1. Home
  2. Browse by Author

Browsing by Author "Kadekeshova, Kuralay"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Master Thesis
    Performance of Sand Granulated Rubber Mixture for Soil Stabilization Using Discrete Element Method (dem)
    (Izmir Institute of Technology, 2022-06) Kadekeshova, Kuralay; Ecemiş Zeren, Nurhan
    The results of a detailed analysis of the capability of numerical approach Discrete Element Method (DEM) to replicate a physical model of a sheet pile foundation in dry soil under static loads are presented in this study. Accordingly, the DEM software Particle Flow Code 2-Dimensional (ITASCA, 2019) is used to model experimental tests. Numerical model of direct shear test on clean sand and sand mixed with 10% granulated rubber has been done to calibrate the micromechanical parameters of the granular materials, such as sand and rubber particles. The particle sizes, density, interparticle friction coefficient, and contact stiffness of the discrete elements were determined and used in DEM simulations of sheet pile foundation. A total of four DEM models of the sheet pile foundation with different sand-rubber mixture backfill area were tested and analyzed in PFC2D. The loading process speed, contact stiffnesses, and porosity of the system had a significant impact on the deformation parameters of the sheet pile and lateral pressure distribution of the sand-rubber mix backfill. In this study two measurement methods were investigated. First, the measuring particles of the sheet pile particles were used, whereas the second, the measuring circles were placed behind the sheet pile foundation. The measurement circles proposed by (ITASCA, 2019) were suitable for the DEM model. Numerical outcomes showed a relative good match with the physical model. Finally, the ability of the PFC2D code as a discrete element approach in modelling of cohesionless granular material and sheet pile foundation is confirmed in this work.
  • Loading...
    Thumbnail Image
    Article
    Performance of Sheet Pile Walls With Rubber-Modified Backfill
    (Springer, 2025) Ecemis, Nurhan; Kadekeshova, Kuralay; Khlaif, Ali Hamid
    This study investigates the behavior of clean sand and sand-rubber mixtures used as backfill materials behind sheet pile walls under vertical loads. Physical model experiments were conducted to assess lateral displacement and pressure for backfills containing 10% granulated rubber (2.5-5 mm) under both dry and saturated conditions, and across varying backfill inclination angles. To complement the experiments, discrete element method (DEM) simulations were performed to capture the micromechanical behavior of sand-rubber mixtures, enabling analysis of particle-scale interactions. Material stiffness and friction parameters were calibrated through direct shear tests to ensure computational efficiency and accurate representation. Comparative analyses were conducted between the DEM simulations and the physical sheet pile tests across various sand-rubber backfill configurations. The results suggest that sand-rubber mixtures offer a practical and sustainable alternative for backfill applications, improving both mechanical performance and pressure mitigation. Furthermore, force chain development and deformation patterns were thoroughly examined to understand the role of micro parameters; such as particle contact behavior, porosity, internal friction, and stiffness of the rubber-sand composite backfill in reducing active earth pressure against sheet pile walls.