PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Permanent URI for this collectionhttps://hdl.handle.net/11147/7645
Browse
Browsing PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection by Journal "ACS Nano"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article Citation - WoS: 5Citation - Scopus: 5Breaking the Boundaries of the Goldschmidt Tolerance Factor With Ethylammonium Lead Iodide Perovskite Nanocrystals(American Chemical Society, 2024) Güvenç, Çetin Meriç; Toso, Stefano; Ivanov, Yurii P.; Saleh, Gabriele; Balcı, Sinan; Divitini, Giorgio; Manna, LiberatoWe report the synthesis of ethylammonium lead iodide (EAPbI3) colloidal nanocrystals as another member of the lead halide perovskites family. The insertion of an unusually large A-cation (274 pm in diameter) in the perovskite structure, hitherto considered unlikely due to the unfavorable Goldschmidt tolerance factor, results in a significantly larger lattice parameter compared to the Cs-, methylammonium- and formamidinium-based lead halide perovskite homologues. As a consequence, EAPbI3 nanocrystals are highly unstable, evolving to a nonperovskite delta-EAPbI3 polymorph within 1 day. Also, EAPbI3 nanocrystals are very sensitive to electron irradiation and quickly degrade to PbI2 upon exposure to the electron beam, following a mechanism similar to that of other hybrid lead iodide perovskites (although degradation can be reduced by partially replacing the EA+ ions with Cs+ ions). Interestingly, in some cases during this degradation the formation of an epitaxial interface between (EA x Cs1-x )PbI3 and PbI2 is observed. The photoluminescence emission of the EAPbI3 perovskite nanocrystals, albeit being characterized by a low quantum yield (similar to 1%), can be tuned in the 664-690 nm range by regulating their size during the synthesis. The emission efficiency can be improved upon partial alloying at the A site with Cs+ or formamidinium cations. Furthermore, the morphology of the EAPbI3 nanocrystals can be chosen to be either nanocube or nanoplatelet, depending on the synthesis conditions.Article Ferromagnetism Above 200 K in Organic-Ion Intercalated CrSBr(Amer Chemical Soc, 2025) Ferreira-Teixeira, Sofia; Tezze, Daniel; Ramos, Maria; Alvarez-Garcia, Covadonga; Bayindir, Bertug; Jo, Junhyeon; Gobbi, MarcoCrSBr is a van der Waals magnetic semiconductor exhibiting antiferromagnetic order below 140 K. It has emerged as a promising platform for engineering 2D magnetism because its intertwined electronic, optical, and magnetic properties can be profoundly modified via external stimuli such as electrical gating or magnetic fields. However, other strategies for tuning magnetism in layered materials, such as molecular intercalation, remain largely unexplored for CrSBr. Here, we demonstrate that the intercalation of tetramethylammonium (TMA) and tetrapropylammonium (TPA) ions into CrSBr induces a transition from antiferromagnetic to ferromagnetic order, while significantly enhancing the magnetic transition temperature to 190 K (TMA) and 230 K (TPA). The resulting intercalates are air-stable and exhibit large, hysteretic magnetoresistance exceeding 60% at 50 K in the TPA case. Besides, intercalation introduces symmetry-breaking structural changes in each CrSBr plane, revealed by Raman microscopy and corroborated by density functional theory (DFT) calculations. These findings highlight molecular intercalation as a powerful and versatile route to tailor the magnetic properties of CrSBr and unlock its potential to fabricate robust, high-temperature 2D magnetic devices.Article Citation - WoS: 15Citation - Scopus: 9Polarization Dynamics of Solid-State Quantum Emitters(Amer Chemical Soc, 2024) Kumar, Anand; Samaner, Caglar; Cholsuk, Chanaprom; Matthes, Tjorben; Pacal, Serkan; Oyun, Yagiz; Vogl, TobiasQuantum emitters in solid-state crystals have recently attracted a great deal of attention due to their simple applicability in optical quantum technologies. The polarization of single photons generated by quantum emitters is one of the key parameters that plays a crucial role in various applications, such as quantum computation, which uses the indistinguishability of photons. However, the degree of single-photon polarization is typically quantified using the time-averaged photoluminescence intensity of single emitters, which provides limited information about the dipole properties in solids. In this work, we use single defects in hexagonal boron nitride and nanodiamond as efficient room-temperature single-photon sources to reveal the origin and temporal evolution of the dipole orientation in solid-state quantum emitters. The angles of the excitation and emission dipoles relative to the crystal axes were determined experimentally and then calculated using density functional theory, which resulted in characteristic angles for every specific defect that can be used as an efficient tool for defect identification and understanding their atomic structure. Moreover, the temporal polarization dynamics revealed a strongly modified linear polarization visibility that depends on the excited-state decay time of the individual excitation. This effect can potentially be traced back to the excitation of excess charges in the local crystal environment. Understanding such hidden time-dependent mechanisms can further improve the performance of polarization-sensitive experiments, particularly that for quantum communication with single-photon emitters.Article Citation - WoS: 18Citation - Scopus: 19Refractive Index Sensing for Measuring Single Cell Growth(American Chemical Society, 2021) Çetin, Arif E.; Topkaya, Seda Nur; Yalçın Özuysal, Özden; Khademhosseini, AliAccessing cell growth on adhesive substrates is critical for identifying biophysical properties of cells and their therapeutic response to drug therapies. However, optical techniques have low sensitivity, and their reliability varies with cell type, whereas microfluidic technologies rely on cell suspension. In this paper, we introduced a plasmonic functional assay platform that can precisely measure cell weight and the dynamic change in real-time for adherent cells. Possessing this ability, our platform can determine growth rates of individual cells within only 10 mm to map the growth profile of populations in short time intervals. The platform could successfully determine heterogeneity within the growth profile of populations and assess subpopulations exhibiting distinct growth profiles. As a proof of principle, we investigated the growth profile of MCF-7 cells and the effect of two intracellular metabolisms critical for their proliferation. We first investigated the negative effect of serum starvation on cell growth. We then studied ornithine decarboxylase (ODC) activity, a key enzyme which is involved in proliferation, and degraded under low osmolarity that inhibits cell growth. We successfully determined the significant distinction between growth profiles of MCF-7 cells and their ODC-overproducing variants that possess strong resistance to the negative effects of low osmolarity. We also demonstrated that an exogenous parameter, putrescine, could rescue cells from ODC inhibition under hypoosmotic conditions. In addition to the ability of accessing intracellular activities through ex vivo measurements, our platform could also determine therapeutic behaviors of cancer cells in response to drug treatments. Here, we investigated difluoromethylornithine (DFMO), which has antitumor effects on MCF-7 cells by inhibiting ODC activity. We successfully demonstrated the susceptibility of MCF-7 cells to such drug treatment, while its DFMO-resistant subpopulation could survive in the presence of this antigrowth agent. By rapidly determining cell growth kinetics in small samples, our plasmonic platform may be of broad use to basic research and clinical applications.
