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Abstract—Massive Multiple-input Multiple-output (MIMO) is
widely considered as a key enabler of the next-generation
networks. In these systems, user selection strategies are important
to achieve spatial diversity and maximize spectral efficiency.
In this paper, a user selection algorithm is proposed with
the reconstruction of the sparse Massive MIMO channel using
Compressive Sensing (CS) algorithm. The proposed algorithm
eliminates the users based on the channel correlation by employ-
ing the CS algorithm which reduces the feedback overhead in the
system. The simulation results show that the proposed algorithm
outperforms the traditional user selection algorithms in terms
of sum data rate and computational complexity. Moreover, the
effects of the sparsity level and feedback measurement on the
performance are examined.

Index Terms—Massive MIMO, user selection, compressive
sensing, sparse channel

[. INTRODUCTION

Massive Multiple-input Multiple-output (MIMO) is one
of the key candidate technologies in terms of meeting the
capacity requirement, supporting high spectrum and energy
efficiency for the next-generation of wireless communications.
In Massive MIMO systems, the base station (BS) is equipped
with hundreds of antennas. The key idea is based on the use of
a large number of transmit antennas to serve simultaneously
multiple users. The number of antennas at the BS is higher
than the number of users. As the number of BS antennas tends
to infinity, the effects of fading are eliminated completely [1].

To fully harvest the benefit of excessive BS antennas, the
knowledge of channel state information at the transmitter
(CSIT) is an essential requirement. However, it is challenging
to obtain accurate CSIT. Since the training overhead for
CSIT acquisition grows proportionally with the number of BS
antennas, it can be very large in such systems. Early works
avoid this challenge by adopting a time-division duplexing
(TDD) where the CSIT can be obtained by exploiting channel
reciprocity and the uplink pilot-aided training overhead is
proportional to the number of users.

However, channel reciprocity does not hold for Massive
MIMO systems with a frequency-division duplexing (FDD).
Pilot based channel estimation and uplink channel feedback
are required, which consume spectrum resources. FDD has its
own advantages while compared with TDD. It can provide
more efficient communications with low latency in terms of
delay sensitivity. Therefore, it is also important to consider
CSIT acquisition for FDD systems.

Many works have shown that the effective dimension of a
Massive MIMO channel is actually much less than its original
dimension because of the limited local scattering effect in
the propagation environment [2]. Specifically, the Massive
MIMO channel has an approximately sparse representation
under the Discrete Fourier Transform (DFT) basis if the BS
is equipped with a large uniform linear array (ULA). As
a consequence, Compressive Sensing (CS) algorithm, which
exploits the hidden sparsity under the DFT basis, has been
examined for downlink channel estimation and feedback [3].

The other important point is that these systems have many
challenges such as pilot contamination, channel modeling and
the feedback on user selection. The performance of Massive
MIMO systems depends essentially on the user selection
approach. In this paper, we present the user selection for
Massive MIMO systems with reduced feedback overhead.

In the literature, the user selection has been widely investi-
gated. In the traditional MIMO systems, the semi-orthogonal
user selection (SUS) algorithm has been given in [4]. The SUS
algorithm iteratively selects the user considering the channel
norm and the correlation coefficient. In order to ease the prob-
lems of high computational complexity and high feedback,
the greedy user selection algorithm has been given in [5]
based on the rate allocation in vector perturbation precoding
systems, which reduces the computational complexity through
removing the insignificant users from the candidate user set.

In [6], the joint antenna selection and user selection problem
have been solved in distributed Massive MIMO systems under
the back-haul capacity constraint. In [7], the joint strategy
has been examined which performs antenna selection and
scheduling the users to maximize the sum data rate.

In [8], the user selection scheme for a hybrid architecture
based on DFT processing has been provided by considering
the achievable rate of the system and guaranteeing the fairness
of selection.

The computational complexity of the conventional user
selection schemes is too high to be implemented in Massive
MIMO systems. In this paper, the main objective is to propose
a user selection algorithm that improves the sum data rate
and reduces the feedback load in Massive MIMO systems.
The user selection algorithm eliminates the users based on the
channel correlation and Orthogonal Matching Pursuit (OMP)
algorithm is performed to reduce the feedback load. The
effects of the sparsity level and feedback measurement are
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examined on the sum data rate performance. The zero-forcing
(ZF) precoding is employed after.

The remainder of this paper is organized as follows. The
system model, and the sparse Massive MIMO channels are
described in Section II. The proposed algorithm method is
presented in detail in Section III. The simulation parameters
and the simulation results are provided in Section IV, followed
by conclusions in Section V.

II. SYSTEM MODEL

We consider the Massive MISO system model with M
antennas at the BS and K single-antenna users, under the
assumption of M >> K >>1 as shown in Figure 1. By
employing a ULA antenna model, neighboring antennas are
spaced by d = A/2 with A which is the wavelength of the
carrier frequency.
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Fig. 1. Massive MIMO System Model.

The received signal at the k*" user equipment (UE) is:
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where hy € CM*1 is the channel vector, wy € CM=l jg
the k" UE precoder, the transmitted symbol vector as
x = [z, .. .,xK}T € CX=1 and ny, is the complex additive
white Gaussian noise (AWGN) term with zero mean and o2
variance CN (0, 02). The first term of the right side of Eq. (1)
contains the desired signal for the k" user, the second term
represents the interference caused by the other users, and the
last term is the background noise.

For two-dimensional (2D) channel models, the channel
vector hy, € CM*1 for the k" user due to the effect of clusters
of scatterers is written as follows:

P
bic = s (01F7°) g0 @

=1

where P is the number of NLOS paths from the BS to the
k" user, gNLOS ~ CN(0,1) denotes the complex gain of "
path of the k" user representing independent and identically
distributed (i.i.d.) with zero mean and the given variance, s is
a steering vector, and ¢y /©% is the angle of azimuth of the
ith path of the k' user. It is expressed as qbfxiLOS £ 0+,
with a deterministic nominal angle ¢ and a random deviation
0p from the nominal angle with angular standard deviation
(ASD) 0.

The nominal angle ¢ and the ASD o4 of the multi-path
components are key parameters to model the spatial correlation
matrix. The angular deviation ¢, can be modeled as a uniform
variate which lies within 6, ~ U [—v/304,v30].

The steering vector s denotes the antenna array response of
the i*" path of the k*" user in the direction of ¢~ O, For
ULA antenna models, the array response [9] is defined as:
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We rewrite the channel vector as:
h;, = S; g “4)
i 5. = [s(0117) s (02477) . (5247)] <
CMzP gy = g1 1,8k2,---,8k.r] € CP*L, and the channel

matrix is H = [hy, hy, ... hg] € CM=K,
The received signal composed with all UEs is:

y = HIWx +n, (5)

where y = [y1 .. .yK}T € CX=1 and the precoder matrix is

W = [wy,...,wk] € CM®K which is determined with ZF
precoding as follows:

W = H (H'H) ' (6)

In order to keep the short-term power constant, the factor 7
is calculated as:

1
n= : %

tr ((HHH)*)

The signal-to-interference-plus-noise ratio (SINR) for Eth
user is:

H
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with p = U% and, P is the total transmit power.

The avergge sum data rate is calculated as:

K

R=> E{log, (1 +%)} ©)

k=1
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III. PROPOSED ALGORITHM

There are several different user selection algorithms such
as the capacity based greedy user selection algorithm, the
capacity based greedy user selection algorithm with reduced
user search space, and the semi-orthogonal user group (SUS)
selection. The pair-wise semi-orthogonal user selection algo-
rithm has been presented in [10].

The proposed user selection algorithm eliminates the users
based on the channel correlation by employing the CS algo-
rithm which reduces the feedback overhead in the system. The
steps of the proposed user selection algorithm are explained
in the following three subsections.

A. Sparsity Mapping

The basic procedure of the sparsity mapping is illustrated
in Figure 2 representing the user side process.

Channel Measurements
Estimation; hy generation; b

Fig. 2. User Side Process.

Sparsity
Mapping; hj,

The downlink channel vector hy is firstly estimated at the
user side. In this paper, we assume that each user estimates
its channel vector perfectly.

Due to the antenna correlation at the BS and limited local
scattering effects, most of the multi-path energy in each user
channel vector tends to be concentrated in a relatively small
region within the virtual angular domain. The channel is
expected to have a sparse representation in the virtual angular
domain, so only a small fraction of components is significant
and the others are zero.

Original channel vector hy is represented using virtual
channel representation with a proper basis,

hy = Uhj (10)

where h§ € C*®! is the channel representation in the virtual
angular domain, and U is DFT matrix with CM*M
The n'" column of U is given by

u, = L 1 —j e S ’
vM
form,n=1,2,..., M.

After original CSI hy is mapped to a sparse signal h§, the
measurement matrix is used to reduce the number of samples
to be the original signal. For the sparse signal h;, m feedback
measurements (FM), b € C™*! is generated as follows:

b=AThS,

an

12)

where A € CM#™ is a measurement matrix. The measurement
matrix, A, is generated off-line and known at both the user
and the BS sides. A is sampled from i.i.d. Gaussian distributed
entries with zero mean and 1/m variance.

After the random measurement vector, b, is generated, it is
fed back to the BS to perform downlink precoding.

B. Channel Vector Reconstruction

The basic procedures of the applying CS algorithm and the
proposed user selection are illustrated in Figure 3 representing
the BS side process.

Sparse vector Channel
reconstruction vector Proposed 7F

with CS reconstruction; Use.r precoding
based alg., h§ fe Selection

Fig. 3. BS Side Process.

To fully utilize the spatial multiplexing gains and the array
gains of Massive MIMO, the CSIT is essential. However, it
is inefficient to estimate the entire CSI matrices using long
pilot training symbols at the BS. We should exploit the hidden
sparsity in the CSIT estimation and feedback process. CS is the
efficient reconstruction of a sparse signal from a few samples.

At the BS, CS-based algorithm, OMP is used for recon-
structing the sparse signal fli In the OMP, all columns of
A are correlated with the b. The algorithm reconstructs the
sparse signal iteratively. In each iteration, the algorithm finds
the column of A which is most correlated to the b and adds
its index. The stopping criterion is based on the sparsity level
(SL) value. A

The reconstructed CSI hy is obtained by mapping the
reconstructed sparse signal ﬁf{ back based on the same basis
used at the user side. After that, the proposed user selection
algorithm is applied to the reconstructed CSI. The detail of
the proposed algorithm is given in the following section.

Finally, the BS performs the downlink linear precoding
scheme called ZF precoding to eliminate inter-user interfer-
ence and achieve the sum data rate based on the reconstructed
channel matrix H instead of H in Eq. (6).

C. Proposed User Selection Method

The main objective of the proposed algorithm is to improve
the sum data rate performance and reduce the complexity.

The steps of the proposed user selection algorithm are as
follows:

o Step 1: Initialization:

So={1,....K}, S§=0 (13)

o Step 2: Determine the degrees of orthogonality fj; ;
between all UE channel pairs j # k:

')
Brj = T (14)
[ 5]
Note that 8y ; = B k-
o Step 3: Select the UE to be eliminated according to the
degree of orthogonality.
Define USy, set that holds the users whose degrees of
orthogonality higher than 3 for k" UE.

USy = {j € So: Br; > B,Vk € So}

(15)
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where /3 is a small positive constant value. It characterizes
the allowed degree of orthogonality between two channel
vectors.

o Step 4: For k" UE, if the number of S, set is different
from 0, eliminate this £** UE from the Sy set. Thus, we
obtain the selected user set S as follows:

S =S U{k},if Card (US})) = 0. (16)

The precoding matrix and the sum data rate are calculated
based on the set of selected UEs, S.

IV. SIMULATION RESULTS

In the considered Massive MISO system, there is one BS
with M antennas between 20 and 60, and K = 10 users with
single-antenna. There are only NLOS components in the sys-
tem; the total path for each UE is 10, with o4 = 2.8284. The
optimal S is determined through the numerical simulations.

We examine the sum data rate versus the number of BS an-
tennas and compare the performance of the proposed algorithm
with the algorithm in [10], and all UEs selected. We consider
the different /3 values, the feedback measurement, FM, and the
sparsity level, SL, while providing the performance results.

Figure 4 shows the sum data rate performance of the
proposed algorithm as a function of different 3 values for
FM= M /5 and SL= M/10. The (3 values are taken as 0.3, 0.5
and 0.8. It is indicated that the user selection becomes more
important as the number of BS antennas is reduced. The results
show that S = 0.3 has the best sum data rate performance
since it allows to eliminate the higher number of UEs. Thus,
we fix 8 = 0.3 for the following results.
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Fig. 4. Comparison of Different 3 Values in the Proposed Algorithm for
K=10, FM= M/5 and SL= M/10.

Figure 5 shows the sum data rate performance of the
proposed algorithm with the 8 = 0.3 for FM= M /2, and SL
changes as M/2, M/5 and M/10. It is seen that higher
sparsity level improves the sum data rate performance. This
is because the CS algorithm has better performance to re-
construct the sparse signal with higher sparsity levels which

indicate the number of the non-zero coefficients of the original
signal.

45
N
I 40
[0)
o
2,
Qo
T 35
]
]
©
E 30 |
5 ——SL=M/2
@ —-SL=M/5

-e-SL=M/10
25 : : :
20 30 40 50 60

Number of BS antennas

Fig. 5. Sparsity Level Comparison in the Proposed Algorithm for
K=10, 8=0.3 and FM= M /2.

Figure 6 shows the sum data rate performance of the
proposed algorithm with the 5 = 0.3 for SL= M/10 and FM
changes as M/2, M/5 and M/10. The numerical results
show that when the FM is increased, the sum data rate is
also improved. The reason is that increasing the number of
measurements that send to the BS side with the feedback link.
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Fig. 6. Feedback Measurement Comparison in the Proposed Algorithm for
K=10, 8=0.3 and SL= M/10.

Figure 7 illustrates the sum data rate performance of all
user selection algorithms when the FM, M /2, and SL, M/2,
are the same and also 5 = 0.3 for the algorithm in [10] and
the proposed algorithm. It is illustrated that for a smaller
number of BS antennas, applying user selection is more
advantageous. It is because that channel correlation is high
for the smaller excess of BS antennas and applying the user
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selection algorithm improves the system performance. It is
worth noting that the proposed algorithm outperforms in terms
of sum data rate performance over all UEs selected and the
algorithm in [10].
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Fig. 7. Comparison of the User Selection Algorithms for K=10, £=0.3,
FM= M/2 and SL= M/2.

V. CONCLUSIONS

In this paper, we have proposed the user selection algorithm
by reconstructing the sparse channel of Massive MIMO with
the OMP to reduce the feedback overhead. We have shown that
for a smaller number of BS antennas, applying user selection
is more advantageous.

The proposed algorithm eliminates users according to the
channel correlation to improve the sum data rate performance.
Also, the effects of feedback measurement and sparsity level
parameters have been analyzed through the simulations. Since
the feedback measurement and the sparsity level have a severe
impact on the sum data rate performance, an optimal choice
of these parameters is important. If the sparsity level of the
channel is high, the sum data rate performance has been
improved for the fixed number of feedback measurements.
The simulation results show that the proposed algorithm
outperforms the traditional approaches in terms of sum data
rate, reduced feedback overhead and low complexity.
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