Energy Systems Engineering / Enerji Sistemleri Mühendisliği
Permanent URI for this collectionhttps://hdl.handle.net/11147/4752
Browse
Browsing Energy Systems Engineering / Enerji Sistemleri Mühendisliği by Department "İzmir Institute of Technology. Mechanical Engineering"
Now showing 1 - 15 of 15
- Results Per Page
- Sort Options
Conference Object Citation - WoS: 1Citation - Scopus: 2Analysis and Application of Advanced Control Strategies To a Heating Element Nonlinear Model(IOP Publishing Ltd., 2017) Turhan, Cihan; Simani, Silvio; Zajic, Ivan; Gökçen Akkurt, Gülden; 03.10. Department of Mechanical Engineering; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThis paper presents the design of different control strategies applied to a heating element nonlinear model. The description of this heating element was obtained exploiting a data-driven and physically meaningful nonlinear continuous-time model, which represents a test-bed used in passive air conditioning for sustainable housing applications. This model has low complexity while achieving high simulation performance. The physical meaningfulness of the model provides an enhanced insight into the performance and functionality of the system. In return, this information can be used during the system simulation and improved model- based and data-driven control designs for tight temperature regulation. The main purpose of this study is thus to give several examples of viable and practical designs of control schemes with application to this heating element model. Moreover, extensive simulations and Monte- Carlo analysis are the tools for assessing experimentally the main features of the proposed control schemes, in the presence of modelling and measurement errors. These developed control methods are also compared in order to evaluate advantages and drawbacks of the considered solutions. Finally, the exploited simulation tools can serve to highlight the potential application of the proposed control strategies to real air conditioning systems.Article Citation - WoS: 11Citation - Scopus: 13Assessment of Thermal Comfort Preferences in Mediterranean Climate a University Office Building Case(Vinca Inst Nuclear Sci, 2018) Turhan, Cihan; Gökçen Akkurt, Gülden; 03.10. Department of Mechanical Engineering; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThis study aims at evaluating the perceived thermal sensation of occupants with respect to thermal comfort standards, ASHRAE 55 and ISO 7730, for office buildings located in Mediterranean climate. A small office building in Izmir Institute of Technology Campus Area, Izmir, Turkey, was chosen as a case building and equipped with measurement devices to assess thermal comfort of occupants with respect to predicted mean vote and actual mean vote. Both objective and subjective measurements were conducted. The former included indoor and outdoor air temperature, mean radiant temperature, relative humidity and air velocity that were used for evaluating the thermal comfort of occupants. Oxygen concentration which can play an additional role in thermal comfort/discomfort, health and productivity of the office occupants, was also measured. Furthermore, occupants were subjected to a survey via a mobile application to obtain subjective measurements to calculate actual mean vote values. Based on objective and subjective measurements, the relationships among the parameters were derived by using simple regression analysis technique while a new combined mean vote correlation was also derived but this time by using multiple linear regression model. Neutral and comfort temperatures were obtained using indoor air temperature and actual mean vote values which were calculated from subjective measurements. The results showed that neutral temperature in the university office building was 20.9 degrees C whilst the comfort temperature range was between 19.4 and 22.4 degrees C for the heating season. By applying new comfort temperatures, energy consumption of the case building located in Mediterranean climate, can be reduced.Conference Object Citation - WoS: 6Citation - Scopus: 8The Effect of Spatial Interventions on Historic Buildings' Indoor Climate (case Study: Tire Necip Paşa Library, Izmir-Turkey)(Elsevier Ltd., 2017) Coşkun, Turgay; Gülhan, Özcan; Şahin, Cem Doğan; Durmuş Arsan, Zeynep; Gökçen Akkurt, Gülden; 02.02. Department of Architecture; 03.10. Department of Mechanical Engineering; 01. Izmir Institute of Technology; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 02. Faculty of ArchitectureThe indoor climate of historic libraries should meet rigorous requirements related to human thermal comfort and conservation of books, manuscripts and cultural proper-ties. Paper based collections in historic libraries can be deteriorated chemically, mechanically and biologically because of inadequate indoor climate conditions. In this paper, Necip Paşa Library, the historic library located in Tire-Izmir, Turkey, was selected as a case study. The chemical, mechanical and biological degradation risks on the manuscripts were evaluated based on the indoor climate parameters measured for one year period. The Library, consisting of a main hall, a manuscript zone and an entrance hall, was modelled via the dynamic simulation software, Design Builder. Calibration of the model was conducted with respect to the measured indoor temperature and relative humidity values. The portico/Revak at the south facade of Library was converted into the entrance hall by wooden framed windows in 1930. To be able to see the effect of that intervention on the indoor climate (correspondingly on degradation risk of the manuscripts), a new model, namely semi-open model, was created and simulated. A remarkable change has not been observed on chemical degradation risk when the results of semi-open and existing library models were compared, while mechanical and biological degradation risks were less in semi-open model.Article Citation - WoS: 9Citation - Scopus: 10Experimental Investigation of Spray Characteristics of Ethyl Esters in a Constant Volume Chamber(Springer, 2022) Ulu, Anılcan; Yıldız, Güray; Özkol, Ünver; Rodriguez, Alvaro Diez; 03.10. Department of Mechanical Engineering; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyAbstract: Biodiesels are mainly produced via the utilization of methanol in transesterification, which is the widespread biodiesel production process. The majority of this methanol is currently obtained from fossil resources, i.e. coal and natural gas. However, in contrast with methanol, biomass-based ethanol can also be used to produce biodiesels; this could allow the production line to become fully renewable. This study aimed to investigate the spray characteristics of various ethyl ester type biodiesels derived from sunflower and corn oils in comparison to methyl esters based on the same feedstocks and reference petroleum-based diesel. Spray penetration length (SPL) and spray cone angle (SCA) were experimentally evaluated in a constant volume chamber allowing optical access, under chamber pressures of 0, 5, 10 and 15 bar and injection pressures of 600 and 800 bar. Sauter mean diameter (SMD) values were estimated by using an analytical correlation. Consequently, ethyl esters performed longer SPL (2.8–20%) and narrower SCA (5.1–19%) than diesel under ambient pressures of 5 and 10 bar. Although the SMD values of ethyl esters were 48% higher than diesel on average, their macroscopic spray characteristics were very similar to those of diesel under 15 bar chamber pressure. Moreover, ethyl esters were found to be very similar to methyl esters in terms of spray characteristics. The differences in SPL, SCA and SMD values for both types of biodiesels were lower than 4%. When considering the uncertainty (± 0.84%) and repeatability (±5%) ratios, the difference between the spray characteristics of methyl and ethyl esters was not major.Conference Object Citation - WoS: 1Citation - Scopus: 2Green Smart Cities: Living Healthily With Every Breath(Institute of Electrical and Electronics Engineers Inc., 2019) Turhan, Cihan; Atalay, Ali Serdar; Gökçen Akkurt, Gülden; 03.10. Department of Mechanical Engineering; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyFifty-four percent of the world's population lives in big cities and it is projected to increase to nearly 70% by 2050s. Rapid and dense urbanization leads to smart cities which improve the quality of lives of the citizens. Therefore, development of smart cities is becoming vital. The quality of the citizens is affected by many factors including poor air quality, increased pollutants and microclimates called urban heat islands. The URBAN GreenUP project, initiated in June 2017, is a project funded under the European Union's Horizon 2020 programme. The main objective of the project is the development, application and replication of re-naturing Urban Plans in a number of European cities. In this study, measurement of nature-based solutions for mitigation of urban heat island effect and improvement of air quality for Urban GreenUP project in Izmir, will be introduced.Article Citation - WoS: 6Citation - Scopus: 9Impact of Climate Change on Indoor Environment of Historic Libraries in Mediterranean Climate Zone(Inderscience Enterprises, 2019) Turhan, Cihan; Durmuş Arsan, Zeynep; Gökçen Akkurt, Gülden; 02.02. Department of Architecture; 03.10. Department of Mechanical Engineering; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of Technology; 02. Faculty of ArchitectureMost historic library buildings house valuable paper-based collections that are kept in unconditioned environments. This vulnerable cultural heritage is expected to be highly affected by climate change in the future. In this study, indoor microclimate of an unconditioned historic library, Necip Pasa Library (Izmir, Turkey) is analysed for existing conditions and future climate data. The measured and predicted indoor microclimate data from 'present' till 2080s are used to determine possible chemical degredation risk on library collection and human comfort. Comparison of periodic results of future climate data indicates an increase in temperature that could cause both an increase in chemical degredation risk on the library collection and a decline in thermal comfort conditions. Mitigation of climate change effects on library collection and human comfort requires taking some actions such as adding light and adaptive mechanical solutions.Article Citation - WoS: 7Citation - Scopus: 7The Importance of Internal Heat Gains for Building Cooling Design(Yıldız Teknik Üniversitesi, 2017) Coşkun, Turgay; Turhan, Cihan; Durmuş Arsan, Zeynep; Gökçen Akkurt, Gülden; 02.02. Department of Architecture; 03.10. Department of Mechanical Engineering; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of Technology; 02. Faculty of ArchitectureThis paper aims to investigate the effect of internal heat gains on the cooling load of a building. The house occupied by three adult men is selected as the case study for paper. The house is in the third floor of the apartment. The apartment has four flats and it has no insulation around the external walls. The heat dissipation from lighting devices, electrical equipment and the occupants are calculated by using the DesignBuilder v4 Beta release simulation program. The temperature of the house is observed during three weeks by using hobo data loggers and calibration of the measurements is made with respect to weather data file of the flat. Detailed schedule based on time of operation and occupancy is prepared to get more accurate results. Annual energy consumption and cooling load of the house is determined by using the dynamic simulation program.Article Citation - WoS: 28Citation - Scopus: 38Investigation of Indoor Microclimate of Historic Libraries for Preventive Conservation of Manuscripts. Case Study: Tire Necip Paşa Library, Izmir-Turkey(Elsevier Ltd., 2017-04) Şahin, Cem Doğan; Çoşkun, Turgay; Durmuş Arsan, Zeynep; Gökçen Akkurt, Gülden; 02.02. Department of Architecture; 03.10. Department of Mechanical Engineering; 01. Izmir Institute of Technology; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 02. Faculty of ArchitectureConservation of library collections requires an interdisciplinary approach. Dealing with the agents of deterioration via curative and preventive conservation methods has become a significant goal with new standards and norms in recent years. Preventive conservation aims indirect physical interventions such as climate control, good housekeeping and pest management. The aim of this study is to assess the degradation potential of indoor climate on valuable manuscripts that date back to 12th century, in a historic library in Tire-İzmir, Turkey. Through the study, first the library, namely Necip Paşa Library was continuously monitored by measurements of thermo-hygrometric parameters for one year. Then, the measured data were evaluated for the risk assessment based on the control classes of ASHRAE Chapter 21 to evaluate the mechanical, chemical and biological degradation risks. Finally, the conservation-oriented measures were proposed in order to keep the manuscripts under the better conditions. Results suggest that introducing a heating, ventilation and air-conditioning system to the building should be considered as the last option since natural hygrothermal behavior of the library gives reasonably sufficient evidences to prevent the manuscripts from degradations to some extent. Therefore, passive solutions should be given higher priorities not to disturb environmental past of the historic library.Conference Object Molecular Dynamics Study of the Thermal Conductivity of Graphene Coated Copper(Avestia Publishing, 2019) Toprak, Kasım; Ersavaş, Gizem; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyIn this study, the thermal conductivity of various size of pure copper, pure graphene and, different number of layer graphene coated copper models are studied using non-equilibrium molecular dynamics (NEMD) simulations. Our findings show that the thermal conductivity of graphene coated copper is higher than the uncoated ones. Furthermore, results also indicate that single layer graphene (SLG) model has the highest thermal conductivity as compared to the other model. Even though multiple layer graphene (MLG) has lower thermal conductivity value compare to SLG, this study shows that the thermal conductivity of MLG coated copper has higher thermal conductivity than SLG coated one. The most important finding in this study suggests that the thermal conductivity of copper can be improved using high thermal conductivity materials like graphene. © 2019, Avestia Publishing.Article Citation - WoS: 1Performance Analysis of Thermal Storage Assisted Cooling Tower With Night Cooling(Gazi Üniversitesi, 2020) Ouedraogo, Kiswendsida Elias; Toprak, Kasım; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyAs global warming and water scarcity issues continue to grow, it is essential to increase resources efficiency for air conditioners and power plants. In order to increase the efficiency, the systems need to be modified to take the advantages of the low night temperature and thermal storage tanks. In this study, the low night temperature and thermal storage tanks effects on the cooling tower is studied using TRNSYS. Using a chiller operating from 8:00 to 16:00 as a case study, hot water from the condenser is partially stored on daytime and cooled slowly during the night. The storage tank volume is optimized by considering two big tanks and five small tanks. The results show that night cooling reduces cooling water temperature by 5.8 degrees C or 21.8% while the cooling efficiency is increased by 36%. The thermal storage tanks enable to have the low continuous flow rate and help to reduce the fan power by 67.1%. On the storage side, compared to two tanks system, the tanks volume is reduced by 16.5% when 5 tanks are used. In theory this reduction can go up to 50% by increasing the number of tanks and reducing their individual size.Article Citation - WoS: 7Citation - Scopus: 8Performance Indices of Soft Computing Models To Predict the Heat Load of Buildings in Terms of Architectural Indicators(Yıldız Teknik Üniversitesi, 2017-08) Turhan, Cihan; Kazanasmaz, Zehra Tuğçe; Gökçen Akkurt, Gülden; 02.02. Department of Architecture; 03.10. Department of Mechanical Engineering; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of Technology; 02. Faculty of ArchitectureThis study estimates the heat load of buildings in Izmir/Turkey by three soft computing (SC) methods; Artificial Neural Networks (ANNs), Fuzzy Logic (FL) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) and compares their prediction indices. Obtaining knowledge about what the heat load of buildings would be in architectural design stage is necessary to forecast the building performance and take precautions against any possible failure. The best accuracy and prediction power of novel soft computing techniques would assist the practical way of this process. For this purpose, four inputs, namely, wall overall heat transfer coefficient, building area/ volume ratio, total external surface area and total window area/total external surface area ratio were employed in each model of this study. The predicted heat load is evaluated comparatively using simulation outputs. The ANN model estimated the heat load of the case apartments with a rate of 97.7% and the MAPE of 5.06%; while these ratios are 98.6% and 3.56% in Mamdani fuzzy inference systems (FL); 99.0% and 2.43% in ANFIS. When these values were compared, it was found that the ANFIS model has become the best learning technique among the others and can be applicable in building energy performance studies.Article Citation - WoS: 14Citation - Scopus: 11The Relation Between Thermal Comfort and Human-Body Exergy Consumption in a Temperate Climate Zone(Elsevier, 2019) Turhan, Cihan; Gökçen Akkurt, Gülden; 03.10. Department of Mechanical Engineering; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyHuman body exergy balance calculation method gives minimum human body exergy consumption rates at thermal neutrality (TSV = 0) providing more information on human thermal responses than other methods. The literature is lacking the verification of this method in various climatic zones. The aim of this study is to investigate the relationship between thermal comfort and human body exergy consumption in a temperate climate zone. A small office building in Izmir Institute of Technology campus, Izmir/Turkey, was chosen as a case building and equipped with measurement devices. The occupant was subjected to a survey via a mobile application to obtain his Thermal Sensation Votes. Objective data were collected via sensors and used for predicting occupant thermal comfort and for exergy balance calculations. Under given conditions, the results show that Thermal Sensation Votes are generally zero at a T-i range of 21-23 degrees C and, are mostly lower than Predicted Mean Votes in summer while the opposite is observed in winter. Predicted Mean Votes at minimum Human Body Exergy Consumption rates were on slightly warm side while Thermal Sensation Votes are zero. It means that for given case, the HBexC rate calculation gave a better prediction of the environmental parameters for the best thermal comfort. (C) 2019 Elsevier B.V. All rights reserved.Article Citation - WoS: 18Citation - Scopus: 21Size Dependent Influence of Contact Line Pinning on Wetting of Nano-textured/Patterned Silica Surfaces(Royal Society of Chemistry, 2020) Özçelik, H. Gökberk; Satıroğlu, Ezgi; Barışık, Murat; 03.10. Department of Mechanical Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyWetting behavior on a heterogeneous surface undergoes contact angle hysteresis as the droplet stabilized at a metastable state with a contact angle significantly different from its equilibrium value due to contact line pinning. However, there is a lack of consensus on how to calculate the influence of pinning forces. In general, the pinning effect can be characterized as (i) microscopic behavior when a droplet is pinned and the contact angle increases/decreases as the droplet volume increases/decreases and (ii) macroscopic behavior as the pinning effects decrease and ultimately, disappear with the increase of the droplet size. The current work studied both behaviors using molecular dynamics (MD) simulation with more than 300 different size water droplets on silica surfaces with three different patterns across two different wetting conditions. Results showed that the contact angle increases linearly with increasing droplet volume through the microscopic behavior, while the droplet is pinned on top of a certain number of patterns. When we normalized the droplet size with the corresponding pattern size, we observed a "wetting similarity" that linear microscopic contact angle variations over different size heterogeneities continuously line up. This shows that the pinning force remains constant and the resulting pinning effects are scalable by the size ratio between the droplet and pattern, independent of the size-scale. The slope of these microscopic linear variations decreases with an increase in the droplet size as observed through the macroscopic behavior. We further found a universal behavior in the variation of the corresponding pinning forces, independent of the wetting condition. In macroscopic behavior, pinning effects become negligible and the contact angle reaches the equilibrium value of the corresponding surface when the diameter of the free-standing droplet is approximately equal to 24 times the size of the surface structure. We found that the pinning effect is scalable with the droplet volume, not the size of the droplet base.Article Citation - WoS: 7Citation - Scopus: 9Spray Analysis of Biodiesels Derived From Various Biomass Resources in a Constant Volume Spray Chamber(American Chemical Society, 2022-06) Ulu, Anılcan; Yıldız, Güray; Rodriguez, Alvaro Diez; Özkol, Ünver; 03.10. Department of Mechanical Engineering; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyThis research aimed to analyze the spray characteristics of various biodiesels, which have rarely been investigated in terms of spray analysis in the literature compared to fossil diesel. For this purpose, four different methyl ester-type biodiesels were produced from canola, corn, cottonseed, and sunflower oils. These feedstocks were selected due to their wide availability in Turkey and being among the significant resources for biodiesel production. Measured physical properties of biodiesel samples showed that biodiesel fuels had, on average, 1.7 to 1.9 times higher viscosities, 5.3 to 6.6% larger densities, and 37 to 39.1% higher contact angle values than the reference diesel fuel. Spray characteristics of all fuels were experimentally examined in a constant volume spray chamber under chamber pressures of 0, 5, 10, and 15 bar and injection pressures of 600, 800, and 1000 bar. All tested biodiesels performed, on average, 3 to 20% longer spray penetration lengths, 5 to 30% narrower spray cone angles, and 5-18% lesser spray areas than the reference diesel fuel under chamber pressures of 5 and 10 bar. No significant differences occurred at 15 bar ambient pressure between biodiesels and diesel. In addition, analytical and empirical predictions showed that biodiesels had around 21.2-35.1% larger SMD values and approximately 7% lower air entrainment.Article Citation - WoS: 33Citation - Scopus: 42Thermodynamic Assessment of Downhole Heat Exchangers for Geothermal Power Generation(Elsevier, 2019) Yıldırım, Nurdan; Parmanto, Slamet; Akkurt, Gülden Gökçen; 03.10. Department of Mechanical Engineering; 03.06. Department of Energy Systems Engineering; 03. Faculty of Engineering; 01. Izmir Institute of TechnologyDownhole heat exchanger is a device to extract heat from geothermal fluid. While it is widely used for heating purposes, its use for power generation has not been reported. The aim of this study is to examine the feasibility of power generation from a 2500 m deep existing geothermal well with high temperature gradient and insufficient flowrate by using a downhole heat exchanger. For this purpose, a thermodynamic and an economic evaluation model are developed by the use of Engineering Equation Solver software. Additionally, the parametric studies have been carried out to identify the effects of insulation, geothermal well conditions, geometry of downhole heat exchanger, mass flowrate and type of working fluids on the performance of downhole heat exchanger system. Consequently, work output of the best alternative is computed as 2511 kW(e) with 64 kg/s mass flowrate of R-134a for 2500 m-deep downhole heat exchanger having inner pipe diameter of 0.127 m. Electricity generation cost and simple payback time are calculated as 46 $/MWh and 2.25 years, respectively. The obtained results showed that the downhole heat exchanger system can be a feasible alternative for wells with very low geothermal flowrate to generate power. (C) 2019 Elsevier Ltd. All rights reserved.