

978-1-7281-8541-5/20/$31.00 ©2020 IEEE

Automated Estimation of Functional Size from

Code

Özgesu Özen

Department of Computer Engineering

Izmir Institute of Technology

Izmir, Turkey

ozenozgesu@gmail.com

Eren Can Güleç

Department of Computer Engineering

Izmir Institute of Technology

Izmir, Turkey

erencangulec@gmail.com

Bora Özsoy

Department of Computer Engineering

Izmir Institute of Technology

Izmir, Turkey

boraozsoy@gmail.com

Busenur Aktılav

Department of Computer Engineering

Izmir Institute of Technology

Izmir, Turkey

busenuraktilav@gmail.com

Prof. Dr. Onur Demirörs
Department of Computer Engineering

Izmir Institute of Technology
Izmir, Turkey

onurdemirors@iyte.edu.tr

Abstract—Determination of the size of a software project is

challenging as well as crucial for both self-employed software

developers and corporate businesses. That’s why it is subjected

to a lot of academic studies where it is discussed how to

determine the size more accurately. Functional Size

Measurement (FSM) is one the most popular measurement

techniques for a software from the point of the delivered

functionality. However, the aspects of know-how, the cost, time,

and manual operation creates difficulties to apply FSM

techniques. This study aims to solve these issues by automating

the measurement process to approximate the functional size of

a project using the COSMIC Functional Size Measurement. The

end product of this study is called ‘Cosmic APP’ that utilizes the

sequence diagram of a software after reverse engineering it from

the given code using a third-party tool called

‘SequenceDiagram’. The working principles, the estimation

process, and the obtained results of ‘Cosmic APP’ are described

thoroughly in this paper.

Keywords—Functional Size Measurement, COSMIC,

sequence diagram

I. INTRODUCTION

Functional Size Measurement (FSM) is a measurement

technique for a software from the point of the delivered

functionality. Despite the fact that Functional Size has many

purposes to be used [1], it is mainly used at the planning stage

as an input into project resource estimation calculations for

cost, effort, and schedule. The function point count of

delivered functionality provides input to productivity and

quality performance indicators as well [2]. Functional Size

Measurement provides numerical data to compare

performance regarding the cost effectiveness and efficiency

of the development and support teams throughout the project.

The unit of functional size measurement is called function

point but the unit depends on the measurement method used

[3]. Whichever method is used the count is a fundamentally

useful value, that is obtained independently from the

programming language or the program developer.[4] There

are several FSM methods that are suitable for ISO standards:

COSMIC(Common Software Measurement International

Consortium)[5], IFPUG(International Function Point Users

Group)[6], Mk II[7], NESMA(The Netherlands Software

Metrics Association)[8], and FiSMA(The Finnish Software

Measurement Association)[9].

The primary objective of this study is to support

estimation of software project’s effort by utilizing function

point counts of existing projects. Organizations use sets of

functional sizes of the existing projects and related

parameters of the projects to produce an estimation model.

However, the measuring the size of the existing projects takes

time and requires significant effort. Our study focuses on

automating this process by comparing the projects’

predetermined functional size and estimated functional size

that is computed using the sequence diagrams’ interactions.

Thus, significantly reducing the time that is needed for

measuring the existing projects. Our goal is to minimize the

effort needed to establish measurement sets of software

projects.

The purpose of our study is to decrease the effort needed

for measuring the size of the software from code. In order to

achieve this purpose, we propose to automate the process of

manual functional size measurement of software from code.

Research methodology of this study is as follows: First,

manual measurements on different projects are performed.

Then we performed a literature research on the topic to

understand the state of the art. Reverse engineering tools are

tested, and the most suitable tool is selected for the generation

of the sequence diagram. Later, the Cosmic APP is

developed. The solution workflow of Cosmic APP is as

follows: A Java application is acquired. The sequence

diagram of the application is produced with the help of a

reverse engineering tool. Sequence diagram is converted to

the text format. Text format of sequence diagram is given to

the Cosmic APP and the functional size estimation of the

given Java application is calculated.

In the case study setup, the Cosmic APP estimation results

of the acquired Java applications are compared with the

manual functional size measurements of these Java

applications in order to validate the Cosmic APP accuracy. It

cannot detect data movements so we prepared a correlation

table to compare the functional processes and the methods

that are found by the Cosmic APP so that we could observe

if the calculated CFP by Cosmic APP is a coincidence or not.

Correlation table and the results are further discussed in the

limitations of the study section.

The topics and contents of this study are as follows.

Section II clarifies the background on COSMIC FSM and the

sequence diagram, and it provides the comparison of reverse

engineering tools. Section III overviews related works by

explaining the similarities and differences between our study

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 24,2022 at 13:05:11 UTC from IEEE Xplore. Restrictions apply.

and their studies. Section IV provides a detailed explanation

for the produced software tool Cosmic APP. Section V

explains the studies of cases and overviews the comparisons

of the results from manual and automated estimation of the

function points, examines the results. Lastly, Section VI

provides general conclusions and future work of

opportunities and plans.

II. BACKGROUND

A. FSM and COSMIC

In this study we have decided to claculate functional size

using COSMIC method as COSMIC is the second generation

method, is an ISO standart and conforms to measurment

theory.

COSMIC, the Common Software Measurement

International Consortium, defines the principles, rules and a

process for measuring a standard functional size of a piece of

software. The COSMIC method is used to measure the

functional size of a software. Functional processes, data

groups and data movements are identified in response to

functional user requirements (FURs) in the COSMIC generic

software model.[10] Before moving on, the vocabulary of

COSMIC method is briefly explained. Functional process is

a set of data movements that is unique to the software.

Functional user is the intended recipient of data processed.

Functional User Requirement (FUR) is the statement of

functional requirements such as user stories. Object of

Interest is anything in the world of the functional user, which

the software being measured must process the data. Data

group consists of one or more data attributes which all

describe a single object of interest. Triggering entry is the

data movement which is the start of each functional process.

The data group moved by the triggering Entry is generated by

a functional user in response to a triggering event.[12][13]

There are four types of data movement:

• Entry (E)

• Exit (X)

• Write (W)

• Read (R)

An entry moves a data group from a functional user into

the functional process. An exit moves a data group from a

functional process to the functional user. Write moves a data

group from inside a functional process to persistent storage

area. Read moves a data group from persistent storage into

the functional process. Each data movement is counted as 1

CFP (COSMIC function point). When the data movements

are accumulated over all functional processes, the size of

software is then defined.[12]

B. Sequence Diagram and Reverse Engineering Tools

The OMG's Unified Modeling Language™ (UML®)
helps you specify, visualize, and document models of software
systems, including their structure and design, in a way that
meets all of these requirements.[14] A UML sequence
diagram is also known as interaction diagram which shows the
interaction between objects in a sequential order. It captures
the high-level interactions between user and the system or the
system and other systems. These interactions realize a use case
or an operation.[15] The idea behind utilizing the sequence
diagrams in this project is to encapsulate all the use cases and

operations from a single point if it is visualized in one
diagram. Representing those interactions between objects is
critical to detect the data movements between objects.
Therefore, reverse engineering tools play an important role to
convert the given code into a sequence diagram.

Reverse engineering is the process of analyzing a subject
system to identify the system’s components and their
interrelationships and create representations of the system in
other form or at higher levels of abstraction. There are quite a
few different reverse engineering tools in the market. As
previously pointed out that the quality and correctness of the
reverse engineering tools is a key factor for the estimations to
be made accurately.[16] Depending on the reverse
engineering tools, the produced sequence diagrams also vary.
A few different reverse engineering tools are found:
SequenceDiagram [17] for IntelliJ IDEA, Visual-Paradigm
[23], ZenUML [22], ObjectAid UML Explorer [24]. These
tools are tested to compare the produced sequence diagram.
Comparison of the reverse engineering tools is represented in
Table I. Reverse engineering tools that have been found are
evaluated based on convenience of the tool and its accuracy.
Convenience of using a tool is our first priority to select the
most appropriate reverse engineering tool, because usage of a
convenient tool maintains the repeatability of proposed
methodology steps. We eliminate Visual Paradigm and
ObjectAid UML according to this concern. Next, reverse
engineering tools which generate accurate and workable
sequence diagrams are searched. SequenceDiagram plugin of
IntelliJ is used thanks to its feature which is exporting
sequence diagram elements as text.

TABLE I. REVERSE ENGINEERING TOOL COMPARISON

 SequenceDiagram ZenUML
Visual
Paradigm

ObjectAid
UML

Free ✓ ✓ X X

Open Source ✓ ? X X

Output
Configuration

✓ X ✓ ?

Export as
Image

✓ ✓ ? ?

Export as
PDF

X ✓ ? ?

Export as
TXT

✓ X ? ?

Export as
HTML

X ✓ ? ?

III. RELATED WORK

There are related works that have been done about

automating the functional size measurement process. Each

method has its own vocabulary and its own way of modeling

software [18]. That’s why they are distinct from one another.

These related works are summarized. The comparison

between our proposal and the related works is explained.

Kusumoto et al. [19] propose functional size calculations

and moot the idea of automated Functional Size

Measurement. They perform the FSM by IFPUG

(International Function Point Users Group) and follow the

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 24,2022 at 13:05:11 UTC from IEEE Xplore. Restrictions apply.

design specifications described by the UML (Unified

Modelling Language) as the sequence and class diagrams

which are acquired by Rational Rose®. They produced a FP

measurement tool to automate the FP analysis process. The

values which are calculated by their tool are nearly the same

as manual values obtained by the specialist in IFPUG FP

analysis.

A self-developed measurement library that monitors the

data movements used in the studies of Tarhan and Akca [20].

Aforesaid method is proposed to apply for functional size

measurement that is triggered from the GUI. From a single

point all data movements could be traced. Thus, the result of

the measurement is calculated by 92% accuracy.

Tarhan and Sağ [11] focus on automation of FSM from

software code and develop a tool called ‘COSMIC Solver’ for

COSMIC FSM of Java Business Applications. Cosmic Solver

is the most related approach to our solution Cosmic APP.

These two studies focus on the same problem and follow

similar steps. However, they diverge greatly in the means of

analyzing the UML sequence diagram. The methodology of

this article is to extract the textual representation of the

sequence diagram and with the usage of AspectJ technology

tagging these textual representations. Then, calculating

functional size of user scenarios from the tag information.

However, AspectJ technology is not used in Cosmic APP due

to increased complexity for clients to use the tool and slowed

down functional estimation process of software. The study

demonstrates that the effectiveness of COSMIC Solver is

proven by 77% accuracy of functional sizing of the JBA.

Compared to the manual measurement of CFP, the efficiency

of the tool is 12 times faster in functional sizing of JBA.

Papers that use similar techniques (IFPUG, COSMIC) to

measure the size of the software [11][19] resulted in

significantly different results as the reverse engineering tool

and algorithm behind the verification phase would be distinct

with a goal of reaching higher accuracy in less computing

time.

IV. COSMIC APP

We design the Cosmic APP with easy-of-use and speed in

mind from the beginning. The main priorities are estimating

the CFP of a Java Business Application accurately without

needing an in-depth knowledge about the COSMIC method.

The upcoming paragraphs include detailed explanation on

how the Cosmic APP works and what someone needs to

operate it successfully.

The Cosmic APP does not oblige a measurement expert or

an information technologies specialist. That being said, it is

recommended to have a general idea about the COSMIC

method if more accurate estimations are desired. The reason

is clarified in the following paragraphs.

The main methodology behind the Cosmic APP is utilizing

the sequence diagram of the given project. To achieve this, we

use the aforementioned reverse engineering tool called

SequenceDiagram. This tool runs from the method where it is

called and displays the flow of the program in a colored

sequence diagram. The choice of the method has a significant

importance in the end result of the estimation. That’s why it is

recommended to conduct the measurement using the main

method where it is applicable. If there is no main method or

the program depends on running via a build tool, it is

recommended to find a place where the program starts to

operate like a login page, main menu or their related method

or constructor.

The Cosmic APP relies on SequenceDiagram’s output to

be able to perform its estimation. The output can be exported

in a text file after choosing its options about the output’s

configuration. These include skipping mutator (setter) and

accessor (getter) methods, constructor or private methods and

a call depth for the methods etc. These options can be chosen

by the user depending on the project. Then, the output file’s

location can be given to the Cosmic APP to start the estimation

process.

The estimation takes place after the user specifies whether

he or she prefers to exclude any method that is part of the

sequence diagram but not related with the COSMIC method.

This feature is offered for the users who have knowledge of

COSMIC FSM or have noticed unrelated methods in their

previous executions. The entry does not require the exact

method name or its parameters. If the given name is contained

within the SequenceDiagram output, the Cosmic APP

automatically excludes it from the evaluation. This step is not

mandatory for the evaluation process, but it may increase the

accuracy of the estimation. It can be skipped if desired.

In the end, the assessment begins, and the results are

displayed. Program displays the counted method list and the

total CFP score. If any method or a group of methods seen that

the user thinks is irrelevant to COSMIC measurement, the

program can be re-run with these methods excluded to fine-

tune the estimation result until no misinterpreted methods

exist.

V. CASE STUDY SETUP

COSMIC Functional Points of several software products
are calculated manually and conscientiously. The size
obtained by the Cosmic App is compared with the sizes
recorded manually in order to predict the margin of error. In
case the hit ratio is less than projected value (~85%), the
software and the logic-behind the produced-tool would be
revised and the assessments would be performed again.
Throughout the study, this cycle is followed. The closest
study to ours is Cosmic Solver and they achieved 77%
accuracy. Therefore we determine the acceptance criterion as
85% so that our study could contribute to the scientific
community by a different approach and better accuracy rate
to the stated problem.

A. Application Selection and Information Gathering

With respect to knowledge gained from the research and

analysis, a solution is developed. Thanks to our fellow

student friends, some of their homework projects from the

CENG431 Building Software Systems course in Izmir

Institute of Technology are obtained to be assessed as part of

our study. One of this course’s main subjects is to teach

different design patterns that are used while developing a

software. Homework projects ask to implement solutions

with the given software design pattern. Measuring different

projects that utilize various design patterns gives great

opportunity to see developed algorithm’s consistency with

respect to manual measurements. In addition, various GitHub

repositories are used to test the Cosmic APP. They establish

a great code source to test Cosmic APP’s correctness.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 24,2022 at 13:05:11 UTC from IEEE Xplore. Restrictions apply.

We gathered sample software projects for our case

studies. These projects are heavily dependent on the reverse

engineering tool — SequenceDiagram. Firstly, this tool

requires the IntelliJ IDEA. Therefore, the projects to be

assessed should be written in a programming language which

the IntelliJ IDEA supports, in this case Java. Secondly, in our

estimation process, we have encountered several

circumstances where the SequenceDiagram failed to produce

an output. The projects that satisfy these conditions are used

in the solution developing process.

B. Manual Measurement and Automated Estimation Results

of Case Studies

Functional point sizes are calculated manually for the

projects. The estimated size obtained by the Cosmic APP is

compared with the sizes recorded in order to predict the

margin of error. As part of the case studies, only eight

projects are presented in Table III.

At first, the acceptance criterion was determined as 85%

COSMIC point accuracy. However, there are some negative

aspects that reduce the accuracy of the Cosmic APP which

are discussed in the upcoming paragraphs and in the

conclusion in detail. In the end, our solution, Cosmic APP

achieved 87.8% accuracy. Counting each CFP as a weight for

each project, accuracy rate is calculated by Weighted Mean

Relative Error using the formula:

𝑊𝑀𝑅𝐸 =
∑ (Absolute Error)

∑ (True Value)
 𝑥 100

The accuracy rate is 79.325% according to the Mean Relative

Error which is:

𝑀𝑅𝐸 =
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟

𝑇𝑟𝑢𝑒 𝑉𝑎𝑙𝑢𝑒
 𝑥 100

 The error rates in Table III is also calculated using the

MRE formula. However, some of the cases resulted in much

higher error rates than the achieved accuracy. This problem

is caused by several things. One of the most common issues

that is encountered is programming in a design pattern which

does not cover COSMIC data movements in its methods. For

instance, gathering a lot of work under one method results in

an estimation that is significantly lower than the actual

number since they are counted once. Besides, the evaluation

of the sequence diagrams generally performed from the main

methods, but in some cases, these main methods were not

invoking all the functionalities of the program, thus reducing

the estimated value. On the other hand, in our case, these

issues are seen in the cases with low CFPs. That’s why they

do not affect the overall accuracy greatly even though their

particular error rate is high.

 One of the case studies is a hotel management system. It

is obtained from GitHub and the project is called “Java

Simple Hotel Management” [21]. Hotel administration can

manage who has access to the system. Room reservation is

possible. Hotel administration can control the customers’ and

the rooms’ management. Additional rentals are also recorded

in the booking diary. Also, payment is calculated according

to the room, additional renting, food price and payment and

checkout can be made.

 The manual COSMIC function point result of the hotel

management project is 104. The Cosmic APP estimation is

101. There is a %2 error between the actual and Cosmic APP

results. The correlation between the functional processes and

related methods is 100% as represented in Table IV.

 The other sample case is the Shopping Centre App. In this

application, customers can make product selection. Selected

products can be added to or deleted from the shopping bag.

Payment can be made for the items in the shopping bag. The

manual COSMIC function result of the Shopping Centre

project is 17 and the Cosmic APP estimation is 24. There is a

41% error between the actual and Cosmic APP results and the

correlation between the functional processes and related

methods is 60% for its 5 functional processes as stated in

Table II. It means that Cosmic APP could only located 3 out

of 5 FPs.

After these results, the validation of the assessment comes

as a question. Since the Cosmic APP cannot detect the data

movements between functional user requirements, the answer

to this question has significant importance in the approval

process. We would like to try to evaluate this via comparing

the two result sets that are obtained after the end of the case

studies. First, the overall error rate of the cases in the Table

III equate to 87.8% which is in the same class as the studies

mentioned in the related work section. Secondly and most

importantly, the overall correlation between functional

processes and related detected methods resulted at 93.4% for

all the cases. This number confirms the validity of the Cosmic

APP and proves that the estimations are not coincidence.

TABLE II. SHOPPING CENTRE APP METHOD CORRELATIONS

FP Name CFP Size Related Method

Add product to
shopping centre

3 -

Add product to bag 3 addProduct

Get a bag 3 -

List product in bag 3 passThroughCounter

Pay 5 checkOrderOf

Total 17

Unrelated Methods

checkExtensionFactor, isProductInBag,
contains, peek, checkInitialization, pop,
push, ensureCapacity, add, getFrequencyOf,
shoppingBagSize, shoppingBagCapacity,
shiftEntries, enqueue, dequeue,
shiftQueueEntries, isInQueue, putToDesk,
grab, toString, numberOfProductNotInOrder

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 24,2022 at 13:05:11 UTC from IEEE Xplore. Restrictions apply.

TABLE III. CASE STUDIES’ CFP RESULTS, ERROR RATES AND ASSESMENT DURATIONS

No.

Project Name

Functional

size

obtained

by the

MANUAL

FSM

procedure

(CFP)

Functional

 size

estimated
by the

AUTOMATED

FSM
 procedure

 (CFP)

Error Rate

(%)

Approximate duration of

measurement

MANUAL

(min)

Approximate duration of

estimation

AUTOMATED

(min)

1 FlightTableApp 30 20 33.3 30 2

2 AutoCorrectionConsoleApp [25] 12 17 41.6 30 2

3 Addressbook [26] 13 11 15 30 2

4 Simple Employee Payroll
Management System [27]

59 57 8 120 2

5 Java Simple Hotel Management

[21]

104 101 2 240 2

6 Shopping Centre App 17 24 41 30 2

7 Video Management App 50 56 12 90 2

8 Shopping List Application 8 9 12.5 20 2

TABLE IV. JAVA SIMPLE HOTEL MANAGEMENT METHOD CORRELATIONS

FP Name CFP Size Related method FP Name CFP Size Related method

Add Room
5

btn_addActionPerformed Display Food 2 table_foodMouseClicked

Edit Room
5

btn_editActionPerformed Add Item 5 btn_addActionPerformed

Delete Room
5

btn_deleteActionPerformed Edit Item 5 btn_editActionPerformed

Display Room
2

table_roomsMouseClicked Delete Item 5 btn_deleteActionPerformed

Add Room Type
4

btn_addRoomTypeActionPerformed Display Item 2 table_itemMouseClicked

Edit Room Type
4

btn_editRoomTypeActionPerformed Add Order 2 jButton1ActionPerformed

Delete Room Type
2

btn_deleteRoomTypeActionPerformed Search Booking 4 searchHelper

Display Room Type
2

table_roomTypeMouseClicked Generate Payment 4 jButton1ActionPerformed

Add Customer
5

btn_addCustomerActionPerformed Check-out 4 btn_checkOutActionPerformed

Edit Customer
5

btn_editCustomerActionPerformed Display Payment

Property Change

3 table_paymentPropertyChange

Delete Customer
5

btn_deleteCustomerActionPerformed Print Memo 3 jButton2ActionPerformed

Display Customer
2

table_customerMouseClicked Search Customer 4 searchCustomerHelper

Add Food
2

btn_addActionPerformed Room Up 2 btn_room_upActionPerformed

Edit Food
2

btn_editActionPerformed Check-in Property

Change

3 date_checkInPropertyChange

Delete Food
2

btn_deleteActionPerformed Save Booking 4 btn_saveBookingActionPerformed

 Total 104

Unrelated

Methods

initComponents,actionPerformed, getSize, getElementAt, roomsToRoomObjectList, flushAll, ObjectCreation, boolToString,

flushStatmentOnly, createNewCustomer, roomObjectCreation, foodObjectCreation, itemObjectCreation

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 24,2022 at 13:05:11 UTC from IEEE Xplore. Restrictions apply.

C. Limitations of the Study

There are a few threats which are capable of peril our

solution. The first peril is the heavy dependency to the reverse

engineering tool for estimating the size of the software

because of two reasons. The domain of our proposal, java

applications, degrade to Java applications which are run on

IntelliJ and the sequence diagram can be produced from by

using the plugin [17].

The cases which the plugin could not produce a sequence

diagram could not be estimated in the means of software size

and there is not an alternative way to do the estimation. In

addition, our solution trusts the aforementioned reverse

engineering tool [17] to produce high quality and correct

sequence diagrams. However, this may not be the case for

every software and if the produced sequence diagram has

flaws, then a way to address this issue is not being suggested.

Due to failure of the reverse engineering tool, the results are

unreliable.

Second peril of our proposal is the garbage-in garbage-

out problem meaning that if the given input is flawed then the

output will be flawed. It is assumed that a meaningful input

is given to the program. In the case of an incomplete or

erroneous sequence diagram produced by the reverse

engineering tool, the calculated output of the program will be

inaccurate. Therefore, the correctness of given inputs is the

user’s responsibility.

Third peril of our proposal is the failure of detecting the

data movements described in the COSMIC method.

Therefore, our solution only estimates the COSMIC

functional size measurement so the results of the estimation

may vary in different cases and may not be accurate. For this

reason, Cosmic APP may not be suitable or scalable for

corporate businesses or any area where precision is essential.

Another peril to our solution is that manual measurements

are made by the authors of this study so it might be considered

as bias. However, the example case study is a public

repository on GitHub so that everyone could check the

manual measurement result. For this reason, our case studies

can be verifiable.

The argument of Cosmic APP being more accurate,

efficient, and effective than other studies would not be yet

asserted and more case studies should be evaluated. In the

future, we plan to overcome these threats and the solution to

these threats are being discussed in Section VI.

D. Potential Threats to Validity

There is number of validity threads to discuss for this

study. First, this study has taken place in ten months. That’s

why it is open to any discussion about the effect of time on

the authors that their expertise in the COSMIC FSM method

may have improved over time. This aspect needs to be taken

into consideration about the manual assessment of the case

studies under maturation topic. Additionally, these manual

assessments and Cosmic APP estimations may have impacted

by the statistical regression due to repeated trials of the

development phase. Also, this study is effective on projects

with sample features that are written in Java and whose

sequence diagram can be created by the SequenceDiagram

plugin. Therefore, the methods have been used for estimation

cannot be generalized for all projects. Furthermore, the

knowledge and experience accumulation about Functional

Size Measurement of the people doing this study are at

different levels. In this case, internal validity may be

discussed considering this selection bias factor.

VI. CONCLUSION AND FUTURE WORK

Rapid development in the software industry reveals the

greatest importance of FSM automation. In this article we

conduct a scientific study on automated estimation of Cosmic

Functional Size of a software project. We clarified the

background on the COSMIC Functional Size Measurement

and sequence diagram. We referred to why we need a reverse

engineering tool and the comparison of reverse engineering

tools and we give details of working principles of the

SequenceDiagram IntelliJ IDEA plugin that we chose for our

study in the development process. We overviewed related

works mainly focused on Cosmic Solver [11] by explaining

the similarities and differences between our study and their

studies. However, detailed analysis could not be achieved

because these two studies examine different types of projects.

Only overall accuracy results are compared between them.

We introduced our produced software tool called Cosmic

APP and we presented the results of several case studies on

comparing the Cosmic Functional Size obtained manually

and the Cosmic Functional Size estimated by Cosmic APP.

We specified one main research goal that we should get more

than 85% accuracy when estimating the functional size. The

obtained results and error rate calculations indicate that we

have 87.8% accuracy between measured Functional Size

manually and estimated Functional Size by Cosmic APP.

 We specified some of the positive and negative features

of our produced tool Cosmic APP such that Cosmic APP has

higher accuracy, provides an easy-use, calculates Functional

Size much faster than Cosmic Solver, nonetheless Cosmic

APP does a poor job while detecting the data movements than

Cosmic Solver and that causes the uncertain results for

Cosmic APP. In addition, Cosmic APP strongly depends on

the performance of reverse engineering tool. Despite these

facts, this study has been accepted as a success by those

carrying out this research, as it has been shaped according to

scientific research steps and will contribute to scientific

studies and the desired goal has been achieved.

 In future work, we plan to review the project in line with

making it able to detect data movements and raising accuracy

as a first task. Also, by integrating the manual part that is the

acquiring diagram part of the project into the code, there is

the opportunity to make the project fully automatic by

reducing the manual part in the estimation process. There are

several opportunities for future work. The project can become

more user friendly by designing a graphical user interface in

the future. Web integration of the Automated Estimation of

Functional Size from Code project may lead to full

performance in the scenarios that require collaboration as

well as individual scenarios and it will increase user

satisfaction. Making a version of the project in the form of a

plugin can be given. The estimation of the size of the software

may be performed with more customizable results by adding

a machine learning algorithm on the Cosmic APP which

examines and learns the pattern of the relationship between

the structure of the software and the user options, in the

future.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 24,2022 at 13:05:11 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Ozkan B., Turetken O., Demirors O. (2008) Software Functional Size:

For Cost Estimation and More. In: O’Connor R.V., Baddoo N.,

Smolander K., Messnarz R. (eds) Software Process Improvement.
EuroSPI 2008. Communications in Computer and Information

Science, vol 16. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-85936-9_6

[2] Tarhan A., Demirors O. (2008) Assessment of Software Process and
Metrics to Support Quantitative Understanding. In: Cuadrado-Gallego
J.J., Braungarten R., Dumke R.R., Abran A. (eds) Software Process
and Product Measurement. Mensura 2007, IWSM 2007. Lecture
Notes in Computer Science, vol 4895. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-85553-8_9

[3] C. Gencel and O. Demirors, "Conceptual Differences Among
Functional Size Measurement Methods," First International
Symposium on Empirical Software Engineering and Measurement
(ESEM 2007), Madrid, 2007, pp. 305-313, doi:
10.1109/ESEM.2007.43

[4] Cigdem Gencel and Onur Demirors. 2008. Functional size
measurement revisited. ACM Trans. Softw. Eng. Methodol. 17, 3,
Article 15 (June 2008), 36 pages.
DOI:https://doi.org/10.1145/1363102.1363106

[5] ISO/IEC (2011) ISO/IEC 19761: Software engineering - COSMIC: A
functional size measurement method

[6] ISO/IEC (2009) ISO/IEC 20926: Software and systems engineering -
Software measurement - IFPUG functional size measurement method.

[7] ISO/IEC (2002) ISO/IEC 20968: Software engineering - Mk II
Function Point Analysis - Counting Practices Manual.

[8] ISO/IEC (2005) ISO/IEC 24570: Software engineering - NESMA
functional size measurement method version 2.1 - Definitions and
counting guidelines for the application of Function Point Analysis.

[9] ISO/IEC (2008) ISO/IEC 29881: Information technology – Software
and systems engineering – FiSMA 1.1 functional size measurement
method

[10] The COSMIC Software Sizing Methodology. (n.d.). Retrieved from
https://cosmic-sizing.org/cosmic-fsm/

[11] Kolukısa Tarhan, Ayça & Sağ, Muhammet. (2018). COSMIC Solver:
A Tool for Functional Sizing of Java Business Applications. Balkan
Journal of Electrical & Computer Engineering (BAJECE). 6. 1-8.
10.17694/bajece.401986.

[12] Abran, A. (2019). Software Development Velocity with COSMIC
Function Points. Retrieved from https://cosmic-sizing.org/wp-
content/uploads/2019/04/COSMIC-FP-for-Developers.pdf

[13] Introduction to COSMIC Function Points. (2020, March 08). Retrieved
from https://www.scopemaster.com/introduction-to-cosmic-function-
points/

[14] What is UML. (n.d.). Retrieved from https://www.uml.org/what-is-
uml.htm

[15] What is Sequence Diagram? (n.d.). Retrieved from
https://www.visual-paradigm.com/guide/uml-unified-modeling-
language/what-is-sequence-diagram/

[16] Osman, Mohd Hafeez & Chaudron, Michel. (2012). Correctness and
Completeness of CASE Tools in Reverse Engineering Source Code
into UML Model. The GSTF Journal on Computing (JoC). 1.

[17] “SequenceDiagram Plugin” Available at:
https://plugins.jetbrains.com/plugin/8286-sequencediagram

[18] Ghislain Levesque, Valery Bevo, and De Tran Cao. 2008. Estimating
software size with UML models. In Proceedings of the 2008 C3S2E
conference (C3S2E ’08). Association for Computing Machinery, New
York, NY, USA, 81–87.

[19] Uemura, Takuya & Kusumoto, Shinji & Inoue, Katsuro. (2001).
Function-point analysis using design specifications based on the
Unified Modelling Language. Journal of Software Maintenance. 13.
223-243. 10.1002/smr.231.

[20] Akca, A. A., & Tarhan, A. (2012). Run-time Measurement of
COSMIC Functional Size for Java Business Applications: Initial
Results. 2012 Joint Conference of the 22nd International Workshop
on Software Measurement and the 2012 Seventh International
Conference on Software Process and Product Measurement. doi:
10.1109/iwsm-mensura.2012.40

[21] Java Simple Hotel Management Available at:
https://github.com/faysal515/Java-Simple-Hotel-Management

[22] ZenUML Available at: https://app.zenuml.com/

[23] Visual Paradigm Available at: https://www.visual-paradigm.com/

[24] ObjectAid UML Explorer Available at:
https://www.objectaid.com/home

[25] AutoCorrectionConsoleApp Available at:
https://github.com/berkaykarakoc/AutoCorrectionConsoleApp

[26] Addressbook Available at: https://github.com/vaadin/addressbook

[27] Simple Employee Payroll Management System Available at:
https://github.com/didarulcseiubat17/Simple_Employee_Payroll_Man
agement_System

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 24,2022 at 13:05:11 UTC from IEEE Xplore. Restrictions apply.

