Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/8917
Title: Epitaxial characteristics of MBE-grown ZnTe thin films on GaAs (211)B substrates
Authors: Özçeri, Elif
Tarhan, Enver
Publisher: Springer
Abstract: Highly crystalline ZnTe thin films were grown on GaAs (211)B substrates by molecular beam epitaxy (MBE) for potential applications such as MCT detectors and optoelectronic devices. We investigated the effects of Te to Zn (VI/II) flux ratio on the quality of ZnTe films in terms of crystal orientation, elemental composition, surface roughness, and dislocation density. Atomic concentrations of Zn, Te, and oxygen complexes due to oxygen contamination on the film surfaces were analyzed by X-ray photoelectron spectroscopy. X-ray double crystal rocking curve full width half maximum (FWHM) of ZnTe (422) peak was observed as 233 arcseconds for a 1.66 mu m thick film, which indicates high crystallinity. Wet chemical etching was applied to the films to quantify the crystal quality by calculating etch pit densities (EPD) from scanning electron microscope images. A very low EPD value of 1.7 x 10(7) cm(-2) was measured. Additionally, the root mean square roughness values, obtained from atomic force microscopy topography images were in the range of 10-25 nm. These values were supported by FWHM values of red green blue color intensity histograms obtained from Nomarski Microscope images. The results of our analyses indicate that the VI/II flux ratios of 4 and 4.5 produce the best quality ZnTe films on GaAs (211)B substrates.
URI: https://doi.org/10.1007/s00339-019-3043-5
https://hdl.handle.net/11147/8917
ISSN: 0947-8396
1432-0630
Appears in Collections:Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
Physics / Fizik
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File SizeFormat 
s00339-019-3043-5.pdf1.41 MBAdobe PDFView/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

3
checked on Apr 5, 2024

WEB OF SCIENCETM
Citations

3
checked on Mar 16, 2024

Page view(s)

498
checked on Apr 22, 2024

Download(s)

50
checked on Apr 22, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.