Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/6266
Title: Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures
Authors: Kandemir, Ali
Özden, Ayberk
Çağın, Tahir
Sevik, Cem
Keywords: Interface roughness
Molecular dynamics
Thermoelectric
Nanowires
Superlattices
Publisher: Taylor and Francis Ltd.
Source: Kandemir, A., Özden, A., Çağın, T., and Sevik, C. (2017). Thermal conductivity engineering of bulk and one-dimensional Si-Ge nanoarchitectures. Science and Technology of Advanced Materials, 18(1), 187-196. doi:10.1080/14686996.2017.1288065
Abstract: Various theoretical and experimental methods are utilized to investigate the thermal conductivity of nanostructured materials; this is a critical parameter to increase performance of thermoelectric devices. Among these methods, equilibrium molecular dynamics (EMD) is an accurate technique to predict lattice thermal conductivity. In this study, by means of systematic EMD simulations, thermal conductivity of bulk Si-Ge structures (pristine, alloy and superlattice) and their nanostructured one dimensional forms with square and circular cross-section geometries (asymmetric and symmetric) are calculated for different crystallographic directions. A comprehensive temperature analysis is evaluated for selected structures as well. The results show that one-dimensional structures are superior candidates in terms of their low lattice thermal conductivity and thermal conductivity tunability by nanostructuring, such as by diameter modulation, interface roughness, periodicity and number of interfaces. We find that thermal conductivity decreases with smaller diameters or cross section areas. Furthermore, interface roughness decreases thermal conductivity with a profound impact. Moreover, we predicted that there is a specific periodicity that gives minimum thermal conductivity in symmetric superlattice structures. The decreasing thermal conductivity is due to the reducing phonon movement in the system due to the effect of the number of interfaces that determine regimes of ballistic and wave transport phenomena. In some nanostructures, such as nanowire superlattices, thermal conductivity of the Si/Ge system can be reduced to nearly twice that of an amorphous silicon thermal conductivity. Additionally, it is found that one crystal orientation, < 100 >, is better than the < 111 > crystal orientation in one-dimensional and bulk SiGe systems. Our results clearly point out the importance of lattice thermal conductivity engineering in bulk and nanostructures to produce high-performance thermoelectric materials.
URI: http://doi.org/10.1080/14686996.2017.1288065
http://hdl.handle.net/11147/6266
ISSN: 1468-6996
1468-6996
Appears in Collections:Materials Science and Engineering / Malzeme Bilimi ve Mühendisliği
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
6266.pdfMakale1.47 MBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

18
checked on Apr 5, 2024

WEB OF SCIENCETM
Citations

16
checked on Mar 27, 2024

Page view(s)

164
checked on Apr 15, 2024

Download(s)

136
checked on Apr 15, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.