1, respectively, in neutral solutions. Adsorption kinetics follow the pseudo-second-order model where chemisorption is the rate-controlling step. While the desorption efficiencies were low, adsorption performances were preserved and even enhanced under simulated dye effluent conditions. The results suggest that F. fomentarius can be considered an attractive biosorbent in industrial wastewater treatment and that its cultivation conditions can be specifically tailored to tune its cell wall composition and adsorption performance.Article Citation - WoS: 26Citation - Scopus: 32Electrochemical Degradation of Methylene Blue by a Flexible Graphite Electrode: Techno-Economic Evaluation(American Chemical Society, 2022-09) Gören, Ayşegül Yağmur; Recepoğlu, Yaşar Kemal; Edebali, Özge; Şahin, Çağrı; Genişoğlu, Mesut; Ökten, Hatice EserIn this study, electrochemical removal of methylene blue (MB) from water using commercially available and low-cost flexible graphite was investigated. The operating conditions such as initial dye concentration, initial solution pH, electrolyte dose, electrical potential, and operating time were investigated. The Box-Behnken experimental design (BBD) was used to optimize the system's performance with the minimum number of tests possible, as well as to examine the independent variables' impact on the removal efficiency, energy consumption, operating cost, and effluent MB concentration. The electrical potential and electrolyte dosage both improved the MB removal efficiency, since increased electrical potential facilitated production of oxidizing agents and increase in electrolyte dosage translated into an increase in electrical current transfer. As expected, MB removal efficiency increased with longer operational periods. The combined effects of operating time-electrical potential and electrical potential-electrolyte concentration improved the MB removal efficiency. The maximum removal efficiency (99.9%) and lowest operating cost (0.012 $/m3) were obtained for initial pH 4, initial MB concentration 26.5 mg/L, electrolyte concentration 0.6 g/L, electrical potential 3 V, and operating time 30 min. The reaction kinetics was maximum for pH 5, and as the pH increased the reaction rates decreased. Consequent techno-economic assessment showed that electrochemical removal of MB using low-cost and versatile flexible graphite had a competitive advantage.Article Citation - WoS: 10Citation - Scopus: 13An Electromechanical Lab-On Platform for Colorimetric Detection of Serum Creatinine(American Chemical Society, 2022-07) Karakuzu, Betül; Tarım, Ergün Alperay; Öksüz, Cemre; Tekin, Hüseyin CumhurChronic kidney disease (CKD) is a high-cost disease that affects approximately one in ten people globally, progresses rapidly, results in kidney failure or dialysis, and triggers other diseases. Although clinically used serum creatinine tests are used to evaluate kidney functions, these tests are not suitable for frequent and regular control at-home settings that obstruct the regular monitoring of kidney functions, improving CKD management with early intervention. This study introduced a new electromechanical lab-on-a-chip platform for point-of-care detection of serum creatinine levels using colorimetric enzyme-linked immunosorbent assay (ELISA). The platform was composed of a chip containing microreservoirs, a stirring bar coated with creatinine-specific antibodies, and a phone to detect color generated via ELISA protocols to evaluate creatinine levels. An electromechanical system was used to move the stirring bar to different microreservoirs and stir it inside them to capture and detect serum creatinine in the sample. The presented platform allowed automated analysis of creatinine in ~50 min down to ~1 and ~2 mg/dL in phosphate-buffered saline (PBS) and fetal bovine serum (FBS), respectively. Phone camera measurements in hue, saturation, value (HSV) space showed sensitive analysis compared to a benchtop spectrophotometer that could allow low-cost analysis at point-of-care.Article Citation - WoS: 7Citation - Scopus: 7Exploring Neuronal Differentiation Profiles in Sh-Sy5y Cells Through Magnetic Levitation Analysis(Amer Chemical Soc, 2024) Kartal, Rumeysa Bilginer; Yildiz, Ahu ArslanMagnetic levitation (MagLev) is a powerful and versatile technique that can sort objects based on their density differences. This paper reports the sorting of SH-SY5Y cells for neuronal differentiation by the MagLev technique. Herein, SH-SY5Y cells were differentiated with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF). Neuronal differentiation was confirmed by neurite extension measurement and the immunostaining assay. Neurites reached the maximum length on day 9 after sequential treatment with RA-BDNF. Neuronal marker expression of un-/differentiated cells was investigated by beta-III tubulin and neuronal nuclei (NeuN) and differentiated cells exhibited a higher fluorescence intensity compared to un-/differentiated cells. MagLev results revealed that the density of differentiated SH-SY5Y cells gradually increased from 1.04 to 1.06 g/mL, while it remained stable at 1.05 g/mL for un-/differentiated cells. These findings signified that cell density would be a potent indicator of neuronal differentiation. Overall, it was shown that MagLev methodology can provide rapid, label-free, and easy sorting to analyze the differentiation of cells at a single-cell level.Article Citation - WoS: 1Citation - Scopus: 1Exposure To Fumes of a Vegetable Margarine for Frying: Respiratory Effects in an Experimental Model(American Chemical Society, 2023) Cimrin, Arif H.; Alpaydin, Aylin Ozgen; Ozbal, Seda; Toprak, Melis; Yılmaz, Osman; Uluorman, Funda; Ergur, Bekir Uğur; Gürel, Duygu; Sofuoğlu, Sait CemilDeep frying is one of the strongest emission sources into indoor air. A vegetable margarine has recently been used in commercial kitchens. This study investigated the respiratory effects of exposure to its fumes in an experimental model. A setup with glass chambers was constructed. A chamber housed a fryer. The fumes were transported to the other chamber where 24 Wistar albino rats were placed in four randomized groups: acute, subacute, chronic, and control for the exposure durations. PM10 concentration in the exposure chamber was monitored to ensure occupational levels were obtained. Sacrification was performed 24 h after exposure. Lung, trachea, and nasal concha specimens were evaluated by two blinded histologists under a light microscope with hematoxylin–eosin. Mild mononuclear cell infiltration, alveolar capillary membrane thickening, alveolar edema, and diffuse alveolar damage, along with diffuse hemorrhage, edema, and vascular congestion in the interstitium were observed in the acute and subacute groups, and were overexpressed in the chronic group, whereas normal lung histology was observed in the control group. The results indicate that exposure to fumes of vegetable margarine for frying in commercial kitchens may cause pulmonary inflammation that becomes severe as the duration of the exposure increases.Article Citation - WoS: 1Citation - Scopus: 1Fabrication of Bioactive Helix Aspersa Extract-Loaded Chitosan-Based Bilayer Wound Dressings for Skin Tissue Regeneration(Amer Chemical Soc, 2024) Perpelek, Merve; Tıhmınlıoğlu, Funda; Tamburaci, Sedef; Karakasli, Ahmet; Tihminlioglu, FundaIn recent years, there has been a notable shift toward exploring plant and animal extracts for the fabrication of tissue engineering structures that seamlessly integrate with the human body, providing both biological compatibility and physical reinforcement. In this particular investigation, we synthesized bilayer wound dressings by incorporating snail (Helix aspersa) secretions, comprising mucus and slime, into chitosan matrices via lyophilization and electrospinning methodologies. A nanofiber layer was integrated on top of the porous structure to mimic the epidermal layer for keratinocyte activity as well as acting as an antibacterial barrier against possible infection, whereas a porous structure was designed to mimic the dermal microenvironment for fibroblast activity. Comprehensive assessments encompassing physical characterization, antimicrobial efficacy, in vitro bioactivity, and wound healing potential were conducted on these bilayer dressings. Our findings revealed that the mucus and slime extract loading significantly altered the morphology in terms of nanofiber diameter and average pore size. Snail extracts loaded on a nanofiber layer of bilayer dressings showed slight antimicrobial activity against Staphylococcus epidermidis and Escherichia coli. An in vitro release study of slime extract loaded in the nanofiber layer indicated that both groups 1 and 2 showed a burst release up to 6 h, and a sustained release was observed up to 96 h for group 1, whereas slime extract release from group 2 continued up to 72 h. In vitro bioactivity assays unveiled the favorable impact of mucus and slime extracts on NIH/3T3 fibroblast and HS2 keratinocyte cell attachment, proliferation, and glycosaminoglycan synthesis. Furthermore, our investigations utilizing the in vitro scratch assay showcased the proliferative and migratory effects of mucus and slime extracts on skin cells. Collectively, our results underscore the promising prospects of bioactive snail secretion-loaded chitosan constructs for facilitating skin regeneration and advancing wound healing therapies.Article Citation - WoS: 2Citation - Scopus: 5Immobilization of Olive Leaf Extract With Chitosan Nanoparticles as an Adjunct To Enhance Cytotoxicity(American Chemical Society, 2023) Özdamar, Burcu; Sürmeli, Yusuf; Şanlı Mohamed, GülşahWe immobilized the olive leaf extract (OLE) with chitosannanoparticles(CNPs) by optimizing the effect of various immobilization conditions,and OLE-loaded CNPs (OLE-CNPs) were then elaborately characterizedphysicochemically by scanning electron microscopy (SEM), Fourier transforminfrared (FT-IR) spectroscopy, dynamic light scattering (DLS), andatomic force microscopy (AFM). Under optimal conditions, CNPs wereable to accommodate the OLE with a loading capacity of 97.5%. Theresulting OLE-CNPs had a spherical morphology, and their average diameterwas approximately 100 nm. The cytotoxic influence, cell cycle distribution,and apoptosis stage of OLE and OLE-CNPs were analyzed on lung carcinoma(A549) and breast adenocarcinoma (MCF-7) cell lines. In an in vitrocytotoxic assay, IC50 values of OLE-CNPs were determinedto be 540 & mu;g/mL for A549 and 810 & mu;g/mL for MCF-7. Thetreatment of both A549 and MCF-7 with OLE-CNPs caused the highestcell arrest in G0/G1 in a dose-independent manner. OLE-CNPs affectedcell cycle distribution in a manner different from free OLE treatmentin both cancer cells. A549 and MCF-7 cells were predominantly foundin the late apoptosis and necrosis phases, respectively, upon treatmentof 1000 & mu;M OLE-CNPs. Our results suggest that CNPs enhance theutility of OLEs as nutraceuticals in cancer and that OLE-CNPs canbe utilized as an adjunct to cancer therapy.Article Citation - WoS: 4Citation - Scopus: 5Investigating the Effects of Pa66 Electrospun Nanofibers Layered Within an Adhesive Composite Joint Fabricated Under Autoclave Curing(American Chemical Society, 2023) Esenoğlu, Gözde; Tanoğlu, Metin; Barışık, Murat; İplikçi, Hande; Yeke, Melisa; Nuhoğlu, Kaan; Türkdoğan, Ceren; Martin, Seçkin; Aktaş, Engin; Dehneliler, Serkan; Gürbüz, Ahmet Ayberk; İriş, Mehmet ErdemEnhancing the performance of adhesively joined composite components is crucial for various industrial applications. In this study, polyamide 66 (PA66) nanofibers produced by electrospinning were coated on unidirectional carbon/epoxy prepregs to increase the bond strength of the composites. Carbon/epoxy prepregs with/without PA66 nanofiber coating on the bonding region were fabricated using the autoclave, which is often used in the aerospace industry. The single lap shear Charpy impact energy and Mode-I fracture toughness tests were employed to examine the effects of PA66 nanofibers on the mechanical properties of the joint region. Scanning electron microscopy (SEM) was used to investigate the nanofiber morphology and fracture modes. The thermal characteristics of Polyamide 66 nanofibers were explored by using differential scanning calorimetry (DSC). We observed that the electrospun PA66 nanofiber coating on the prepreg surfaces substantially improves the joint strength. Results revealed that the single lap shear and Charpy impact strength values of the composite joint are increased by about 79 and 24%, respectively, by coating PA66 nanofibers onto the joining region. The results also showed that by coating PA66 nanofibers, the Mode-I fracture toughness value was improved by about 107% while the glass transition temperature remained constant.Article Citation - WoS: 240Citation - Scopus: 312Iron Absorption: Factors, Limitations, and Improvement Methods(American Chemical Society, 2022) Pişkin, Elif; Cianciosi, Danila; Güleç, Şükrü; Tomas, Merve; Çapanoğlu, EsraIron is an essential element for human life since it participates in many functions in the human body, including oxygen transport, immunity, cell division and differentiation, and energy metabolism. Iron homeostasis is mainly controlled by intestinal absorption because iron does not have active excretory mechanisms for humans. Thus, efficient intestinal iron bioavailability is essential to reduce the risk of iron deficiency anemia. There are two forms of iron, heme and nonheme, found in foods. The average daily dietary iron intake is 10 to 15 mg in humans since only 1 to 2 mg is absorbed through the intestinal system. Nutrient-nutrient interactions may play a role in dietary intestinal iron absorption. Dietary inhibitors such as calcium, phytates, polyphenols and enhancers such as ascorbic acid and proteins mainly influence iron bioavailability. Numerous studies have been carried out for years to enhance iron bioavailability and combat iron deficiency. In addition to traditional methods, innovative techniques are being developed day by day to enhance iron bioavailability. This review will provide information about iron bioavailability, factors affecting absorption, iron deficiency, and recent studies on improving iron bioavailability.Article Citation - WoS: 1Citation - Scopus: 2Modulating Cancer Stem Cell Characteristics in CD133+ Melanoma Cells through Hif1α, KLF4, and SHH Silencing(Amer Chemical Soc, 2025) Ozdil, Berrin; Güler, Günnur; Avci, Cigir Biray; Calik-Kocaturk, Duygu; Gorgulu, Volkan; Uysal, Aysegul; Guler, Gunnur; Aktug, HuseyinMalignant melanoma is a highly aggressive form of skin cancer, partly driven by a subset of cancer stem cells (CSCs) with remarkable capacities for self-renewal, differentiation, and resistance to therapy. In this study, we examined how silencing three key genes-Hif1 alpha, KLF4, and SHH-affects CSC characteristics. Using small interfering RNA (siRNA)-based approaches, we observed significant changes at both the gene and protein levels, shedding light on how these pathways influence melanoma progression. Our results demonstrated that silencing these genes reduces the stem-like features of CSCs. Notably, Hif1 alpha silencing triggered a marked decrease in hypoxia-related gene expression, while targeting SHH led to a reduction in Gli1, a downstream effector of SHH signaling, highlighting its potential as a therapeutic target. We also observed changes in epigenetic markers such as HDAC9 and EP300, which play crucial roles in maintaining stemness and regulating gene expression. Interestingly, these interventions appeared to reprogram CSCs, pushing them toward a phenotype distinct from both traditional CSCs and non-stem cancer cells (NCSCs). Our findings emphasize the importance of targeting key signaling pathways in melanoma CSCs and underscore the value of mimicking the tumor microenvironment in experimental models. By revealing the dynamic plasticity of melanoma CSCs, this study offers fresh insights into potential therapeutic strategies, particularly using siRNA to modulate pathways associated with tumor progression and stem cell behavior.
