Please use this identifier to cite or link to this item: https://hdl.handle.net/11147/2609
Title: Garlic accelerates red blood cell turnover and splenic erythropoietic gene expression in mice: Evidence for erythropoietin-independent erythropoiesis
Authors: Akgül, Bünyamin
Lin, Kai-Wei
Yang, Hui-Mei Ou
Chen, Yen-Hui
Lu, Tzu-Huan
Chen, Chien-Hsiun
Kikuchi, Tateki
Chen, Yuan-Tsong
Tu, Chen-Pei D.
Keywords: Allium sativum
Garlic
Scanning electron microscopy
Animal cell
RNA
Transcription factor GATA 1
Publisher: Public Library of Science
Source: Akgül, B., Lin, K.-W., Yang, H.-M. O., Chen, Y.-H., Lu, T.-H., Chen, C.-H., Kikuchi, T., Chen, Y.-T., and Tu, C.-P. D. (2010). Garlic accelerates red blood cell turnover and splenic erythropoietic gene expression in mice: Evidence for erythropoietin-independent erythropoiesis. PLoS ONE, 5(12). doi:10.1371/journal.pone.0015358
Abstract: Garlic (Allium sativum) has been valued in many cultures both for its health effects and as a culinary flavor enhancer. Garlic's chemical complexity is widely thought to be the source of its many health benefits, which include, but are not limited to, anti-platelet, procirculatory, anti-inflammatory, anti-apoptotic, neuro-protective, and anti-cancer effects. While a growing body of scientific evidence strongly upholds the herb's broad and potent capacity to influence health, the common mechanisms underlying these diverse effects remain disjointed and relatively poorly understood. We adopted a phenotypedriven approach to investigate the effects of garlic in a mouse model. We examined RBC indices and morphologies, spleen histochemistry, RBC half-lives and gene expression profiles, followed up by qPCR and immunoblot validation. The RBCs of garlic-fed mice register shorter half-lives than the control. But they have normal blood chemistry and RBC indices. Their spleens manifest increased heme oxygenase 1, higher levels of iron and bilirubin, and presumably higher CO, a pleiotropic gasotransmitter. Heat shock genes and those critical for erythropoiesis are elevated in spleens but not in bone marrow. The garlic-fed mice have lower plasma erythropoietin than the controls, however. Chronic exposure to CO of mice on garlic-free diet was sufficient to cause increased RBC indices but again with a lower plasma erythropoietin level than air-treated controls. Furthermore, dietary garlic supplementation and CO treatment showed additive effects on reducing plasma erythropoietin levels in mice. Thus, garlic consumption not only causes increased energy demand from the faster RBC turnover but also increases the production of CO, which in turn stimulates splenic erythropoiesis by an erythropoietinindependent mechanism, thus completing the sequence of feedback regulation for RBC metabolism. Being a pleiotropic gasotransmitter, CO may be a second messenger for garlic's other physiological effects.
URI: http://doi.org/10.1371/journal.pone.0015358
http://hdl.handle.net/11147/2609
ISSN: 1932-6203
Appears in Collections:Molecular Biology and Genetics / Moleküler Biyoloji ve Genetik
PubMed İndeksli Yayınlar Koleksiyonu / PubMed Indexed Publications Collection
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
2609.PDFMakale422.52 kBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

SCOPUSTM   
Citations

14
checked on Apr 5, 2024

WEB OF SCIENCETM
Citations

10
checked on Mar 30, 2024

Page view(s)

1,360
checked on Apr 15, 2024

Download(s)

172
checked on Apr 15, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.