02. Fen Fakültesi / Faculty of Science
Permanent URI for this communityhttps://hdl.handle.net/11147/4
Browse
Browsing 02. Fen Fakültesi / Faculty of Science by Access Right "info:eu-repo/semantics/embargoedAccess"
Now showing 1 - 20 of 64
- Results Per Page
- Sort Options
Article Citation - WoS: 6Citation - Scopus: 6Anisotropic Etching of Cvd Grown Graphene for Ammonia Sensing(Institute of Electrical and Electronics Engineers Inc., 2022-03) Yağmurcukardeş, Nesli; Bayram, Abdullah; Aydın, Hasan; Yağmurcukardeş, Mehmet; Açıkbaş, Yaser; Peeters, François M.; Çelebi, CemBare chemical vapor deposition (CVD) grown graphene (GRP) was anisotropically etched with various etching parameters. The morphological and structural characterizations were carried out by optical microscopy and the vibrational properties substrates were obtained by Raman spectroscopy. The ammonia adsorption and desorption behavior of graphene-based sensors were recorded via quartz crystal microbalance (QCM) measurements at room temperature. The etched samples for ambient NH3 exhibited nearly 35% improvement and showed high resistance to humidity molecules when compared to bare graphene. Besides exhibiting promising sensitivity to NH3 molecules, the etched graphene-based sensors were less affected by humidity. The experimental results were collaborated by Density Functional Theory (DFT) calculations and it was shown that while water molecules fragmented into H and O, NH3 interacts weakly with EGPR2 sample which reveals the enhanced sensing ability of EGPR2. Apparently, it would be more suitable to use EGRP2 in sensing applications due to its sensitivity to NH3 molecules, its stability, and its resistance to H2O molecules in humid ambient.Article Citation - WoS: 4Citation - Scopus: 5Association Analysis of Germination Level Cold Stress Tolerance and Candidate Gene Identification in Upland Cotton (gossypium Hirsutum L.)(Springer, 2022-05) Akköse Baytar, Asena; Peynircioğlu, Ceng; Sezener, Volkan; Frary, Anne; Doğanlar, SamiCotton originated from ancestors in the Gossypium genus that grew in semi-desert habitats. As a result, it is adversely affected by low temperatures especially during germination and the first weeks of growth. Despite this, there are relatively few molecular studies on cold stress in cotton. This limitation may present a future breeding handicap, as recent years have witnessed increased low temperature damage to cotton production. Cold tolerance is a sustainable approach to obtain good production in case of extreme cold. In the present study, 110 Upland cotton (Gossypium hirsutum) genotypes were evaluated for cold tolerance at the germination stage. We identified vigorous genotypes with cold-related parameters that outperformed the panel’s average performance (x¯ = 76.9% CG, 83.9% CSI, 167.5 CWVI). Molecular genetic diversity analysis with 101 simple sequence repeat (SSR) markers yielding 416 loci was used to select tolerant genotypes that could be important materials for breeding this trait. A total of 16 marker-cold tolerance trait associations (p < 0.005) were identified with 10 of them having major effects (PVE > 10%). Based on the positions of these markers, candidate genes for cold tolerance in the G. hirsutum genome were identified. Three of these markers (BNL0569, CIR081 and CIR202) are important candidates for use in marker-assisted breeding for cold tolerance because they mapped to genes previously associated with cold tolerance in other plant species such as Arabidopsis thaliana, rice and tomato.Article Citation - WoS: 4Citation - Scopus: 4Atomic Collapse in Graphene Quantum Dots in a Magnetic Field(Elsevier, 2022) Eren, İsmail; Güçlü, Alev DevrimWe investigate finite size and external magnetic field effects on the atomic collapse due to a Coulomb impurity placed at the center of a hexagonal graphene quantum dot within tight binding and mean-field Hubbard approaches. For large quantum dots, the atomic collapse effect persists when the magnetic field is present, characterized by a series of Landau level crossings and anticrossings, in agreement with previous bulk graphene results. However, we show that a new regime arises if the size of the quantum dot is comparable to or smaller than the magnetic length: While the lowest bound states cross the Fermi level at a lower value of coupling constant β<0.5, a size independent critical coupling constant βc∗>0.5 emerges in the local density of states spectrum, which increases with the applied magnetic field. These effects are found to be persistent in the presence of electron–electron interactions within mean-field Hubbard approximation.Article Citation - WoS: 2Citation - Scopus: 2Atomic-Scale Investigation of the Effect of Surface Carbon Coatings on the Oxidation and Mechanical Properties of Iron Nanowires(Royal Society of Chemistry, 2021-12) Aral, Gürcan; Islam, Md MahbubulThe understanding of the complex atomistic-scale mechanisms of the oxidation process of carbon (C) coated iron nanowires (Fe NW) and also the resulting modulation of mechanical properties is a highly challenging task. We perform reactive molecular dynamics (RMD) simulations based on the ReaxFF force field to investigate the mechanisms of the oxidation process of [001]-oriented pristine cylindrical Fe NWs with and without a C coating in an O2 environment in order to obtain detailed insights into the influences of the surface C coating on the oxidation process at room temperature. Here, we show that the C-coated shell layer on the free surface of pristine Fe NWs partially controls the spontaneous oxidation when exposed to O2 molecules by hindering the absorption-dissociation of O2 molecules and diffusion of O ions into the shell layer. In particular, the surface modification of the pristine Fe NW with the C-coated shell layer has pronounced effects on the improvement of oxidation resistance by lowering the surface reactivity, which limits the formation of an oxide shell layer on the free surface of the NW. The formation of strong Fe-C bonds in the C-coated shell layer largely restrains the oxidation process. Furthermore, to examine the influence of the C-coated shell layer on the resulting modulation of mechanical properties of the pristine Fe NW, we systematically investigate the mechanical deformation processes and related properties of Fe NW with and without a C coating including their oxidized counterparts subjected to both uniaxial tensile and compressive loads at room temperature. The yield stress and strain (the elastic limit) of Fe NWs including the elastic and plastic deformation phase of the stress-strain relationship are found to be sensitive to the loading modes, the existence of the C-coated shell layer and the resulting formation of an oxide shell layer on the surface of the C-coated Fe NW.Article Citation - WoS: 21Citation - Scopus: 32Biodiversity: the Overlooked Source of Human Health(Elsevier, 2023-03) Linhares, Yuliya; Kaganski, Alexander; Agyare, Christian; Aksan Kurnaz, Işıl; Neergheen, Vidushi; Kolodziejczyk, Bartlomiej; Baran, YusufBiodiversity is the measure of the variation of lifeforms in a given ecological system. Biodiversity provides ecosystems with the robustness, stability, and resilience that sustains them. This is ultimately essential for our survival because we depend on the services that natural ecosystems provide (food, fresh water, air, climate, and medicine). Despite this, human activity is driving an unprecedented rate of biodiversity decline, which may jeopardize the life-support systems of the planet if no urgent action is taken. In this article we show why biodiversity is essential for human health. We raise our case and focus on the biomedicine services that are enabled by biodiversity, and we present known and novel approaches to promote biodiversity conservation.Article Characterization of Yellow Patina on Stone Surfaces by Instrumental Analysis Including Libs(Taylor & Francis, 2022) Badur, Fulya; Aras, Nadir; Yalçın, Şerife; Böke, HasanYellow patina formed on the stone surfaces of historical buildings, monuments, and archaeological structures due to weathering is considered a value of the building in the conservation of cultural heritage studies. Although yellow patina layers can be easily distinguished on white marble surfaces, it is not possible to distinguish them on the yellow travertine surfaces with the naked eye. It should be taken into account in yellow travertines as well as marble surfaces before conservation treatments of the stone. In this study, mineralogical and chemical compositions and the thicknesses of yellow patina layers formed on yellow travertine and marble surfaces in Aizanoi, Aphrodisias, and Hierapolis archaeological sites in Turkey were analyzed in order to constitute a conservation approach in the archaeological sites. In this respect, XRD, FT-IR, SEM-EDX, and LIBS were used in the determination of compositions and thicknesses of yellow patina. Although LIBS analysis is a more convenient method to investigate patina layers on stone surfaces, this technique is not as well known as the others. Yellow patina layers contained calcium oxalate in the form of whewellite (CaC2O4.H2O). Their thicknesses were between 15 and 100 μm and should be protective against weathering on travertine and marble surfaces. Highlights LIBS analysis seems to be the most convenient micro-destructive method to estimate the thickness of the yellow patina layers on the marble and yellow travertine surfaces. The determination of the thickness of the yellow patina is critical to keep irreversible cleaning interventions, especially for the yellow travertines due to their similar colors. Yellow patina is mainly composed of calcium oxalate with clay minerals and organic compounds.Article Citation - WoS: 10Citation - Scopus: 11Colorimetric and Fluorometric Profiling of Advanced Glycation End Products(American Chemical Society, 2022) Ammanath, Gopal; Delachi, Carla Giorgia; Karabacak, Soner; Ali, Yusuf; Boehm, Bernhard O.; Yıldız, Ümit Hakan; Alagappan, Palaniappan; Liedberg, BoProfiling of advanced glycation end products (AGEs) is an emerging area of clinical significance for disease diagnosis and prognosis. Typically, concentrations of AGEs are estimated in laboratories by trained personnel using sophisticated equipment. Herein, a facile approach for colorimetric and fluorometric profiling of AGEs is reported for rapid and on-site analysis. The concentrations of AGE levels in plasma are estimated via changes in optical properties of polythiophenes (PTs) upon interaction with aptamers (Apts) in the presence and in the absence of AGEs. To validate the proposed approach, glyceraldehyde-derived AGEs (AGE class 1 [AGE1]), the biomarker associated with cardiovascular diseases and diabetes, are used as a model system. Colorimetric analysis yielded linear responses for AGE1 for clinically relevant concentration ranges between 1.5 and 300 μg/mL with a limit of detection (LOD) of ∼1.3 μg/mL. Subsequently, an approach utilizing PTs with four different pendant groups in conjunction with four different Apts is demonstrated for qualitative colorimetric profiling and for quantitative fluorometric profiling of up to four AGEs in clinical matrices. Principal component analysis (PCA) of fluorometric responses of AGE-spiked samples yielded distinct responses for the different AGEs tested. Thus, the proposed approach ascertains rapid profiling of spiked AGEs in plasma samples without the requirement of preanalytical processing and advanced instrumentation, thereby facilitating on-site diagnosis.Article Comparative Proteome Profiles of Methicillin-Resistant Staphylococcus Aureus in Response To Vanillic Acid and 2-Hydroxycinnamic Acid(Bentham Science Publishers, 2021-08) Keman, Deniz; Soyer, FerdaBackground: The ability of Staphylococcus aureus to cause severe infections and the difficulty of the treatments due to the multiple antibiotic resistance make this bacterium a lifethreatening human pathogen. This situation necessitates the exploration of novel antimicrobial compounds with known targets on bacteria. Phenolic acids naturally produced in plants as secondary metabolites are good candidates for being alternative antimicrobials for antibiotic-resistant bacteria. Objective: Investigation of protein profile of Methicillin-Resistant S. Aureus (MRSA) in the presence of subinhibitory concentrations of phenolic acids. Methods: MRSA was subjected to subinhibitory concentrations of Vanillic Acid (VA) and 2-Hydroxycinnamic Acid (2-HCA), separately, and the proteomic analyses were carried out by using liquid chromatography coupled to mass spectrometry. Results: Both phenolic acids elicited identification of differently expressed proteins that have roles in DNA replication, repair, RNA processing and transcription, protein synthesis, maintenance of cell homeostasis, several metabolic reactions in energy, carbohydrate and lipid metabolisms and also proteins related with the virulence and the pathogenicity of MRSA when compared with the control group. The numbers of the proteins identified were 444, 375, and 426 for control, VA-treated MRSA, and 2-HCA-treated MRSA, respectively, from which 256 were shared. While VA treatment resulted in 149 unidentified MRSA proteins produced in control, 2-HCA treatment resulted in 126 unidentified proteins. Data are available via ProteomeXchange with identifier PXD016922. Conclusion: The results obtained from this study might indicate the potential targets on bacteria and the effective use of phenolic acids in the battle with antibiotic-resistant pathogens.Article Citation - WoS: 6Citation - Scopus: 7Connexin 32 Overexpression Increases Proliferation, Reduces Gap Junctional Intercellular Communication, Motility and Epithelial-To Transition in Hs578t Breast Cancer Cells(Springer, 2022-07) Uğur, Deniz; Güngül, Taha Buğra; Yücel, Simge; Özçivici, Engin; Yalçın Özuysal, Özden; Meşe Özçivici, GülistanConnexins (Cx) are primary components of gap junctions that selectively allow molecules to be exchanged between adjacent cells, regulating multiple cellular functions. Along with their channel forming functions, connexins play a variety of roles in different stages of tumorigenesis and their roles in tumor initiation and progression is isoform- and tissue-specific. While Cx26 and Cx43 were downregulated during breast tumorigenesis, Cx32 was accumulated in the cytoplasm of the cells in lymph node metastasis of breast cancers and Cx32 was further upregulated in metastasis. Cx32's effect on cell proliferation, gap junctional communication, hemichannel activity, cellular motility and epithelial-to-mesenchymal transition (EMT) were investigated by overexpressing Cx32 in Hs578T and MCF7 breast cancer cells. Additionally, the expression and localization of Cx26 and Cx43 upon Cx32 overexpression were examined by Western blot and immunostaining experiments, respectively. We observed that MCF7 cells had endogenous Cx32 while Hs578T cells did not and when Cx32 was overexpressed in these cells, it caused a significant increase in the percentages of Hs578T cells at the S phase in addition to increasing their proliferation. Further, while Cx32 overexpression did not induce hemichannel activity in either cell, it decreased gap junctional communication between Hs578T cells. Additionally, Cx32 was mainly observed in the cytoplasm in both cells, where it did not form gap junction plaques but Cx32 overexpression reduced Cx43 levels without affecting Cx26. Moreover, migration and invasion potentials of Hs578T and migration in MCF7 were reduced upon Cx32 overexpression. Finally, the protein level of mesenchymal marker N-cadherin decreased while epithelial marker ZO-1 and E-cadherin increased in Hs578T cells. We observed that Cx32 overexpression altered cell proliferation, communication, migration and EMT in Hs578T, suggesting a tumor suppressor role in these cells while it had minor effects on MCF7 cells.Article Citation - WoS: 27Citation - Scopus: 33Current Trends and Challenges in Point-Of Urinalysis of Biomarkers in Trace Amounts(Elsevier, 2022-12) Yeasmin, Sanjida; Ammanath, Gopal; Önder, Ahmet; Yan, Evelias; Yıldız, Ümit Hakan; Palaniappan, Alagappan; Liedberg, BoUrinalysis enables non-invasive point-of-care (POC) testing of numerous biomarkers at their physiological and elevated levels, obviating the need for sophisticated equipment or trained personnel. POC urinalysis is used to identify biomarkers that are rich in urine (greater than 1 μM), such as lactate, uric acid, glucose, ions, and adenosine. Urine also contains biomarkers such as small molecules, nucleic acids, neurotransmitters, and drugs in trace amounts (less than 1 μM). These biomarkers are of significant importance for health care monitoring, diagnosis of various disorders (cancer, metabolic diseases, etc.) and illicit drug control (cocaine, steroids, etc.). While POC detection of urinary biomarkers at higher concentration (μM to mM) levels is feasible, direct assaying of biomarkers in nM to fM levels is challenging, as assay responses are typically masked by interferences from the urine sample matrix. This report is a consolidated review of emerging trends and challenges in the POC urinalysis for detecting biomarkers that are less abundant in urine. The sensing mechanisms, analytical device fabrication, discrete and integrated sample pre-treatment procedures for POC assaying of urinary markers in trace amounts are elaborated. Subsequently, the utilization of smart data analytics for facilitating personalized urinalysis is presented. A comprehensive outlook on associated challenges in POC urinalysis of biomarkers in trace amounts is further provided, which would facilitate the advancement of POC urinalysis for a wide range of healthcare applications.Article Citation - WoS: 4Citation - Scopus: 4A Cyclopalladated Bodipy Construct as a Fluorescent Probe for Carbon Monoxide(Wiley, 2022-05) Çevik Eren, Merve; Eren, Ahmet; Dartar, Suay; Tütüncü, Büşra Buse; Emrullahoğlu, MustafaBy introducing a palladium ion into the backbone of BODIPY, we devised a cyclopalladated BODIPY construct that was almost non-emissive in the absence of any analyte but became highly fluorescent upon interacting with carbon monoxide (CO) in solution and in living cells. A process of ortho-carbonylation and depalladation mediated by the specific binding of CO to palladium, promoted the release of the heavy atom from the fluorophore and consequently generated a fluorescence signal with an exceptionally high (60-fold) enhancement ratio.Article Citation - WoS: 3Citation - Scopus: 4Cytotoxic and Apoptotic Effects of 1,2-Diborolanes With Strong Donor Substitutes on Human Cancer Cells(Elsevier, 2021-10) Şahin, Yüksel; Aslantürk, Özlem Sultan; Çelik, Tülay; Sevinçek, Resul; Aygün, Muhittin; Metin, Kubilay; Fırıncı, Erkan; Özgener, HüseyinIn recent years, boron compounds have become more common as chemotherapy agents against certain types of cancers. Along with the development of boron-based therapeutic agents have come investigations into the various cancers and biochemical and molecular mechanisms affected by boron compounds and the relationships between boron compounds and chemical protection against cancer. In this preliminary study, the effects of new 1,2-N-substituted-1,2-diborolane derivatives on types of breast and liver cancers were examined for the first time. Four were found to significantly affect the cell viabilities and mitochondrial membrane potential changes in MCF-7, HepG2 and Hep3B cancer cells. Each was prepared in n-hexane at various concentrations (5, 10, 25, 50, 75 and 100 µg/mL). Human peripheral blood lymphocytes were used as control cells. Compounds 1, 2, 3a, and 3b 1,2-diborolane derivatives selectively killed cancer cells, but compound 1 was cytotoxic in a concentration-dependent manner on HepG2 and Hep3B and only at concentrations of at least 75 µg/mL on MCF-7 cells. Compound 3a exhibited cytotoxic effect on lymphocytes at 75 and 100 µgmL-1 concentrations, but compounds 1, 2 and 3b, 3c and 3d have not possessed significant cytotoxic effect on lymphocytes. Compounds 3c and 3d have not possessed significant cytotoxic effects. Mitochondrial membrane potential assay results supported these findings. Our results reveal that 1,2-diborolane derivates have high cytotoxic and apoptotic activities on human hepatocarcinoma cells and are therefore potential candidates in the development of new drugs against liver cancer.Article Citation - WoS: 1Dedekind Harmonic Numbers(Indian Academy of Sciences, 2021-10) Altuntaş, Çağatay; Göral, HaydarFor any number field, we define Dedekind harmonic numbers with respect to this number field. First, we show that they are not integers except finitely many of them. Then, we present a uniform and an explicit version of this result for quadratic number fields. Moreover, by assuming the Riemann hypothesis for Dedekind zeta functions, we prove that the difference of two Dedekind harmonic numbers are not integers after a while if we have enough terms, and we prove the non-integrality of Dedekind harmonic numbers for quadratic number fields in another uniform way together with an asymptotic result.Article Citation - WoS: 5Citation - Scopus: 5The Designing of a Gel Formulation With Chitosan Polymer Using Liposomes as Nanocarriers of Amphotericin B for a Non-Invasive Treatment Model of Cutaneous Leishmaniasis(Springer, 2022-07) Gürbüz, Nergiz; Çetin Uyanıkgil, Emel Öykü; Özbel, Yusuf; Töz, SerayPurpose Leishmaniasis is a disease caused by different Leishmania spp., which are transmitted to humans by a bite of infected female sand flies. Cutaneous leishmaniasis (CL, oriental sore), visceral leishmaniasis (VL), and mucocutaneous leishmaniasis (MCL) are three main clinical forms, however, only CL and VL are seen in Turkey. Cutaneous leishmaniasis is characterized by skin lesion(s) and is one of the most important vector-borne diseases in Turkey with over 2000 cases reported annually in 40 out of 81 provinces. The treatment is usually made invasively and painfully by intralesional injection of pentavalent antimony compounds. Non-invasive and innovative treatment methods are needed as aimed in this study. Methods In the present study, one of the classical antileishmanial drugs, amphotericin B (AmB), encapsulated in liposomes was evaluated using non-invasive design based on chitosan, which is a nontoxic, biocompatible and biodegradable polymer. To avoid the invasive effect of conventional intralesional needle application, the drug was encapsulated in liposomes and incorporated into a chitosan gel for applying topically on the skin lesion. The efficacy of encapsulation of amphotericin B into liposomes and the drug release from liposomes were studied. The chitosan gel was evaluated for viscosity, flowability, appearance and pH. The efficacy of the drug embedded into chitosan gel, liposomal AmB alone and chitosan gel alone in four different concentrations was also tested using Leishmania spp. promastigotes in vitro. Results The findings have shown that AmB was encapsulated into the liposomes with high efficiency (86.6%) and long-term physical and chemical stability. Therefore, designed liposomal formulation was suitable for sustained release. The appearance of the drug-embedded chitosan gel was transparent and appropriate. Chitosan gels showed non- Newtonian behavior and plastic flow. The liposomal AmB also showed higher efficacy with no parasites in all concentrations while drug embedded into chitosan gel and chitosan gel alone were effective in two higher concentrations. The lower efficacy of the drug-embedded chitosan gel in 24 h in in-vitro study was probably due to slow release of the drug. Conclusion The gel design created in this study will provide ease of use for the lesions of CL patients that do not have a specific number, size, and shape. Follow-up studies by the ex-vivo macrophage infection model with Leishmania intracellular amastigote forms and Leishmania-infected animal models are needed to understand the present design's efficacy better.Article Citation - Scopus: 3Development of Chrono-Spectral Gold Nanoparticle Growth Based Plasmonic Biosensor Platform(Elsevier, 2024) Sözmen, Alper Baran; Elveren, Beste; Erdoğan, Duygu; Mezgil, Bahadır; Baştanlar, Yalın; Yıldız, Ümit Hakan; Arslan Yıldız, AhuPlasmonic sensor platforms are designed for rapid, label-free, and real-time detection and they excel as the next generation biosensors. However, current methods such as Surface Plasmon Resonance require expertise and well-equipped laboratory facilities. Simpler methods such as Localized Surface Plasmon Resonance (LSPR) overcome those limitations, though they lack sensitivity. Hence, sensitivity enhancement plays a crucial role in the future of plasmonic sensor platforms. Herein, a refractive index (RI) sensitivity enhancement methodology is reported utilizing growth of gold nanoparticles (GNPs) on solid support and it is backed up with artificial neural network (ANN) analysis. Sensor platform fabrication was initiated with GNP immobilization onto solid support; immobilized GNPs were then used as seeds for chrono-spectral growth, which was carried out using NH2OH at varied incubation times. The response to RI change of the platform was investigated with varied concentrations of sucrose and ethanol. The detection of bacteria E.coli BL21 was carried out for validation as a model microorganism and results showed that detection was possible at 102 CFU/ml. The data acquired by spectrophotometric measurements were analyzed by ANN and bacteria classification with percentage error rates near 0% was achieved. The proposed LSPR-based, label-free sensor application proved that the developed methodology promises utile sensitivity enhancement potential for similar sensor platforms. © 2024 The Author(s)Article Citation - WoS: 4Citation - Scopus: 4Development of Liposomal Formulations of the Eggplant Glycoalkaloids Solasonine and Solamargine(Elsevier, 2022-04) Tatlıdil, Engin; Gürbüz, Nergiz; Doğanlar, Sami; Frary, AnneThe eggplant glycoalkaloids solasonine and solamargine are efficient biomacromolecules against skin diseases but are water-insoluble which results in inefficient treatment due to inadequate transdermal delivery. To address this problem, several liposomal formulations were prepared and evaluated for parameters including lecithin type, hydration temperature, and pH. The optimal formula with high physical and chemical stability included the lecithin Phospholipon 80H hydrated with 10 mM NaCl (pH 5.5). Solasonine - solamargine loaded liposomes were tested for their physical and chemical stability and drug leakage over a three-month period. Furthermore, the drug release profile of the loaded liposomes was evaluated with different release media. The glycoalkaloids and their liposomal formulations were assessed for their biological activity in culture using HaCaT and SCC-25 cell lines. This work resulted in a biologically effective liposomal formulation that was stable (size <220 nm, PDI [removed]80%) for at least three months.Article Citation - WoS: 4Citation - Scopus: 4Development of Single-Use Thin Film Electrodes Based on Zn2sno4 on In2o3:sno2 Substrates With Their Biosensing Applications(Elsevier, 2022-12) Yurttaş, Betül; Maral, Meltem; Erdem, Arzu; Özyüzer, LütfiDopamine (DA) has a significant impact on the emergence and treatment of certain diseases (e.g., Alzheimer's and Parkinson's diseases). Therefore, monitoring of DA is important, and using biosensors is a favorable option instead of time-consuming and expensive conventional methods. In biosensor manufacturing, thin films have become a rapidly emerging field. In this study, a non-enzymatic electrochemical biosensor based on thin film electrodes is developed for monitoring DA levels. The thin film electrodes (ZTO/ITO) are developed by deposition of Zn2SnO4 (ZTO) on In2O3:SnO2 (ITO) substrates by magnetron sputtering. 3-aminopropyltriethoxysilane (APTES) is used to modify the surface of these electrodes. Physical, optical, and structural properties of the electrodes are determined by applying surface profilometry, UV–VIS–NIR spectrophotometry, X-ray diffraction (XRD), and scanning electron microscopy (SEM) measurements. According to these measurements, it has been observed that the ZTO/ITO combination has a higher optical transmission value than the bare ITO, depending on the deposition time and the oxygen concentration used during ZTO deposition. In addition, the ITO thin film has a crystalline structure, while the ZTO thin film has an amorphous structure and both thin films have a good surface morphology. As electrochemical analysis, cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV) measurements are performed. As a result of CV and EIS measurements, a remarkable change (63.54%) was observed after applying APTES modification onto the surface of ZTO/ITO electrode, and the ones obtained by DPV showed successful detection of DA by APTES modified ZTO/ITO. In addition, the experiments in the presence of interferences such as ascorbic acid (AA), uric acid (UA), bovine serum albumin (BSA), and fish sperm double-stranded DNA (fsDNA) show that the electrodes can be successfully applied for voltammetric determination of DA. The detection limit of DA was estimated to be 0.013 µM in the range of DA between 0.1 and 1 µM, and sensitivity was calculated and found to be 11.057 μA μg−1 mL cm−2, which means ZTO/ITO electrodes have a good sensitivity.Article Citation - WoS: 7Citation - Scopus: 10The Effect of Protein Bsa on the Stability of Lipophilic Drug (docetaxel)-Loaded Polymeric Micelles(Elsevier, 2021-12) Polat, Hürriyet; Çevik Eren, Merve; Polat, MehmetPolymeric micelles are promising delivery vehicles for improving the efficacy of anticancer drugs and reducing their side effects. However, considering the binding ability of serum albumin, the possible interaction of micelles with the native plasma components in the bloodstream raises serious questions on micellar stability. The stability of barren or drug-loaded copolymeric micelles was investigated systematically in distilled water (DW) and simulated body fluid (SBF) solutions in the presence of a model protein. The copolymer was a Pluronic® series triblock copolymer (P-123), the drug was strongly lipophilic docetaxel (DOC) and the protein was Bovine Serum Albumin (BSA). The effect of such factors as BSA and DOC concentrations and the aging of the micellar solutions was studied. Both the barren and drug-loaded micelles were quite stable in blank DW and SBF solutions for long times up to 10 days. They lost integrity and showed no inclination to re-assemble when the BSA concentration reached a critical value, which was very close to the plasma Human Serum Albumin (HSA) concentration. The presence of DOC in the micellar cores could not prevent disintegration. The results illustrate clearly that ensuring the stability of polymeric micelles in blood plasma should be an important design factor in their use as drug carriers.Article Citation - WoS: 11Citation - Scopus: 11Effect of Silicon Nitride Coating Thickness on Silicon Wafer Substrates for Signal Enhancement in Laser-Induced Breakdown Spectroscopic Analysis of Liquids(Elsevier, 2022-08) Kaplan, Dilara; Yalçın, Şerife HanımIt has been shown by previous studies of our group that the use of nitride-coated silicon wafer surfaces as a sample loading substrate in dried-droplet LIBS analysis provided enhancement in plasma emission signal and better detection limits compared to uncoated or oxide-coated silicon wafer surfaces. To further investigate the effect of coating thickness for enhanced sensitivity in dried nano-droplet analysis of liquids, silicon-wafer substrates of different nitride coating thicknesses; 75, 300, 450, and 1000 nm, were comparatively studied. With 75 nm silicon nitride coating, the thin-film effect due to the anti-reflective behavior of the silicon nitride film is observed, and plasma emission signal is enhanced up to three times compared to 300 nm coated substrates. With coating thicknesses of 450 nm and 1000 nm, on the other hand, thermophysical and mechanical properties of the silicon nitride material, like thermal conductivity and hardness, become more dominant factors, leading to higher emission signals for all the elements studied. With 1000 nm coating thickness, enhancement factors of 4.8, 6.4, and 3.7 were obtained for the elements of Pb, Cu, and Cr, respectively. Optimization of the experimental LIBS parameters was conducted, calibration curves were constructed, and analytical figures of merits were determined. Sub-picogram amounts absolute detection limits; 0.7 pg Pb, 0.6 pg Cr, and 0.4 pg Cu, in 500 nanoliter droplets were obtained from the slopes of the calibration curves. The nitride-coated substrates' analytical performance was tested using certified reference solutions, standard water, and real water samples. The materials and the methodology developed can be used for waste-water monitoring of environmental samples by LIBS.Article Citation - WoS: 14Citation - Scopus: 15Electrospun Polyacrylonitrile (pan) Nanofiber: Preparation, Experimental Characterization, Organic Vapor Sensing Ability and Theoretical Simulations of Binding Energies(Springer, 2022-03) İnce Yardımcı, Atike; Yağmurcukardeş, Nesli; Yağmurcukardeş, Mehmet; Çapan, İnci; Erdoğan, Matem; Çapan, Rıfat; Tarhan, Özgür; Açıkbaş, YaserIn this study, polyacrilonitrile (PAN) nanofibers obtained by electrospinning were directly coated on the surface of a quartz crystal microbalance (QCM) and were investigated for their sensing characteristics against chloroform, dichloromethane and carbon tetrachloride as volatile organic compounds (VOCs). PAN nanofibers were characterized by SEM, DSC, Raman Spectroscopy, and FT-IR and the results indicated that beadless and regular nanofibers with the average diameter of 182.7 ± 32 nm were obtained. Kinetic measurements indicated that electrospun PAN nanofibers were sensitive to the VOCs and they were appropriate for sensing applications of chlorine compounds. The reproducibility of PAN nanofiber sensor was also shown in this study. The results revealed that the diffusion coefficients of VOCs increased with the order carbontetrachloride < dichloromethane < chloroform which was supported by the density functional theory (DFT) simulations that revealed the highest binding energy for chloroform.
