PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Permanent URI for this collectionhttps://hdl.handle.net/11147/7645
Browse
Browsing PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection by Journal "ACS Applied Bio Materials"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article Citation - WoS: 7Fabrication of Helix Aspersa Extract Loaded Gradient Scaffold With an Integrated Architecture for Osteochondral Tissue Regeneration: Morphology, Structure, and in Vitro Bioactivity [2](American Chemical Society, 2023) Tamburacı, Sedef; Perpelek, Merve; Aydemir, Selma; Baykara, Başak; Havıtçıoğlu, Hasan; Tıhmınlıoğlu, FundaRegeneration of osteochondral tissue with its layered complex structure and limited self-repair capacity has come into prominence as an application area for biomaterial design. Thus, literature studies have aimed to design multilayered scaffolds using natural polymers to mimic its unique structure. In this study, fabricated scaffolds are composed of transition layers both chemically and morphologically to mimic the gradient structure of osteochondral tissue. The aim of this study is to produce gradient chitosan (CHI) scaffolds with bioactive snail (Helix aspersa) mucus (M) and slime (S) extract and investigate the structures regarding their physicochemical, mechanical, and morphological characteristics as well as in vitro cytocompatibility and bioactivity. Gradient scaffolds (CHI-M and CHI-S) were fabricated via a layer-by-layer freezing and lyophilization technique. Highly porous and continuous 3D structures were obtained and observed with SEM analysis. In addition, scaffolds were physically characterized with water uptake test, micro-CT, mechanical analysis (compression tests), and XRD analysis. In vitro bioactivity of scaffolds was investigated by co-culturing Saos-2 and SW1353 cells on each compartment of gradient scaffolds. Osteogenic activity of Saos-2 cells on extract loaded gradient scaffolds was investigated in terms of ALP secretion, osteocalcin (OC) production, and biomineralization. Chondrogenic bioactivity of SW1353 cells was investigated regarding COMP and GAG production and observed with Alcian Blue staining. Both mucus and slime incorporation in the chitosan matrix increased the osteogenic differentiation of Saos-2 and SW1353 cells in comparison to the pristine matrix. In addition, histological and immunohistological staining was performed to investigate ECM formation on gradient scaffolds. Both characterization and in vitro bioactivity results indicated that CHI-M and CHI-S scaffolds show potential for osteochondral tissue regeneration, mimicking the structure as well as enhancing physical characteristics and bioactivity. © 2023 The Authors. Published by American Chemical Society.Article Citation - WoS: 14Citation - Scopus: 12Fabrication of Tunable 3d Cellular Structures in High Volume Using Magnetic Levitation Guided Assembly(American Chemical Society, 2021) Onbas, Rabia; Arslan Yıldız, AhuTunable and reproducible size with high circularity is an important limitation to obtain three-dimensional (3D) cellular structures and spheroids in scaffold free tissue engineering approaches. Here, we present a facile methodology based on magnetic levitation (MagLev) to fabricate 3D cellular structures rapidly and easily in high-volume and low magnetic field. In this study, 3D cellular structures were fabricated using magnetic levitation directed assembly where cells are suspended and self-assembled by contactless magnetic manipulation in the presence of a paramagnetic agent. The effect of cell seeding density, culture time, and paramagnetic agent concentration on the formation of 3D cellular structures was evaluated for NIH/3T3 mouse fibroblast cells. In addition, magnetic levitation guided cellular assembly and 3D tumor spheroid formation was examined for five different cancer cell lines: MCF7 (human epithelial breast adenocarcinoma), MDA-MB-231 (human epithelial breast adenocarcinoma), SHSYSY (human bone-marrow neuroblastoma), PC-12 (rat adrenal gland pheochromocytoma), and HeLa (human epithelial cervix adenocarcinoma). Moreover, formation of a 3D coculture model was successfully observed by using MDA-MB-231 dsRED and MDA-MB-231 GFP cells. Taken together, these results indicate that the developed MagLev setup provides an easy and efficient way to fabricate 3D cellular structures and may be a feasible alternative to conventional methodologies for cellular/multicellular studies.Article Citation - WoS: 3Citation - Scopus: 4Periodate-Mediated Cross-Linking for the Preparation of Catechol Conjugated Albumin Nanoparticles Used for in Vitro Drug Delivery(Amer Chemical Soc, 2025) Argitekin, Eda; Erez, Ozlem; Cakan-Akdogan, Gulcin; Akdogan, YasarConjugation of serum albumin protein with catechol-containing dopamine molecules provides an alternative method for the preparation of albumin nanoparticles (NPs). A commonly used desolvation method utilizes glutaraldehyde as a cross-linking agent. Here, the catechol cross-linking mechanism is used instead of glutaraldehyde providing advantages to prevent toxicity and an undesirable reaction of glutaraldehyde with cargo molecules. Covalent cross-linking between dopamine conjugated bovine serum albumin (D-BSA) proteins was obtained in the presence of sodium periodate (NaIO4) as an oxidizer. As a result, spherical D-BSA NPs with a uniform size distribution of around 100 nm in diameter and negative zeta potential around -28 mV were prepared. Optimal conditions were reached when a dopamine:IO4 - molar ratio of 2:1, pH 7.4 of the medium, and acetone as the desolvating agent were used. Furthermore, the obtained NPs display antioxidant properties, have rapid biodegradability in the presence of trypsin, and have a high doxorubicin (DOX) loading (9.1%) with a sustainable drug release. DOX loaded D-BSA NPs also caused up to 90% breast cancer cell (MCF-7) death within 24 h. These results show that drug carrying albumin NPs can alternatively be prepared via covalently cross-linked catechol groups and used in drug delivery studies.Article Citation - WoS: 27Citation - Scopus: 34Production and Characterization of a Novel Bilayer Nanocomposite Scaffold Composed of Chitosan/Si-nhap and Zein/Poss Structures for Osteochondral Tissue Regeneration(American Chemical Society, 2019) Tamburacı, Sedef; Çeçen, Berivan; Üstün, Özcan; Ergür, Bekir Uğur; Havıtçıoğlu, Hasan; Tıhmınlıoğlu, FundaOsteochondral tissue is hard to regenerate after injuries or degenerative diseases. Traditional treatments still have disadvantages, such as donor tissue availability, donor site morbidity, implant loss, and limited durability of prosthetics. Thus, recent studies have focused on tissue engineering strategies to regenerate osteochondral defects with different scaffold designs. Scaffolds have been developed from monolayer structures to bilayer scaffolds to repair the cartilage-bone interface and to support each tissue separately. In this study, Si-substituted nanohydroxyapatite particles (Si-nHap) and silica-based POSS nanocages were used as reinforcements in different polymer layers to mimic a cartilage-bone tissue interface. Chitosan and zein, which are widely used biopolymers, are used as polymer layers to mimic the structure. This study reports the development of a bilayer scaffold produced via fabrication of two different nanocomposite layers with different polymer-inorganic composites in order to satisfy the complex and diverse regenerative requirements of osteochondral tissue. The chitosan/Si-nHap microporous layer and the zein/POSS nanofiber layer were designed to mimic a bone-cartilage tissue interface. Bilayer scaffolds were characterized with SEM, compression, swelling, and biodegradation tests to determine morphological, physical, and mechanical properties. The results showed that the bilayer scaffold had a structure composed of microporous and nanofiber layers joined at a continuous interface with appropriate mechanical properties. Furthermore, in vitro cell culture studies have been performed with LDH, proliferation, fluorescence imaging, and ALP activity assays using osteosarcoma and chondrosarcoma cell lines. ALP expression levels provide a good illustration of the improved osteogenic potential of a porous chitosan/Si-nHap layer due to the Si-doped nHap incorporation. Histological data showed that both fiber and porous layers that mimic the cartilage and bone sections exhibit homogeneous cell distribution and matrix formation. Histochemical staining was used to determine the cell proliferation and ECM formation on each layer. In vitro studies indicated that zein-POSS/chitosan/Si-nHap nanocomposite bilayer scaffolds showed promising results for osteochondral regeneration. Copyright © 2019 American Chemical Society.
