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Turkey (TÜBİTAK-115F616).



ABSTRACT

A COMPUTATIONAL STUDY OF EXCITATION DYNAMICS ON

SEMICONDUCTOR SURFACES

Recent experimental studies have shown that collodial quantum dots can be pro-

duced in large quantities and their optical properties can be tailored by controlling their

composition, size and surface characteristics. Motivated by these studies, this thesis is

devoted to the investigation of excitation dynamics on semiconductor surfaces, which are

passivated with organic molecules. First, constructing a simplified model, excitation dy-

namics is investigated by computing time dependent occupations of frontier molecular

orbitals for various scenarios regarding the values for the energy gap between the highest

occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO), as well as

the coupling strengths. Second, the model is enhanced to address realistic systems. Pas-

sivation of ZnS surface with oleic acid (OA) is modeled using density functional theory

based tight binding (DFTB) simulations. Extracting the Hamiltonian and overlap matri-

ces, excitation dynamics is studied for Zn rich and S rich surfaces and different coverage

ratios of surfaces. The excitation dynamics is compared and contrasted against the sim-

plified model. Characteristic features are identified and typical decay rates are calculated

for various molecular configurations. In addition to these, X-Ray diffraction spectra of

quaternary ZnCdSSe nanoalloys have been investigated.
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ÖZET

YARI İLETKEN YÜZEYLERDE UYARILMA DİNAMİKLERİNİN

HESAPLAMASAL OLARAK ÇALIŞILMASI

Son deneysel çalışmalar kolloidal kuantum noktalarının büyük miktarlarda üretile-

bileceğini ve optik özelliklerinin kompozisyonlarını, boyutlarını ve yüzey özelliklerini

kontrol ederek uyarlanabileceğini göstermiştir. Bu çalışmaların motive ettiği bu tez, or-

ganik moleküllerle pasife edilmiş yarı iletken yüzeylerdeki uyarılma dinamiklerini araştır-

maya adanmıştır. İlk olarak, basitleştirilmiş bir modelin oluşturulmasıyla uyarılma di-

namikleri, etkileşim gücünün yanı sıra, en yüksek dolu ve en düşük boş moleküler or-

bitaller (HOMO ve LUMO) arasındaki enerji boşluğu değerlerine ilişkin çeşitli senaryolar

için öncü moleküler orbitallerin zamana bağlı doluluk oranları hesaplanarak incelenmiş-

tir. İkinci olarak, bu model gerçekçi sistemleri ele almak için geliştirilmiştir. ZnS yüzeyi-

nin oleik asit (OA) ile pasive edilmesi yoğunluk fonksiyoneli teorisine dayanan sıkı bağ-

lanma simülasyonları kullanılarak modellenmiştir. Hamiltonyen ve örtüşme matrisleri

elde edilerek Zn ve S bakımından zengin yüzeylerde ve yüzeylerin farklı kaplama oran-

larında uyarılma dinamikleri incelenmiştir. Uyarılma dinamikleri basitleştirilmiş modelle

karşılaştırılmıştır. Karakteristik özellikler tanımlanmış ve çeşitli moleküler konfigüras-

yonlar için tipik bozulma oranları hesaplanmıştır. Bunlara ek olarak, kuaterner ZnCdSSe

nano alaşımlarının X-ışını kırınım spektrumları incelenmiştir.
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CHAPTER 1

INTRODUCTION

Nanotechnology is one of the most quickly developing science fields today and

an important field of research which aims to manipulate and understand the behavior of

matter at atomic and molecular scales. The ideas behind nanoscience and nanotechnol-

ogy were founded by physicist Richard Feynman at Caltech the lecture called “There’s

plenty of room at the bottom” [1]. He mentioned that it is theoretically possible to ma-

nipulate and control materials on a small scale. During the last few decades new trends

in nanoscience and nanotechnology research have arisen worldwide. Today, nanotech-

nology has become a rapidly growing industry by producing a wide range of nanoscale

materials and processes. If the size of a material is less than 100 nm, it is defined as a

nanostructure and it exhibits a different variation of physical, chemical, electronic and

optical properties than their bulk counterparts. Such structures are categorized as low-

dimensional structures, e.g., quantum well, quantum wires and quantum dots. Over the

past few decades, a great interest has been focused on the optical and electronic proper-

ties of semiconductor quantum dots (QDs) that have a size in the nanometer range. Their

physical properties can be controlled by changing the size, morphology, core/shell for-

mation and surface modification [2, 3]. Surface manipulation opens up new possibilities

by exploiting the current developments in nanoscale technology. They are leading a com-

pletely new set of applications, particularly in the fields of electronics, optoelectronics

and biology [4–7]. Bright emissions, solution processability, tunable color properties and

also the stable nature of QDs offer the possibility for ideal applications of light emitting

diodes (LEDs) [8]. In recent experimental studies, it was reported that it is possible to

produce large quantities of colloidal quantum dots in the purpose of QD-LEDs in the way

to commercialization and can be compared with commercial LEDs that are used in the

current display and lighting technology [9]. The tunable optical properties make QDs a

competent candidate to be used not only in photovoltaics and photoconduction devices,

lighting and display technology, chemical gas sensors, telecommunications and comput-

ing [9–11] but also in DNA detection, cell sorting and tracking, in vivo imaging and

diagnostics [12–14]. The importance of surface interactions with ligands attached to a

monolayer of semiconductor QDs are represented in the next subchapter a brief summary

of relevant studies.
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1.1. Semiconductor Quantum Dots

Quantum dots (QD) are defined as semiconductor nanostructures that have a size

in the range of 2-10 nm whose physical and chemical properties strictly depend on their

size and structure [15]. The unique properties of QDs have gained substantial interest

in the research and their properties can be explained by the quantum confinement effect.

Semiconductor QDs are a new generation of luminescent nanocrystals possessing unique

spectral properties. QDs can stimulate several different color emission spectra via a signal

by tuning the particle size. Typical colloidal QDs have very broad continuos absorption

throughout the visible region depending on the particle size [16].

Figure 1.1. Tuning CdSe QD optical parameters by modifying the particle size. The

different emission colors are observed between small and large CdSe QDs

stimulated by a lamp with the nanoparticle size ranging from 1 to 10 nm.

Smaller QDs have blue color while larger ones has a red color in near

ultraviolet range. Adapted from [17].

Figure 1.1 demostrates the tunability of QDs by modifying their size. [17]. CdSe

QDs exhibit different color emissions with different particle sizes. The photolumines-

cence (PL) emission wavelengths change depending on the size of CdSe QDs in the vis-

ible range of electromagnetic spectrum. The inner part of a QD is the core which can be

composed of group II and VI elements such as CdTe, CdSe, ZnSe, ZnS and CdS or group

III and V elements such as InAs and InP [18]. The II-VI semiconductors may exhibit

2



promising luminescent properties due to their direct band gap. Typical size of collodial

QDs is a few nanometers, and they exhibit distinct narrow optical line spectra. One of

the fundamental properties of QDs is that the energy band gap increases and that the blue

shift increases when upon decreasing the particle size due to quantum confinement ef-

fect [19]. The effect allows one to fine-tune the band gap by changing the composition

of semiconductor QDs. Additionally, the composition of the semiconductor material is

as an essential aspect as its size when it comes to fine-tuning the bandgap and hence the

density of states (DOS). Figure 1.2 illustrates a schematic representation of different di-

mensionalities and comparison of density of states (DOS) of three dimensional (3D), two

dimensional (2D), one dimensinal (1D) and zero dimensional (0D) electron systems.

Figure 1.2. Schematic representation of low dimensional structures along with their

corresponding density of states (DOS). Adapted from [20].

The density of states affects significantly optical properties such as absorption and

emission. The density of states for free electrons in 3D structures, namely bulk structures

are continuous energy levels and they do not exhibit quantum confinement effect. Quan-

tum dots (0D) compared to the other low dimensional structures, they have quantized or

discrete energy levels in density of states, this is case associated with their size [21]. These

quantized energies and the confined material’s dot-like form is what gives its name to the

quantum dot. The quantized energy states make QDs a very unique structure for research.

The effect of confinement generally results in an increase in the band gap with decreasing

QD size. The exact effect on the resulting energy states of a material can be obtained

with the solutions of the Schrödinger equation for the carriers in a confined space. This

method is the most commonly used model for predicting quantum confinement, based on
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the Particle in a Box Model. Assume that a particle is completely free between two infi-

nite potential barriers in a box. In the box, the particle has no potential energy, the only

energies are given by

En =
n2π2

�
2

2mL2
n = 1, 2, 3... (1.1)

where the reduced mass is m and L is the length of the box. Each permitted energy is

called an energy level and n is called the quantum number that represents an energy level

En. The energy levels of these discrete states are inversely proportional to the square of

L. For quantum dots, m is the effective mass of the electron and the hole and L is the

particle diameter.

1.2. Surfaces of Semiconductor Quantum Dots

Another significant feature of QDs is that their properties are greatly influenced

by the increased surface to volume ratio. Due to increased surface area of QDs, surface

states are formed in which quantum states are associated with the surface. When the sur-

face to volume ratio is high, the optical and electronic properties of QDs can be tuned by

these surface states. In a recent study, it was reported that surface atoms constitute 15%

of a CdSe QD with a diameter of 5 nm. [22]. Nanoparticles with such a high surface to

volume ratio have a high surface site density, which may allow higher or lower transfer

rates of photogenerated charging carriers. In semiconductor QDs, surface states can af-

fect several properties such as the absorption, lifetime, spectrum and efficiency [23]. On

the surface, the dangling bonds can generally be emerged by surface states of QDs, and

nonstoichiometry and vacancies can affect them. At the QDs, these energies, which often

extend into band voids, are due to these surface states [24].

Surface states have a major impact on various properties of QDs. Therefore, pas-

sivation of surface dangling bonds clears the gap to confine QD charge carriers and can

enhance optical properties of QDs. Surface defects in QDs function for the electron, hole

or excitons as temporary “ traps ” [21]. As a result, the radiative recombination can be

quenched and the quantum yields (QYs) can be reduced by them. In order to develop

photostable QDs, surface passivation is a very important issue. However, the surface ma-

nipulation of QDs is very compelling and is usually applied by introducing organically

or inorganically capped QDs [25]. Ligands which are organic and inorganic molecules

play a highly effective role on semiconductor nanoparticles in QD synthesis by tuning

the size, composition and morphology of nanocrystals [26–29]. They are also crucial for
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surface passivation by eliminating electronic traps [30]. Organic ligands bound to the

nanocrystal surface and act as capping agents [31, 32]. The ligands can also be used by

electronically coupling to the frontier orbitals at the interface of QD-ligand to control the

electronic structure of the QD. Additionally, the dynamics excitation decay are affected

by mediating charge trapping via ligands [33]. The most widely used organic ligands

in QD synthesis are phosphonic acids, carboxylic acids, oleic acid and alkylthiols. The

main purpose of ligands is to provide stability to the resulting QDs by preventing their ag-

glomeration and also to make them soluble in organic solvents [34]. In many theoretical

and experimental studies, oleic acid is a commonly used ligand for semiconductor quan-

tum dots and nanocrystals (NCs); CdSe QDs, ZnS NCs, CdSe/ZnS core-shell structured

nanocrystals and ternary alloy ZnCdS nanoparticles are some of the examples [35–40]. In

experimental studies, the interaction between the ligand and semiconductor nanocrystal

surfaces may seem to be generally understandable. However, ligand treatment and surface

modification techniques cannot be adequately explained as seen in a model and remain

a mystery. For realistic systems, it is necessary to understand the structural chemistry of

interactions between ligands and quantum dots.

In this thesis, we investigate excitation dynamics on ZnS surface which are capped

by oleic acid (OA) molecule for Zn and S rich surfaces. First, we use a simplified model

to investigate the fundamental properties in the time dependent occupancy of a reser-

voir with frontier molecular orbitals. According to the results of the simplified model, it

helped us understand how to proceed in the realistic system. Secondly, ZnS (111) sur-

face is passivated by OA molecule and its different configurations are calculated using the

density functional theory based tight binding method with Green’s functions. The effect

of different configurations of OA molecule are obtained on the spectra of highest occu-

pied and lowest unoccupied molecular orbitals (HOMO and LUMO). The time dependent

occupancy of the HOMO and the LUMO levels are calculated using the spectra results.

The thesis is organized as follows: The computational methods will be explained

in Chapter 2. X-Ray diffraction patterns (XRD) of the quaternary Zn1-xCdxS1-ySey nanoal-

loys will be given in Chapter 3. The simulation model, methodology and results for the

simplified model and realistic systems will be presented and analyzed in Chapter 4. Our

findings will be summarized in Chapter 5.
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CHAPTER 2

COMPUTATIONAL METHODS

In this chapter, two methods that density functional theory and density functional

tight binding method, and surface Green’s function approach will be presented briefly in

the following sections.

2.1. Density Functional Theory

Density functional theory (DFT) is a quantum mechanical method which is widely

used method in computational physics, chemistry and materials science in order to study

electronic structure of many-body systems, particularly atoms, molecules and the con-

densed phases. The idea behind this method is to write all terms making up the total

energy in terms of ground state electron density. In this theory, properties of a many-

electron system’s properties can be designated by using functionals (functions of another

function) that is based on the electron density. In practice, DFT is applied to investigate

the structural, magnetic and electronic properties of condensed matter systems. Since

DFT includes no empirical parameters that are derived from experimental data, it is said

to be a first-principles method.

2.1.1. The Many-body Hamiltonian

In quantum mechanics, all knowledge can be attained from wavefunctions. In

return, the Schrödinger equation is solved to acquire the wavefunctions. The fundamental

requirement to determine the eigenfunctions of the many-body Hamiltonian

Ĥψ(�r1, . . . , �rN ; �R1, . . . , �RM) = Eψ(�r1, . . . , �rN ; �R1, . . . , �RM) (2.1)

where ψ, E and Ĥ represent the wavefunction, energy eigenvalue and Hamiltonian of the

system, respectively. Morever, �ri is the position of electrons and �RI is the position of
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nuclei. The many-body Hamiltonian can be written as follows,

Ĥ = T̂ + V̂ (2.2)

where T̂ is the kinetic term and V̂ is the potential term. The kinetic term has the kinetic

energy of nuclei T̂n and the kinetic energy of electrons T̂e. The potential term has nucleus-

nucleus interaction V̂nn, electron-electron interaction V̂ee and nucleus-electron interaction

V̂ne. These terms form the Hamiltonian,

Ĥ = T̂n + T̂e + V̂nn + V̂ee + V̂ne. (2.3)

Explicity,

Ĥ = − �
2

2mn

Nn∑
I=1

�2
I −

�
2

2me

Ne∑
i=1

�2
i +

1

2

e2

4πε0

Nn∑
I=1

Nn∑
J �=I

ZIZJ∣∣∣ �RI − �RJ

∣∣∣
+

1

2

e2

4πε0

Ne∑
i=1

Ne∑
j �=i

1

|�ri − �rj| −
e2

4πε0

Ne∑
i=1

Nn∑
I=1

ZI

|�ri − �rI | (2.4)

where j and i represent to positions of electrons and J and I represent positions of nuclei.

Ne and Nn represents the number of nuclei and electrons, respectively. Also, ZI and ZJ

are nuclei that are located at positions �RI and �RJ . The factor 1/2 is necessary to avoid

double counting the nucleus-nucleus and electron-electron interaction.

The Equation 2.4 is written in SI units. Therefore, each term includes inconvenient

combinations of the fundamental constants; � (Planck constant), m (mass of an electron),

e (charge of an electron) and ε0 (the permittivity of free space). Hence, atomic units

(a.u) are employed to simplify the expression. In a.u, � = me = 1/4πε0 = 1 and the

fundamental the energy and the length are measured in terms of Hartree and the Bohr

radius, respectively.

The exact, stationary and non-relativistic many-body Hamiltonian can be written

in a.u in Equation 2.5,
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Ĥ = −1

2

Nn∑
I=1

1

mn

�2
I −

1

2

Ne∑
i=1

�2
i +

1

2

Nn∑
I=1

Nn∑
J �=I

ZIZJ∣∣∣ �RI − �RJ

∣∣∣
+

1

2

Ne∑
i=1

Ne∑
j �=i

1

|�ri − �rj| −
Ne∑
i=1

Nn∑
I=1

ZI

|�ri − �rI | . (2.5)

In Equation 2.5, the many-body Hamiltonian includes the terms of electrons and nuclei

in quantum mechanics. Essentially, the mass of the nucleus is considerably heavier than

the mass of the electron. Therefore, one approach is used to solve this problem. This

approach is called the Born-Oppenheimer approximation [41]. A nucleus cannot move

quickly like an electron. Therefore, the nuclei act as fixed particles in DFT calculations.

As a result, two important derivations are achieved. One of them is that the kinetic energy

of the nuclei is neglected.

Another point is that the potential term of nucleus-nucleus interaction is a con-

stant. Depending on this approximation, the wavefunction includes the electronic part

and the nuclei part as:

ψ(�r, �R) =
∑
i

φn(�R)ψel(�r, �R) (2.6)

where the term φn(�R) is the nuclei wavefunction and ψel(�r, �R) is the electronic wavefunc-

tion. We concentrate on the electronic Hamiltonian, which includes the kinetic energy of

electrons, electron-electron and nucleus-electron interaction terms, which is given as

Ĥ = T̂e + V̂ee + V̂ne

=− 1

2

Ne∑
i=1

�2
i +

1

2

Ne∑
i=1

Ne∑
j �=i

1

|�ri − �rj| −
Ne∑
i=1

Nn∑
I=1

ZI

|�ri − �rI | . (2.7)

Other approximations follow the Born-Oppenheimer approximation. These are

Hartree and Hartree-Fock approximations. The idea of the Hartree approximation is that

electrons are acknowledged to occupy different orbitals, because two electrons cannot

exist in the same quantum state [42]. In the Hartree approximation, the electronic wave-
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function can be shown as a part of single particle wavefunctions

ψ(x1, x2, . . . , xN) = φ1(x1)φ2(x2) . . . φN(xN) (2.8)

where the system has N electrons. Calculating the variational lowest energy from Equa-

tion 2.8 is a simple task. This approach, however, has a crucial shortcoming. It is unable to

satisfy the antisymmetry requirement. This mean that when two arguments are exchanged

the total wavefunction label occurs as:

Pijψ(x1, . . . , xi, . . . , xj, . . . , xN) = ψ(x1, . . . , xj, . . . , xi, . . . , xN)

= −ψ(x1, . . . , xi, . . . , xj, . . . , xN). (2.9)

In Equation 2.9, the particle positions change with the exchange operator P . This is a

demonstration of the Pauli exclusion principle. When this operator is applied one times

on the wavefunction for fermions, the sign of the total wavefunction changes. Hence, the

property of the Hartree approximation is not suitable. In order to satisfty the antisymmetry

condition, Hartree and Fock suggest a notive approximation [43]. Generating the total

wavefunction considering the interactions of electron exhange was proposed by Fock.

ψHF =
1√
N !

[φ1(x1)φ2(x2) . . . φN(xN)− φ1(x2)φ2(x1) . . . φN(xN) + . . . ] (2.10)

Soon after that Slater determinant yields [44],

ψHF (x1, ..., xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ1(x2) . . . φ1(xN)

φ2(x1) φ2(x2) . . . φ2(xN)
...

...
. . .

...

φN(x1) φN(x2) . . . φN(xN)

∣∣∣∣∣∣∣∣∣∣∣
(2.11)

where the factor 1/
√
N ! is the normalization coefficient and N is the number of elec-

trons. As a summary, the Hamiltonian is modified using the Hartree-Fock method. Quan-

tum mechanically, the requirement of the indistinguishability and the electron exchange

properties are satisfied.
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2.1.2. The Electron Density

In quantum mechanics, the compelling task is to solve directly the Schrödinger

equation and it only explains for hydrogen atom because of consisting of a nucleus and

just one electron. However, an alternative solution can be offered by DFT. The total

energy can be written in terms of the ground state electron density. This stage supplies a

simplification due to decreasing the number of degrees of freedom. This energy can be

determined a unique functional of electron density. In the system, the electronic density

operator can be written as a measure of the contribution from each electron defined by

ρ̂(�r) =
N∑
i

δ(�r − �ri) (2.12)

where i is the electron index (i = 1, 2, 3, . . . , N ). So that, it provides to find the probably

an electron in three dimensional space at �ri positions of the ith electron. Substituting

Equation 2.12 into the many-body wavefunction gives the electron density of the system

ρ(�r) =〈ψ(�r1, . . . , �rN)|ρ̂(�r)|ψ(�r1, . . . , �rN)〉

=
N∑
i

∫
δ(�r − �ri)|ψ(�r1, �r2, . . . , �rn)|2d�r1d�r2 . . . d �rN . (2.13)

Applying the δ-function integrals over each variable and the expectation value of the

density operator gives the electron density,

ρ(�r) = N

∫
|ψ(�r, . . . , �rN)|2d�r2 . . . d �rN . (2.14)

Assume that the wavefunction is normalized, the integral of ρ(�r) over all space

yields the total number of electrons (N ),

∫
ρ(�r)d�r = N. (2.15)

10



2.1.3. Energy in Terms of Density

In the system, all terms can be written in terms of density corresponding to the

ground state. Hamiltonian can be described using the density operator and the expectation

value of He is given as,

He = 〈ψ(�r1, . . . , �rN)| Ĥe |ψ(�r1, . . . , �rN)〉
= 〈ψ(�r1, . . . , �rN)| T̂e + V̂ee + V̂ne |ψ(�r1, . . . , �rN)〉 . (2.16)

Beginning with the kinetic energy term:

Te = 〈ψ(�r1, . . . , �rN)| T̂e |ψ(�r1, . . . , �rN)〉

=− 1

2

Ne∑
i=1

∫
ψ∗(�r1, . . . , �rN)�2

i ψ(�r1, . . . , �rN). (2.17)

This expectation value of the kinetic energy term is the most difficult to deal with because

it includes a derivative operator. A methodology based on single-particle operator must be

made to make contact with electronic density. Kohn and Sham proposed the approach that

an auxiliary system of non-interacting particles can be found for each N-particle system in

such a way that it has the same density with the ground state [45]. The electronic density

is expressed as the sum of single-particle orbitals, namely Kohn-Sham orbitals (φi)

ρ(�r) =
N∑
i

|φi(�r)|2 (2.18)

By placing Equation 2.18 into Equation 2.17, kinetic energy in terms of single-particle

orbitals is obtained, which is not equal to the kinetic energy of the real interacting system.

Therefore, the kinetic energy can be defined as

Te = −1

2

Ne∑
n

∫
φ∗
i (�r)�2 φi(�r)d�r +�Te (2.19)
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where the first term is the single-particle kinetic energy and �Te is a correction term to

the non-interacting system for convenience between the auxiliary and the real system.

The expectation value of the nucleus-electron energy term, Vne,

Vne = 〈ψ(�r1, . . . , �rN)| V̂ne |ψ(�r1, . . . , �rN)〉

=−
Ne∑
i=1

Nn∑
I=1

∫
ZI

|�ri − �RI |
|ψ({�r1, . . . , �rN)|2d�r1, . . . , d �rN . (2.20)

This term is rather easy since it does not contain any derivatives. Writing the summation

over the electron index i and separating the terms, one obtains:

Vne = −
Nn∑
I=1

[∫
ZI

|�r1 − �RI |
d�r1

∫
|ψ(�r1, . . . , �rN)|2d�r2d�r3 . . . d �rN

+

∫
ZI

|�r2 − �RI |
d�r2

∫
|ψ((�r1, . . . , �rN)|2d�r1d�r3 . . . d �rN + . . .

]
. (2.21)

As a result of manipulating this integral, the expectation value of the nucleus-electron

interaction, Vne becomes:

Vne = −
Nn∑
I=1

∫
ρ(�r)

ZI

|�r − �RI |
d�r =

∫
ρ(�r)V̂ned�r. (2.22)

The final term is the expectation value of the electron-electron interaction, Vee,

Vee =
1

2

∫ ∫
ρ(�r)ρ(�r′)

|�r − �r′| d�rd�r′ +�Vee. (2.23)

In the end, all expectation values are found in terms of density. The total energy in the

ground state of a system becomes,

Eel = Te + Vne + Vee, (2.24)
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Explicity,

Eel = Te + Vne + Vee = −1

2

Ne∑
n

∫
φ∗
i (�r)�2 φi(�r)d�r +

∫
ρ(�r)V̂ned�r

+
1

2

∫ ∫
ρ(�r)ρ(�r′)

|�r − �r′| d�rd�r′ +�Te +�Vee︸ ︷︷ ︸
Exc

(2.25)

where the last two terms of correction are known as the exchange-correlation energy,

Exc is emerged from the difference between the potential and kinetic energy of the non-

interacting and interacting system.

2.1.4. The Hohenberg-Kohn Theorems and Kohn-Sham Equations

Hohenberg and Kohn proposed and proved two basic theorems in 1964 [46].

Their first theorem designates that there is one-to-one correspondence between electronic

ground-state density and external potential, Vext(�r). To prove this theorem, it is necessary

to consider two different potentials leading to the same ground state density, n0(�r). These

two potentials V ext
1 and V ext

2 with different ground state wavefunctions ψ1 and ψ2 lead to

two different Hamiltonians Ĥ1 and Ĥ2, respectively. Since ψ2 is not the ground state of

Ĥ1, one obtains such as:

E1 = 〈ψ1| Ĥ1 |ψ1〉 < 〈ψ2| Ĥ1 |ψ2〉 . (2.26)

Here, unless the ground state is degenerate, the inequality arises by following the argu-

ments of Hohenberg and Kohn. Assume that both potentials create the same ground state,

the last term in Equation 2.26 can be written as:

〈ψ2| Ĥ1 |ψ2〉︸ ︷︷ ︸
> E1

= 〈ψ2| Ĥ2 |ψ2〉︸ ︷︷ ︸
E2

+

∫
d�r
[
V ext
1 (�r)− V ext

2 (�r)
]
n0(�r). (2.27)

13



Similarly,

〈ψ1| Ĥ2 |ψ1〉︸ ︷︷ ︸
> E2

= 〈ψ1| Ĥ1 |ψ1〉︸ ︷︷ ︸
E1

+

∫
d�r
[
V ext
2 (�r)− V ext

1 (�r)
]
n0(�r). (2.28)

Consequently, the summing up of Equation 2.27 and Equation 2.28 clearly con-

tradicts the fact that two different external potentials can not lead to the same ground

density.

E1 + E2 < E2 + E1. (2.29)

Their second theorem is that a “universal functional” for the energy E[ρ] can be

defined in terms of density, valid for any Vext(�r). The global minimum of this functional

can be found by invoking the variational principle as described in the Hartree-Fock ap-

proach. This time, it applied the density that minimizes the energy functional, and it

yields the exact ground state density.

Additionally, the density other than the density of the ground state can not provide

less energy than the ground state energy:

E[ρ] > E0[ρ0] = E0 (2.30)

where E0 represents the energy of the ground state, ρ0 and ρ represent the density of the

ground state and some random state, respectively.Equation 2.30 then leads to

〈ψ| Ĥ |ψ〉 = Te[ρ] + Vee[ρ] +

∫
ρ(�r)Vextd�r = E[ρ] � E0[ρ] = 〈ψ0| Ĥ |ψ0〉 . (2.31)

The theorems of Hohenberg-Kohn guarantee that total energy is a functional of

the electron density in the ground state of the system. Reorganizing Equation 2.25 and

the total energy in terms of density can finally be written in Equation 2.32,
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Eel[ρ(�r)] = Te[ρ(�r)] + Vne[ρ(�r)] + Vee[ρ(�r)]

=− 1

2

Ne∑
n

∫
φ∗
i (�r)�2 φi(�r)d�r +

∫
ρ(�r)V̂ned�r

+
1

2

∫ ∫
ρ(�r)ρ(�r′)

|�r − �r′| d�rd�r′ + Exc[ρ(�r)] (2.32)

where Exc refers the exchange and correlation term for electron. The consequence of the

theorems that reduce this energy gives wavefunction of the ground state. Minimizing the

energy is achieved by adding one derivative to Equation 2.32 corresponding with non-

interacting, called Kohn-Sham (KS) orbitals. Functional derivative yields:

δE

δφ∗
i (�r)

=
δTe

δφ∗
i (�r)

+

[
δEext

δn(�r)
+

δEHartree

δn(�r)
+

δExc

δn(�r)

]
δn(�r)

δφ∗
i (�r)

= εiφi(�r). (2.33)

Kohn-Sham energies are defined as eigenvalues εi terms that hold φi orthogonal during

minimization. Equation 2.33 gives as,

−1

2
�2 φ2

i (�r) +

[
Vext(�r) +

∫
d�r′

n(�r′)

|�r − �r′| + Vxc

]
φi(�r) = εiφi(�r), (2.34)

briefly,

[
T̂ + Veff

]
φi(�r) = εiφi(�r) (2.35)

where Veff involves VHartree, Vxc and Vext on the reference orbital φi(�r) in a mean-

field-like manner. The Hartree potential, VHartree, is electron-electron interaction, Vext

is the external potential due to the nuclei and any other external fields and Vxc defines the

exchange-correlation potential. Since all the potential terms depend on the density, the KS

equations need to be solved iteratively using a self-consistent procedure as in Figure 2.1.

This iteration continues until a predetermined convergence value is reached by the cal-

culation. If the initial estimate n0(�r) is a good value, convergence can be significantly

accelerated.
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Initial Guess
n0(�r)

Calculate Effective Potential
Veff = V [n(r)]

Solve Kohn-Sham Equations[
− 1

2
�2 +Veff

]
φi(�r) = εiφi(�r)

]

Calculate Electron Density
n(�r) =

∑ |φi(�r)|2

Self-consistent?

Output Quantities
Energy, stresses, forces, . . .

Yes

No

Figure 2.1. The presentation of self-consistency calculations in the flow chart. The

schematic diagram is inspired from [47].

2.1.5. Exchange and Correlations Functionals

Kohn-Sham orbitals describe every term of energy in the many body Hamilto-

nian. The exchange-correlations in term of the density is not exactly known, so that this

term is still a diffucult task. In order to make the calculation more accurate, it should be

approached in such as the effects of exchange and correlation, which are captured cor-

rectly. There are many possible approaches. One of them is the Local Density Approach

(LDA) [48]. It is the easiest and most widely used method. In addition this approach,

there are several improved methods for approaching the energy of exchange and correla-

tion to make the calculation more accurate, such as Generalized Gradient Approximation

(GGA) [49].
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2.2. Density Functional Tight Binding Method

Density functional tight binding (DFTB) is an approximate method, which is

based on the density functional theory method used in many science areas. DFTB method

is very popular because of its efficiency in large simulations. This method is used very

widely in many applications such as calculations of constant of hyperfine coupling, solids

and molecules vibrational spectra, tensors of nuclear magnetic shieldning, dynamic, mag-

netic and geometries properties. Also, the calculation of optical properties can be deter-

mined by using the time-dependent DFTB. DFTB is based on a second order expansion of

the total energy of Kohn-Sham orbitals in DFT with regard to fluctuations in density. Ac-

cording to this approach, the reference electron density is acquired self-consistently from

confined neutral atoms. Also, the confinement potential energy is obtained to estimate the

effective potential and charge density for molecules and solids. DFTB is a tight binding

method that does not need to have large amounts of empirical parameters. In addition,

DFT calculation can be used to obtain the parameters.

The calculation of electronic structures was proposed by Slater and Koster for us-

ing the application of tight binding [50]. The concept behind this approach is to describe

the atomic-like structure of Hamiltonian eigenstates. Also, the Hamiltonian is replaced

by a parameterized Hamiltonian matrix that relies on the distances and orbital symmetries

of its elements only. Initially developed to measure band structures in periodic systems,

the Slater-Koster method was then generalized as an atomic model capable of treating

finite systems. The DFTB method was developed to participate in three main requiere-

ments [51]:

(i) The Hamilton matrix elements must be functionally dependent on the inter-

atomic distance in the first criterion. Froyen and Harrison have suggested to connect the

interatomic distance by 1/r2 to the Hamiltonian matrix components [52]:

(ii) The goal of the second requirement that is not only for band energy but for the

total energy. Chadi suggested that the total energy was separated into two parts,

E = Ebnd + Erep (2.36)

where Ebnd is the energies of all occupied orbitals, and Erep represents the repulsive

contribution [53].
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Erep is described by,

Erep =
N∑
α,β

Uαβ (2.37)

where N is the number of atoms and the repulsive contribution is defined by the sum of

the atomic pair terms.

(iii) The last prerequisite is to extract the atomic forces from the total energy,

which is particularly important for optimizing geometry and molecular dynamics. The

DFTB method has these requirements which avoids any empirical parametrization by

calculating Hamiltonian and overlap matrices. Such matrices are determined using DFT

derived atom-like valence orbitals. Using DFT as the basis for a tight binding method,

electronic density is defined by

ρ(�r) = ρ0(�r) + δρ(�r). (2.38)

Inserting this electron density into Equation 2.32:

E[ρ0 + δρ] =
M∑
i

ni

〈
ψi

∣∣∣∣∣− 1

2
�2 +Vext(�r) +

∫
ρ′0

|�r − �r′|d
�r′ + Vxc[ρ0]

∣∣∣∣∣ψi

〉

− 1

2

∫ ∫
ρ′0(ρ0 + δρ)

|�r − �r′| d�r′d�r −
∫

Vxc[ρ0](ρ0 + δρ)d�r

+
1

2

∫ ∫
δρ′(ρ0 + δρ)

|�r − �r′| d�rd�r′ + Exc[ρ0 + δρ] + Enn (2.39)

where ρ′0 equals to ρ0(�r′) and δρ′ equals to δρ(�r′). In this equation, Enn term describes the

nuclear repulsion. The Taylor expansion of the exchange-correlation term, Exc[ρ0 + δρ],

up to the second-order term:

Exc[ρ0 + δρ] = Exc[ρ0] +

∫
δExc

δρ

∣∣∣∣∣
ρ0

δρd�r +
1

2

∫ ∫
δ2Exc

δρδρ′

∣∣∣∣∣
ρ0

δρδρ′d�rd�r′. (2.40)

Substitution of Equation 2.40 into Equation 2.39 using the definition (δExc/δρ = Vxc[ρ])

results as in Equation 2.41,

18



E =
M∑
i

ni

〈
ψi

∣∣∣∣∣− 1

2
�2 +Vext(�r) +

∫
ρ′0

|�r − �r′|d
�r′ + Vxc[ρ0]

∣∣∣∣∣ψi

〉

− 1

2

∫ ∫
ρ′0ρ0

|�r − �r′|d�rd
�r′ + Exc[ρ0]−

∫
Vxc[ρ0]ρ0d�r + Enn

+
1

2

∫ ∫ (
δρδρ′

|�r − �r′| +
δ2Exc

δρδρ′

∣∣∣∣∣
ρ0

)
d�rd�r′. (2.41)

In Equation 2.41, the terms in the first line describe the sum of the energies of all the

orbitals occupied, Ebnd

Ebnd[ρ0] =
M∑
i

ni

〈
ψi

∣∣∣∣∣− 1

2
�2 +Vext(�r) +

∫
ρ′0

|�r − �r′|d
�r′ + Vxc[ρ0]

∣∣∣∣∣ψi

〉
, (2.42)

and the terms in the second line of Equation 2.41 describe the repulsive contribution, Erep

Erep[ρ0] = −1

2

∫ ∫
ρ′0ρ0

|�r − �r′|d�rd
�r′ + Exc[ρ0]−

∫
Vxc[ρ0]ρ0d�r + Enn. (2.43)

In Equation 2.41, the last term involves corrections which depends on the fluctuations in

the density. This term is called second-order correction term,

E2nd[ρ0, δρ] =
1

2

∫ ∫ (
δρδρ′

|�r − �r′| +
δ2Exc

δρδρ′

∣∣∣∣∣
ρ0

)
d�rd�r′. (2.44)

The second-order correction term, E2nd, is neglected to solve without self consis-

tency in the standard DFTB. The solution of the non-self-consistent DFTB is very suitable

to investigate properties of polyatomic, for example, homonuclear systems. However, the

second-order correction term can not be negligible when a more sensitive charge balance

is tested for chemical bonds in the system such as heteronuclear molecules and polar semi-

conductors [54]. Then, the self-consistent charge correction DFTB is a more convenient

way to better define electronic systems and boost DFTB transmission [55].
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2.3. Surface Green’s Function

The surface Green’s function approach is provided to define the interface between

different leads [56, 57]. We consider a system composed of a molecule M connected to

one semi-infinite reservoir R as illustrated in Figure 2.2.

Figure 2.2. Schematic diagram of a molecule and semi-infinite reservoir.

The surface properties of the semi-infinite reservoir are obtained using Green’s

function approach. The molecule and the semi-infinite reservoir are described by the

Hamiltonian HMM and HRR, respectively. The Hamiltonian H and overlap S matrices

for the full system can be described in matrix form as follows:

H =

(
HMM HMR

HMR HRR

)
, S =

(
SMM SMR

SMR SRR

)
(2.45)

where the off-diagonal terms stand for the couplings between the molecule and the semi-

infinite reservoir. The Green’s function is expressed through the matrix multiplication

(εS − H)G = where ε = E + iη with η arbitrarily small, E is the energy variable

and is the identity matrix. The Green’s function of the system can be partitioned into

submatrices:

(
GMM GMR

GRM GRR

)
=

(
εSMM −HMM εSMR −HMR

εSRM −HRM εSRR −HRR

)−1

. (2.46)

We get the numerically exact results for the Green’s function of the semi-infinite

reservoir using the iteravite calculation [56]. For one-dimensional semi-infinite reservoir,
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the Hamiltonian and overlap matrices are in block tridiagonal form

H =

⎛
⎜⎜⎜⎜⎜⎝
H00 H01 0

H†
01 H00 H01 . . .

0 H†
01 H00

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ , S =

⎛
⎜⎜⎜⎜⎜⎝
S00 S01 0

S†
01 S00 S01 . . .

0 S†
01 S00

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ . (2.47)

The transfer matrices T and T can be easily calculated using the iterative procedure

T =t0 + t̃0t1 + t̃0t̃1t2 + · · ·+ t̃0t̃1t̃2 . . . tn, (2.48)

T =t̃0 + t0t̃1 + t0t1t̃2 + · · ·+ t0t1t2 . . . t̃n, (2.49)

where ti and t̃i are described with the recursion formulas:

ti = (I − ti−1t̃i−1 − t̃i−1ti−1)
−1t2i−1, (2.50)

t̃i = (I − ti−1t̃i−1 − t̃i−1ti−1)
−1t̃2i−1. (2.51)

Here,

t0 =− (εS00 −H00)
−1(εS†

01 −H†
01), (2.52)

t̃0 =− (εS00 −H00)
−1(εS01 −H01). (2.53)

The process is repeated until tn and t̃n are smaller than an arbitrarily small number for the

accuracy of the calculation. Finally, the system Green’s function can be written as

G(E) =

[
(εS00 −H00) + (εS†

01 −H†
01)T

]−1

. (2.54)

In particular, we can consider the expression the of the self-energies of the molecule

and the reservoir as: Σ = (εS†
01 −H†

01)T .
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CHAPTER 3

QUATERNARY Zn1-xCdxS1-ySey NANOALLOYS

The electronic and optoelectronic properties of QDs can be altered by alloying,

even if the particle size stays the same. Even when the size of a QD is kept constant, the

alloy materials allows to control the energy band gap. In this chapter, Density Functional

Theory (DFT) calculations are performed in order to understand the trends of changes in

the energy band gap with composition parameters x and y. Furthermore, the most suitable

quaternary Zn1-xCdxS1-ySey nanoalloys are selected according to the experimental results

and the X-Ray diffraction (XRD) patterns of these quaternary nanoalloys are evaluated

theoretically.

3.1. Bulk Materials

Due to the large number of atoms in QDs and the need to scan a wide parameter

space in DFT calculations, the calculations are performed primarily in periodic systems.

For this purpose, 2× 2× 2 supercell from the primitive unit cell of the zinc blende (ZB)

cubic structure are constructed. Figure 3.1 demostrates a unit cell of binary ZnS, CdS,

ZnSe and CdSe bulk structures.

��� ������� ����

��� ��� �� ���

Figure 3.1. A unit cell of bulk ZnS, CdS, ZnSe and CdSe.
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The electronic and structural properties of quaternary Zn1-xCdxS1-ySey nanoalloys

are optimized using by the Vienna Ab initio Simulation Package (VASP) by employing

the projector augmented wave (PAW) method, in particular, the exchange and correlation

functional of Perdew-Burke-Ernzerhof (PBE). Primarily, optimized lattice constants of

binary ZnS, CdS, ZnSe and CdSe bulk structures are 2.723, 2.968, 2.867 and 3.101 Å,

respectively (see Table 3.1 and Table 3.2).
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Figure 3.2. The band and DOS diagram for ZnS, CdS, ZnSe and CdSe.

The electronic band structures and density of states (DOS) of these bulk materials

are represented as seen in Figure 3.2. The band gaps of binary ZnS, CdS, ZnSe and CdSe

bulk structures are 2.061, 1.087, 1.236 and 0.599 eV, respectively. The total of 36 stoi-

chiometries by assigning the value set of {0,0.125,0.25,0.50,0.75,1} to x and y parameters

are achieved. All possible atomic configurations in the alloy (677 configurations in total)

are designed by considering system symmetries.
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Table 3.1. The lattice constant (in Å), position(s), the minimum and maximum band

gap (in eV) of Zn1-xCdxS1-ySey quaternary alloys.

Material Lattice constant Position(s) Band gap

ZnS 2.723 1 2.061

Zn0.875Cd0.125S 2.754 1 1.849

Zn0.75Cd0.25S 2.784 5 1.628-1.719

Zn0.50Cd0.50S 2.846 12 1.334-1.423

Zn0.25Cd0.75S 2.907 11 1.184-1.250

CdS 2.968 1 1.087

ZnS0.875Se0.125 2.741 1 1.884

Zn0.875Cd0.125S 0.875Se0.125 2.772 6 1.593-1.722

Zn0.75Cd0.25S0.875Se0.125 2.802 32 1.365-1.609

Zn0.50Cd0.50S0.875Se0.125 2.863 45 1.126-1.314

Zn0.25Cd0.75S0.875Se0.125 2.924 37 1.014-1.159

CdS0.875Se0.125 2.985 1 0.984

ZnS0.75Se0.25 2.759 5 1.667-1.782

Zn0.875Cd0.125S0.75Se0.25 2.789 32 1.357-1.609

Zn0.75Cd0.25S0.75Se0.25 2.820 45 1.090-1.453

Zn0.50Cd0.50S0.75Se0.25 2.880 34 0.762-1.186

Zn0.25Cd0.75S0.75Se0.25 2.941 62 0.826-1.063

CdS0.75Se0.25 3.001 5 0.850-0.927

ZnS0.50Se0.50 2.795 12 1.411-1.486

Zn0.875Cd0.125S0.50Se0.50 2.825 45 1.157-1.339

Zn0.75Cd0.25S0.50Se0.50 2.855 34 0.935-1.205

Zn0.50Cd0.50S0.50Se0.50 2.915 22 0.674-1.078

Zn0.25Cd0.75S0.50Se0.50 2.975 30 0.659-0.847

CdS0.50Se0.50 3.035 5 0.693-0.744

ZnS0.25Se0.75 2.831 11 1.315-1.384

Zn0.875Cd0.125S0.25Se0.75 2.861 37 1.082-1.284

Zn0.75Cd0.25S0.25Se0.75 2.890 62 0.566-1.163

Zn0.50Cd0.50S0.25Se0.75 2.949 30 0.679-0.940

Zn0.25Cd0.75S0.25Se0.75 3.009 28 0.603-0.840

CdS0.25Se0.75 3.068 6 0.641-0.685
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Table 3.2. The lattice constant (in Å), position(s), the minimum and maximum band

gap (in eV) of Zn1-xCdxS1-ySey quaternary alloys.

Material Lattice constant Position(s) Band gap

ZnSe 2.867 1 1.236

Zn0.875Cd0.125Se 2.896 1 1.084

Zn0.75Cd0.25Se 2.926 5 0.917-1.004

Zn0.50Cd0.50Se 2.984 5 0.713-0.801

Zn0.25Cd0.75Se 3.043 6 0.636-0.703

CdSe 3.101 1 0.599

The lattice parameters of ternary and quaternary bulk are determined by linear in-

terpolation based on optimized binary (ZnS, CdS, CdSe, ZnSe) compounds, depending

on x and y values. Atomic positions in the structures are optimized so that the maximum

force on the ions are less than 0.01 eV / Å and additionally, the convergence criterion on

the total energy is chosen to be 10−5 eV. For all the calculations, the kinetic energy cut-

off for plane wave basis set is taken to be 380 eV. The optimization of atomic positions

is carried out in two stages. The Brillouin zone is sampled using the Monkhorst-Pack

approach with 1×1×1 followed by 6×6×6 k-point grids. According to the test results,

we performed calculations with a much denser k-grid such as 8× 8× 8 and 10× 10× 10

as long as our computational resources allow. The band gaps for binary, ternary and qua-

ternary materials are obtained from the DOS as shown in Table 3.1 and Table 3.2. The

stoichiometry, the number of configurations and the minimum and maximum values of the

band gap ranges from these configurations are given in the respective columns of the men-

tioned tables. Figure 3.3 shows the band gap energy intervals of the bulk Zn1-xCdxS1-ySey

structures. The electronic band gap energy values of bulk Zn1-xCdxS1-ySey materials are

calculated for each of these materials by constructing possible positions. The average of

the band gap energy values for the position of each nanoalloy is displayed in Figure 3.3(a).

As a general trend, the band gap energy is obversed to decrease as high x and y parame-

ters are reached. The minimum energy values of each nanoalloy in different positions are

determined and the band gap energies of the materials with these minimum energy are in-

vestigated in Figure 3.3(b). We observe that the band gap increases when concentrations

of Zn and S increase.
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Figure 3.3. The band gap energies of bulk Zn1-xCdxS1-ySey structures. (a) The average

of band gaps in Table 3.1. (b) The band gaps of configurations having the

minimum energy for each nanoalloy structures.
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3.2. X-Ray Diffraction Spectra

X-Ray Diffraction (XRD) analysis was performed to understand the structural

characterization of Zn1-xCdxS1-ySey nanoalloys. XRD was simulated for optimized atomic

configurations corresponding to the alloy composition parameters (x,y) used in the exper-

iments. The XRD measurements are performed by using VESTA program. Alloy compo-

sition parameters for experimental studies, x is less than 0.50 and y is larger than 0.50. So,

we chose suitable the quaternary ZnCdSSe nanoalloys in our study. Figue 3.4 shows XRD

patterns of the Zn0.50Cd0.50S0.75Se0.25, Zn0.50Cd0.50S0.50Se0.50 and Zn0.25Cd0.75S0.50Se0.50

nanoalloy compositions.

Figure 3.4. XRD patterns of Zn0.50Cd0.50S0.75Se0.25, Zn0.50Cd0.50S0.50Se0.50 and

Zn0.25Cd0.75S0.50Se0.50 nanoalloy compositions consist of 34, 22 and 30 dif-

ferent positions, respectively.
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Zn0.50Cd0.50S0.75Se0.25, Zn0.50Cd0.50S0.50Se0.50 and Zn0.25Cd0.75S0.50Se0.50 nanoalloy

compositions have 34, 22 and 30 different configuration positions, respectively. Accord-

ing to XRD results, peaks of different positions for Zn0.25Cd0.75S0.50Se0.50 are not very

different from each other. We mentioned that the simple equation is derived from the

particle in a box model as given above in Equation 1.1. This equation is very useful in

explaining the optical and electronic properties of nanoparticles. We performed that the

material size and the effect of the alloy composition over mass can control the electronic

properties of the colloidal alloy. We have constructed all structures of the same size su-

percell (2×2×2) by changing the composition alloy. We have observed that the material

size can be kept constant, the band gaps of Zn0.50Cd0.50S0.75Se0.25, Zn0.50Cd0.50S0.50Se0.50

and Zn0.25Cd0.75S0.50Se0.50 nanoalloy compositions are decreasing respectively as seen in

Table 3.1.
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Figure 3.5. The average XRD patterns of Zn0.50Cd0.50S0.75Se0.25, Zn0.50Cd0.50S0.50Se0.50

and Zn0.25Cd0.75S0.50Se0.50 nanoalloy compositions.

The average XDR patterns of these quaternary colloidal alloys are demonstrated

in Figure 3.5. All diffraction peaks of the different configurations obtained for the given

(x, y) parameters are at the same 2-theta values but at different concentrations. The peak

values of alloy compositions are between the peaks of the binary structures (ZnS, CdS,

ZnSe and CdSe). The peak positions are consistent with experimental data. The shifts are

observed in peak positions when stoichiometry changes are consistent with the changes

in the alloy composition parameters. The configuration averages do not lead to a ma-

jor change in the widths of the peaks. This is considered to change if simulations are

performed in larger supercells.
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CHAPTER 4

EXCITATION DYNAMICS ON SEMICONDUCTOR

SURFACES

In this chapter, we explore excitation dynamics on semiconductor quantum sur-

faces, which are passivated with organic molecules such as (111) surface of ZnS passi-

vated with oleic acid (OA) molecule. Before going into realistic systems, we present a

simplified model to investigate the fundamental properties in the time dependent occu-

pancy in detail in section 4.1. We focus on ZnS nanocluster capped by OA and evalute

its the spectral functions for the highest occupied (HOMO) and the lowest unoccupied

molecular orbitals (LUMO). In accordance with the results of the spectral functions, we

investigate their time dependent occupations. The realistic system studies will be ex-

plained in detail in sections 4.2 and 4.3.

4.1. Simplified Model

We use a simplified model to investigate the fundamental features in the time

dependent occupancy of a reservoir interacting with frontier molecular orbitals. In the

simplified model, the reservoir is considered as the semiconductor surface and molecular

orbitals have two states corresponding to the HOMO and the LUMO levels. This model

is based on the Fano-Anderson model, which was developed separately by Anderson [58]

and Fano [59]. The Fano-Anderson model can be solved exactly. The Hamiltonian was

given as [60]

H = εCb
†b+

∑
k

[
εkc

†
kck + Ak(c

†
kb+ b†ck)

]
(4.1)

where εC , b and b† represent the localized state of fixed energy and operators, respec-

tively. The localized state is called as the impurity. Thus, εk, ck and c†k represent the the

continuous set of states of energy and operators, respectively. The last term stands for the

mixing between these kinds of states. We note that the electron-electron interactions are
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not considered here. In our simplified model, we consider two states, characterized by

energy of states E1 and E2, that interacted with a semi-infinite system in Figure 4.1.
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Figure 4.1. Schematic diagram of the simplified model, where t1 and t2 are the hop-

ping terms between the semi-infinite system and states |1〉 and |2〉, respec-

tively. t′ stands for inter-level hopping between |1〉 and |2〉.

The total Hamiltonian of the system is an infinitely large matrix because the reser-

voir is semi-infinite. The effective Hamiltonian for the molecule can be written as

H̃m(E) = H0
m + Σ(E), (4.2)

where the Hamiltonian of the free molecule H0
m is

H0
m =

(
E1 t′

t′ E2

)
. (4.3)

The effect of semi-infinite system is represented by (2× 2) self-energy matrix

Σ = V gs V
†, (4.4)

where V refers to the coupling Hamiltonian as V =

(
t1

t2

)
.
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Assume that the reservoir consists of a semi-infinite atomic chain, the surface

Green’s function gs can be written analytically as [61]

gs =
E

2t2s
− i

ts

√
1− E2

4t2s
, (4.5)

where ts is the hopping term between the atoms in the semi-infinite system. Thus, the

effective Green’s function of the molecule is obtained in matrix form

Gm =
[
(E + iη)�− H̃m

]−1

(4.6)

where � is the unit matrix of the same size as H̃m. Inserting Equations 4.3, 4.4 and 4.5

into Equation 4.6 gives the Green’s function of the system,

Gm =

[
(E + iη)� −

(
E1 t′

t′ E2

)
−

(
t21gs t1t2gs

t2t1gs t22gs

)]−1

. (4.7)

Spectral function is obtained by

A(E) = − 1

π
Im [Gm] , (4.8)

and the trace of the spectral function gives the total spectrum, also known as the density

of states. The time dependent occupancy can be written in terms of the spectral functions

as

〈nj(t)〉 = 〈nj(0)〉
∣∣∣∣
∫

dE Ajj(E)e−
iEt
h

∣∣∣∣2. (4.9)

If t′ is different from zero, we need to apply a unitary transformation in order to

examine the time dependent occupations of the excitations.
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The total Hamiltonian H is described as

H =

(
H0

m V

V † Hr

)
, (4.10)

where the term Hr represents the semi-infinite reservoir. Denoting the matrix that diago-

nalizes H0
m as u, one writes

U =

(
u 0

0 �

)
, (4.11)

and

H ′ = U † H U. (4.12)

By using the Equation 4.10 in the Equation 4.12 we derive

H ′ =

(
u† 0

0 �

)(
H0

m V

V † Hr

)(
u 0

0 �

)

=

(
u† H0

m u† V

V † Hr

)(
u 0

0 �

)

=

(
u† H0

m u u† V

V † u Hr

)
. (4.13)

After applying the unitary transformation, the effects of semi-infinite system Σ′

can be obtained as (2× 2) self-energy matrices,

Σ′ =u† V gs V
† u,

=u† Σ u. (4.14)
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4.1.1. Spectra of HOMO and LUMO

In the following, we present our results for the simplified model for two different

cases; t′ = 0 and t′ �= 0. In order to be able to explain the time dependent occupancies,

we need to understand the behaviors of the spectral functions. In Figures 4.2 and 4.3

the spectral functions (solid curves) and the densities of states (dashed curve) are plotted,

which are obtained using Green’s functions as explained above. We used the following

set of values for (t1, t2) as (t1 = 0.10, t2 = 0.10), (t1 = 0.10, t2 = 0.25), (t1 = 0.30,

t2 = 0.30) and (t1 = 0.30, t2 = 0.45). We also consider the states |1〉 and |2〉 to have

energies with a narrow splitting (E1 = 0.20, E2 = 0.25) and a relatively wider splitting

(E1 = 0.20, E2 = −0.20).

A few reminders considering the spectral function are in order here. The molecular

levels are shifted and broadened when they are coupled to the reservoir. The shift is larger

and the broadening is wider when the coupling is stronger. If the peaks are isolated,

the total spectrum resembles a collection of independent levels. Otherwise, one expects

features originating from multi-level mixing.

Densities of states and spectral functions in the absence of inter-level hopping

between states |1〉 and |2〉 (t′ = 0) are given in Figure 4.2. The spectra are not changed

considerably when the overlap is negligible. We can see that, when there is appreciable

overlap the Lorentzian is distorted and a dip is observed coinciding with the neighboring

resonance.

Figures 4.2(a,c) demonstrate the spectra for small hopping terms. We see that the

Lorentzians overlap and their shapes are distorted. In Figure 4.2(b,d), we can see that

the shift and the broadening increase as hopping term t2 increases. When t′ = 0, the

peaks tend to stay away from each other. In fact when t′ = 0, there exist a narrowing

effect on the molecular levels. We will see the effets of these situations on time depen-

dent occupancies. For example, if the hopping terms equal each other (t1 = t2) and the

spectra have energies E1 = 0.20 and E2 = −0.20, the level spectra are symmetric as in

Figures 4.2(c,g).

When the hopping terms are increased, e.g. Figure 4.2(e), the level spectra have

appreciable overlap, the dressed state have narrow peaks and the Lorentzian shapes are

extremely distorted. Figure 4.2(f) shows the difference between Lorentzian widths which

are increasing since the hopping term t2 is increased in that case. In Figure 4.2(h), the

spectrum of E2 level is distorted by the spectrum of E1 level. It is seen that from the peak

corresponding to the spectrum of E2 level to the right side rapidly decays to zero but it has

33



a longer tail at the left hand side. In addition to this, it was observed that the neighboring

level makes a dip where the spectrum is maximized.

Figure 4.3 demonstrates spectral functions and densities of states that allows in-

teraction between the frontier molecular orbitals, which affects occupations. We see that

the Lorentzians overlap and their shapes are distorted. We will observe that this affects

the time dependent occupancy dramatically. When the inter-level hopping is different

from zero, level spectra are not symmetric even if the hopping terms equal to each other

(t1 = t2) and the spectra have energies E1 = 0.20 and E2 = −0.20 as seen in Fig-

ures 4.3(c,g).

Figures 4.3(a,c) demonstrate the spectra for the same and small hopping terms.

We can observe that the dressed states have a narrowing peak and each spectrum level

have two peaks on their bare states. Therefore, Lorentzians overlap and their shapes are

extremely distorted. Figures 4.3(b,d) show that the shift and the broadening increase due

to the increase in the hopping term t2, also we can clearly see the different Lorentzian

widths along the spectra. We continue analyzing by increasing the values of hopping

terms.

Figure 4.3(e) shows the spectra for the same hopping terms but the energy band

gap is narrower. The dressed states consist of two peaks. Morever, when t2 hopping term

is increased, the spectrum of E2 level is distorted by the spectrum of E1 level as seen in

Figure 4.3(f). It is observed that the spectrum of E2 level makes a dip where the spectrum

of E1 level has one peak around its bare state. The Lorentzian is distorted with increasing

the broadening for the spectrum of E1 level. The spectrum of E2 level also is observed to

having declining peaks and the broadening increases.

Figure 4.3(g) shows the hoping terms are the same and the energy band gap is

wider, the level spectra do not have the same behaviors compared to t′ = 0 on their bare

states. The spectrum of E1 level has a shoulder at the left hand side; however the spectrum

of E2 level makes a dip around zero and then we see a shoulder at the right hand side.

When t2 hopping term is increased, the broadening increases and the dressed state has

two peaks for the spectrum of E1 level, and also the spectrum of E2 level maintains the

effect of the shoulder at the right hand side as seen in Figure 4.3(h). We will see that these

shoulders affect their time dependent occupations.
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Figure 4.2. Spectra of frontier molecular orbitals. In the left column (a, c, e, g) and

in the right column (b, d, f, h) are taken t1 = t2 and t1 �= t2, respectively.

In the first and third row, HOMO and LUMO energy levels are chosen as

narrow, in second and fourth row, they are chosen as wide. The inter-level

hopping term between |1〉 and |2〉 is chosen to be t’=0.
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Figure 4.3. Spectra of frontier molecular orbitals. In the left column (a, c, e, g) and

in the right column (b, d, f, h) are taken t1 = t2 and t1 �= t2, respectively.

In the first and third row, HOMO and LUMO energy levels are chosen as

narrow, in second and fourth row, they are chosen as wide. The inter-level

hopping term between |1〉 and |2〉 is chosen to be t’=0.20
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4.1.2. The Time Dependent Occupancy of HOMO and LUMO

Two situations are investigated within the simplified model. First we start from

the spectral functions with non-interacting inter-level hopping term (t′ = 0). We see how

the spectra of frontier molecular orbitals have energies with a narrow and wider splitting

(E1,E2) evolve under different and same parameters for the hopping terms correspond to

the semi-infinite system and molecular levels (t1, t2). Second we start from the spectral

functions with interacting inter-level hopping term (t′ = 0.20) and see how the spectra of

frontier molecular orbitals have energies with a narrow and wider splitting (E1,E2) evolve

under different and same parameters for the hopping terms (t1, t2). Finally, according to

our spectral functions, we can start analyzing the time dependent occupations.

Figure 4.4 shows the time dependent occupancies which are estimated using the

calculation of spectral functions with the inter-level hopping t′ = 0. In Figures 4.4(a,e),

firstly, we can observe that occupations overlap. Then the two values start to drift away

from each other. To examine this result, we investigate the spectra in Figures 4.2(a,e), we

can see that their spectra have narrowing effect on the molecular levels and the dressed

state has antiresonance where the neighbouring level gives a peak. Therefore, the effect of

the antiresonance leads to fluctuations during decay and then the overlap separates from

each other.

Figures 4.4(c,g) demonstrate that the occupations have the same behavior because

their spectra show the same behavior around their bare states. t1 hopping term is kept con-

stant while t2 hopping term is changed, we observe that oscillations decay with different

ratios. In Figure 4.4(d), the occupation of E2 level decays faster than the occupation of

E1 level due to the wider Lorentzian width. Figure 4.4(f) shows the occupations of states

decay with different ratios due to the different Lorentzian widths; however they behave

stable from 0.05 to 0.2 picoseconds. In Figure 4.4(h), the occupation of E2 level decays

faster because its Lorentzian width is wider than the occupation of E1 level.

We also compare our calculations with uncertainty relations. According to the

Heisenberg uncertainty relations, the energy uncertainy ΔE is expressed as

ΔE Δt ≥ �

2
(4.15)

where Δt is the particle lifetime as the uncertainty in time. The energy uncertainty is

described as the width of the Lorentzian distribution at half maximum. For example, in
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Figure 4.4(c), the half life is measured to be 0.14 picoseconds for each occupation and

their Lorentzian widths read 0.015 eV. Moreover, in Figure 4.4(d), the half life for the

spectrum of E1 level is 0.15 picoseconds and the half life for the occupation of E2 level is

0.02 picoseconds with their Lorentzian widths are 0.014 eV and 0.10 eV, respectively. The

occupations are found to consistent with the predicted values by the uncertainty relations

using Equation 4.15 for the simplified model.

Figure 4.5 demonstrates the time dependent occupancies which are estimated us-

ing the calculation of spectral functions with the inter-level hopping t′ = 0.20. Figure 4.5

shows that fluctuations and oscillations are stronger than Figure 4.4 owing to the inter-

action between molecular levels. When hopping terms have low values, the fluctuations

of occupations become more periodic. When t1 and t2 hopping terms are increased, it is

observed that the oscillations are decreasing more rapidly and the occupations of the level

spectra decay with different rates. We also observe that the decay of occupations gives

drop retardations as hopping terms increase. Figure 4.5(a,c) show that the fluctuations and

oscillations are more periodically decaying because their spectra have two peaks on bare

states. We keep t1 hopping term constant while changing t2 hopping term and investigate

dependence of decay of t1 hopping term on the separation from each other. Figure 4.5(b)

shows t2 hopping term is shifting according to t1 hopping term. The occupations of

the molecular levels split during decay in Figure 4.5(d). When t1 and t2 hopping terms

increase, it is seen that oscillations shift and fluctuations are effectively destroyed. We ob-

tain that oscillations decay more rapidly in Figure 4.5(e,g). Figure 4.5(e) demonstrates the

occupation for the spectrum of E2 level decays faster than the occupation for the spectrum

of E1 level; however we can observe that pronounced shoulder is visible on occupations

of molecular levels. Figure 4.5(g) shows for the same hopping term and the energy band

gap is wider. If the inter-level hopping term t′ is not available, both occupations have

the same behavior. As molecular level mixing at the inter-level hopping term t′ = 0.20,

we also investigate the behavior of spectral functions in Figure 4.3(g), molecular levels

have shoulders. These result in fluctuations during decay as remnants of the effect of the

shoulders. We continue analyzing the case where t1 hopping term is kept constant while

t2 hopping term is increased. Figure 4.5(f) shows that the occupation of E2 level decays

faster than the occupation of E1 level. We can interpretate their occupations to investigate

their spectra in Figure 4.3(f), and it is observed that the behavior of the spectrum of E2

level has the antiresonance and shoulders. Therefore, these lead to fluctuations during

decay particularly the effect on the occupation of E2 level is observed. We observe that

the effects of shoulders in spectra are still visible in the occupations in Figure 4.5(h).
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Figure 4.4. The time dependent occupancy of frontier molecular orbitals. In the left

column (a, c, e, g) and in the right column (b, d, f, h) are taken t1=t2 and

t1 �= t2, respectively. In the first and third row, HOMO and LUMO energy

levels are chosen as narrow, in second and fourth row, they are chosen as

wide. The inter-level hopping term between |1〉 and |2〉 is chosen to be

t’=0.
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Figure 4.5. The time dependent occupancy of frontier molecular orbitals. In the left

column (a, c, e, g) and in the right column (b, d, f, h) are taken t1=t2 and

t1 �= t2, respectively. In the first and third row, HOMO and LUMO energy

levels are chosen as narrow, in second and fourth row, they are chosen as

wide. The inter-level hopping term between |1〉 and |2〉 is chosen to be

t’=0.20.
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4.2. ZnS (111) Surface Passivation with Oleic Acid

In the experiments, quantum dots are usually passivated with oleic acid. Figure 4.6

demonstrates the oleic acid used in the experiments. Oleic acid is a monounsaturated fatty

acid molecule and the formula of oleic acid is CH3(CH2)7CH=CH-(CH2)7COOH, which

has one double bond between the carbons. The cis configuration and trans configuration

of the oleic acid are available. In Figure 4.6, (a) shows the cis configuration of oleic acid

and (b) shows the trans configuration of oleic acid.

Figure 4.6. Oleic acid structure. (a) The structure of cis-oleic acid. (b) The structure

of trans-oleic acid. White, blue and red colors represent C, H and O atoms,

respectively. d is the bond length and θ is the bond angle. Related structural

parameters are detailed in Table 4.1.

The structures of trans and cis configurations for oleic acid are constructed by

using the values of the bond length and the bond angle in Table 4.1, where dC=C and

dC=O represent the double bond length between carbon-carbon and carbon-oxygen atoms,

respectively. And then, the bond angle (θ3,θ4) is determinated according to the bond

angles of the acetic acid. In the theoretical calculations, the structural optimizations are

carried out with density functional theory based tight binding (DFTB) method based on

self-consistency as implemented in DFTB+ package.
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The atomic positions in the structures are optimized so that the maximum force

is less than 0.01 eV /Å and the convergence criterion for total energy set to 10−4 Hartree

for all cases. For trans and cis configurations of oleic acid, the charge mixing method is

Broyden with 1.5 as the mixing parameter. Additionally, for passivation configurations,

the charge mixing method is Anderson with 0.05 as the mixing parameter. As a result of

calculations, total energy values are found to be -1372.83 eV for the cis configuration of

oleic acid, while it reads -1372.88 eV for the trans configuration of oleic acid. Total energy

values are observed to be close to each other. Therefore, in our studies, we have mostly

designed using the structures of trans configuration oleic acid while we have investigated

excitation dynamics of passivation of ZnS (111) surface with oleic acid.

Table 4.1. Structural properties of the trans and cis configurations of oleic acid. Bond

length (dC-H, dC-C, dC=C, dC-O, dC=O) and bond angle (θ1, θ2, θ3, θ4, θ5). See

Figure 4.6 for length and angle references.

Bond length (Å) Bond angle (deg)

C-H (dC-H) 1.09 C-C-C (θ1) 109.50

C-C (dC-C) 1.54 H-C=C (θ2) 119.99

C=C (dC=C) 1.34 C-C-O (θ3) 119.99

C-O (dC-O) 1.43 H-O-C (θ4) 106.00

C=O (dC=O) 1.21 C-C-O (θ5) 112.29

Figure 4.7(a) demonstrates the unit cell of oleic acid (OA) on the ZnS (111) sur-

face in which there are 145 atoms, containing 44 S, 44 Zn, 18 C, 37 H and 2 O atoms.

H atoms added to S atoms in order to passivate the dangling bonds. Oleic acid molecule

looses one hydrogen atom in its carboxyl functional group (COOH) and oleic acid (OA)

molecule convert to oleate (OA-) molecule, which then binds to ZnS surface. In order to

investigate surface excitations in a system, it is necessary to assess the Hamiltonian and

the overlap matrices. The structure was separated into layers for using these matrices in

Green’s function calculations. The unit cell is partitioned as four layers. The first three

layer are fixed while the fourth layer is relaxed. The thickness of the layers were deter-

mined according to overlaps of neighboring atomic orbitals, and layer thickness is set to

10 Å. The determination of the layer thickness is given in detail in the Appendix A. A

sufficiently large vacuum spacing of at least 19.25 Å is inserted in z direction. 3× 3× 1
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supercell is constructed from the unit cell of an oleate molecule on the ZnS (111) surface.

This supercell is then separated into four parts in the z direction (layer 1, 2, 3,4) in Fig-

ure 4.7(b), and into nine areas in the xy-plane ( A, B, C, D, E, F, G, H, I) in Figure 4.7(c).

Figure 4.7. (a) Unit cell of OA- molecule on the ZnS (111) surface in z direction. Layer

1, 2, 3 are fixed and layer 4 is relaxed. 3 × 3 × 1 supercell from unit cell

(b) in z direction and (c) in the xy plane. (b) The supercell is divided into 4

layers (1, 2, 3, 4). (c) On the right, a simplified z-view schematic diagram

of supercell divided into 9 areas (A, B, C, D, E, F, G, H, I). Zn, gray; S,

yellow; C, white; H, blue; O, red.
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4.3. Dynamics on ZnS Surface

In this section, our methodology, the passivation configurations and the numerical

results for realistic systems will be presented in detail in the following subsections.

4.3.1. Hamiltonian and Overlap Matrices

We simulate a semi-infinite ZnS crystal, terminated at its 111 surface and passi-

vated with oleic acid (OA). For obtaining the Hamiltonian and overlap matrices, a finite

layer of ZnS is used, which is passivated using hydrogen atoms at the opposite side (see

Figure 4.8). Figure 4.8(a) illustrates that there are surface layer, ZnS layer and termi-

nation layer. The surface layer contains the free molecule and a part of the surface, ZnS

layer involves only bulk ZnS layers and the termination layer is passivated using hydrogen

atoms. Periodic boundary conditions are imposed in the xy-plane. Namely, the shaded

area in Figure 4.8(b) is repeated to form a 3× 3× 1 supercell in the xy-plane.

In order to start the calculations, the Hamitonian and overlap matrices are ex-

tracted by performing geometry optimization using DFTB method. In the system, we

need to solve the generalized eigenvalue equation in order to obtain the energy eigenval-

ues and wavefunctions:

H̃ψ̃ = ES̃ψ̃, (4.16)

where H̃ is the Hamiltonian matrix and S̃ is the corresponding overlap matrix. DFTB

makes use of non-orthogonal basis sets formed from atomic orbitals. We distinguish

operators and wavefunctions written in non-orthogonal basis with a tilde as H̃ , S̃ and ψ̃.

The Hamiltonian and overlap matrix elements are separated according to the partitioning

scheme in Figure 4.8. They can be organized into four blocks

H̃ =

(
H̃SS H̃SB

H̃†
SB H̃BB

)
S̃ =

(
S̃SS S̃SB

S̃†
SB S̃BB

)
(4.17)

where the subscripts SS and BB correspond to the surface layer and ZnS layer respec-

tively, and the off-diagonal terms correspond to the couplings between these layers.
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Figure 4.8. Schematic passivation configuration for oleate (OA-) ligand on the ZnS

(111) surface (a) in z direction and (b) in the xy-plane. HOA refers the

Hamiltonian for OA- ligand on the surface. HSS contains matrix elements

between the surface layer and HSB involves coupling between the surface

layer and ZnS layer. H00 and H01 are the Hamiltonian matrix elements the

ZnS layer and between ZnS layers, respectively.

The Hamiltonian and the corresponding overlap matrix elements can be con-

structed using periodic boundary conditions where �REα is the vector joining cell E to

cell α and �k is the wave vector. H̃SS is defined by

H̃SS = H̃EE
SS ei

�k·�REE +
∑
α

∑
�k

H̃Eα
SS e

i�k·�REα . (4.18)

Here, α shows the repeated cells in the xy-plane (A, B, C, D, F, G, H, I) and only the

�k = 0 components are used. Consequently, H̃SB can be written as

H̃SB = H̃EE
SB +

∑
α

H̃Eα
SB . (4.19)
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H̃BB can be written in bipartite matrix form as

H̃BB =

(
H̃00 H̃01

H̃†
01 H̃00

)
(4.20)

where

H̃00 = H̃EE
00 +

∑
α

H̃Eα
00 , (4.21)

H̃01 = H̃EE
01 +

∑
α

H̃Eα
01 . (4.22)

The overlap matrix can also be written in the same way as the Hamiltonian matrix. Addi-

tionally, the Hamiltonian and overlap parts, which represent coupling of non-neighbouring

parts are checked if they are zero. This is a requirement for Green’s function calculations.

To sum up, all matrix parts are checked if the layer matrices were taken correctly.

In our calculations we prefer to use orthogonal basis sets. Hence, we first apply a

unitary transformation R that orthogonalizes H̃SS and leaves H̃BB untouched. Multipli-

cation of both sides with R gives

RH̃ψ̃ = ERS̃ψ̃ (4.23)

where R =

(
S̃
−1/2
SS 0

0 �

)
and using 1 = RR−1, one can write

RH̃RR−1ψ̃ = ERS̃RR−1ψ̃. (4.24)

We can put the above equation in a more compact form

Hψ = ESψ (4.25)

where H , S and ψ are defined by H = RH̃R, S = RS̃R and ψ = R−1ψ̃ which are

now written in the hybrid basis of orthogonal and non-orthogonal orbitals.
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We can write

H = R H̃ R

=

(
S̃
−1/2
SS 0

0 �

)(
H̃SS H̃SB

H̃†
SB H̃BB

)(
S̃
−1/2
SS 0

0 �

)

=

(
S̃
−1/2
SS H̃SS S̃

−1/2
SS H̃SB

H̃†
SB H̃BB

)(
S̃
−1/2
SS 0

0 �

)

=

(
S̃
−1/2
SS H̃SSS̃

−1/2
SS S̃

−1/2
SS H̃SB

H̃†
SBS̃

−1/2
SS H̃BB

)
(4.26)

where

HSS = S̃
−1/2
SS H̃SSS̃

−1/2
SS

HSB = S̃
−1/2
SS H̃SB

H†
SB = H̃†

SBS̃
−1/2
SS

HBB = H̃BB. (4.27)

S can be also written in the same way. After this rearrangement, we need to apply one

more unitary transformation U that diagonalizes HSS . We acquire the molecular orbitals

of the surface part of the Hamiltonian, so that the first block of Equation 4.26 becomes di-

agonal as shown Equation 4.32. But the point is that diagonal elements are the eigenvalues

of H̃OA. U can be written as

U =

(
u 0

0 �

)
(4.28)

and applying the unitary transformation in Equation 4.25

U †HUU †ψ = EU †SUU †ψ. (4.29)
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We can show that

hϕ = Esϕ (4.30)

where h, s and ϕ

h = U †HU, s = U †SU and ϕ = U †ψ. (4.31)

From now on, we denote the diagonal matrices with lower case. We can write

h = U † H U

=

(
u† 0

0 �

)(
HSS HSB

H†
SB HBB

)(
u 0

0 �

)

=

(
u†HSS u†HSB

H†
SB HBB

)(
u 0

0 �

)

=

(
u†HSSu u†HSB

H†
SBu HBB

)
(4.32)

where

hSS = u†S̃−1/2
SS H̃SSS̃

−1/2
SS u

hSB = u†S̃−1/2
SS H̃SB

h†
SB = H̃†

SBS̃
−1/2
SS u

hBB = H̃BB. (4.33)

Similarly, we can write to overlap matrix s. The Green’s function of the whole system is

defined by

(εs− h)G = � (4.34)
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where ε = (E + iη), E is the energy variable, iη is an imaginary quantity and � is the

identity matrix. The Green’s function can be partitioned as

(
εsSS − hSS εsSB − hSB

εs†SB − h†
SB εsBB − hBB

)(
GSS GSB

GBS GBB

)
= �. (4.35)

Performing the first column of the identity matrix using right-hand side, the identities

arrive at the following relations

(εsSS − hSS)GSS + (εsSB − hSB)GBS = 1 (4.36)

(εs†SB − h†
SB)GSS + (εsBB − hBB)GBS = 0. (4.37)

In the above relations, we now write the off-diagonal terms of the Green’s function GBS

in terms of GSS using Equation 4.37 as

GBS = −(εsBB − hBB)
−1(εs†SB − h†

SB)GSS. (4.38)

Substituting the expression for GBS into Equation 4.36 gives

[
(εsSS − hSS)− (εsSB − hSB) (εsBB − hBB)

−1︸ ︷︷ ︸
gBB

(εs†SB − h†
SB)

︸ ︷︷ ︸
Σ

]
GSS = � (4.39)

it means that the Green’s function of the surface region is obtanied as

G =
[
εsSS − u†S̃−1/2

SS H̃SSS̃
−1/2
SS u− Σ

]−1

(4.40)

where sSS = � and Σ is the self energy due to coupling to the bulk,

Σ = (εu†S̃−1/2
SS S̃SB − u†S̃−1/2

SS H̃SB) gBB (εS̃†
SBS̃

−1/2
SS u− H̃†

SBS̃
−1/2
SS u). (4.41)
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The calculation of the surface Green’s function, gBB is explained as for the Green’s

function of the semi-infinite reservoir, G in detail in Section 2.3. Then, the surface Green’s

function is calculated. The self energy can be acquired from the result of this calculation.

The spectral function is calculated using this self energy.

4.3.2. Numerical Results for Realistic Structure

The study of passivation of the active species on the ZnS (111) surface has been

carried out using periodic supercell models. In all cases, the constructed layer models

are based on the ZnS (zinc blende) structure. The ZnS (111) facets are polar and should

be passivated with ligands. Therefore, the interaction of the ligands with the ZnS (111)

surface is considered. The oleic acid in the colloidal solution play a significant role of

the capping ligand on the surface. We designed structures by removing the H atom in the

carboxyl functional group of the oleic acid (OA) and binding it to the surface, and our

ligand is now the oleate (OA-) molecule. In this subsection, all possible configurations of

the OA- ligand on the ZnS (111) is considered.

We constructed models by different binding positions of the ligand (cis and trans

OA- molecule) on the ZnS (111) surface, which is Zn and S rich surfaces and by increasing

the amount of capping ligands on the surface. All figures, the ligand on the surface is

shown as: the carboxylate functional group of the oleate molecule, the COO- group, is

illustrated and R means the tail chain of the oleic acid. For the sake of simplicity, xy plane

is shown with truncated tail chain of oleic acid. For realistic system, the spectral function

and the time dependent occupancy are calculated as in the simplified model. The time

dependent occupancy versus time graph is obtained by computing spectral functions of

HOMO and LUMO levels for different binding configurations of OA- molecule on ZnS

(111) surface.

We note that the atomic arrangements of the surface lead to an expected distortion

in the structure of the bare surface in the geometry optimization. First, cis-OA- ligand on

the Zn rich surface is considered. In Figure 4.9(a), the unrelaxed unit cell of cis-OA- cap-

ping ligand on the Zn rich surface is shown where only one surface Zn atom is passivated

with the cis-OA- molecule. The relaxed unit cell is shown in Figure 4.9(b), we observe

that both O atoms in the carboxylate group of oleate molecule bond to the surface Zn

atoms. In Figure 4.9, the 3× 3× 1 supercell is constructed from the relaxed unit cell (c)

in z direction and (d) in the xy plane. Next, we calculate the spectral functions for fron-

tier molecular orbitals of cis-OA- molecule on the surface. For a free cis configuration of
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oleic acid (OA) molecule, the HOMO value is 9.61 eV and the LUMO value is 9.99 eV. In

Figure 4.9(e), HOMO and LUMO values for cis configuration of OA molecule represent

purple and green color lines, respectively. Due to the interaction between the surface and

cis-OA- molecule, we can see discrepancy that the Lorenzian shapes are distorted as seen

in Figure 4.9(e). We can also obverse that the shift increases on their bare energies and

the broadening increases. The level spectra of the frontier molecules are symmetric as

in the simplified model in Figures 4.2(c,g). The occupations for frontier molecules are

obtained the same result because they have same spectral function behavior as shown in

Figure 4.9(f). They continue to overlap with each other and decay to about 0.5 picosec-

onds. According to the Heisenberg uncertainty relations, the half life of each molecular

level is calculated to be 0.04 picoseconds using the Equation 4.15 for the HOMO and the

LUMO levels and the result is consistent with our calculation.

We continue the calculations of the spectral function and the time dependent occu-

pancy using different configurations of the (111) facets capped by trans-OA- molecules.

Secondly, trans1-OA- ligand on the Zn rich surface is considered. In Figure 4.10, (a)

demonstrates the unrelaxed unit cell that each O atom in carboxylate functional group of

trans1-OA- bonds to one surface Zn atom, we see that the relaxed unit cell maintains this

situation and has surface defects in (b), the 3 × 3 × 1 supercell is constructed from the

relaxed unit cell in z direction in (c) and in the xy plane in (d). We observe that passivation

configurations for cis-OA- and trans1-OA- ligands on the Zn rich surface relax to the same

binding position on the surface as seen Figure 4.9(d) and Figure 4.10(d). In the case of cis

and trans configuration of the oleic acid, the tail chain of the oleic acid has no significant

effect on the surface. Moreover, the interaction of trans2-OA- ligand with the Zn rich

surface is considered. In Figure 4.10, the unrelaxed unit cell is shown that each O atom

in carboxylate functional group of trans2-OA- bonds to two surface Zn atoms simultane-

ously in (e) and the surface of the relaxed unit cell is shown in (f) that one O atom bonds

to one surface Zn atom and the other O atom bonds to two surface Zn atoms. Figure 4.10

illustrates the 3 × 3 × 1 supercell of trans2-OA- ligand on the ZnS surface in z direction

in (g) and in the xy plane in (h). Although passivation configurations for trans1-OA- and

trans2-OA- ligands on the Zn rich surface do not relax the same binding position on the

surface, the results of the spectral functions of frontier molecular orbitals and their time

dependent occupancies are same for these configurations as seen in Figure 4.10(i,j). For a

free trans configuration of oleic acid (OA) molecule, the HOMO value is 9.63 eV and the

LUMO value is 10.03 eV. Figure 4.10(i) demostrates that HOMO and LUMO values for

trans configuration of OA molecule represent purple and green color lines, respectively.
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We observe that the Lorentzian shapes are distorted due to the interaction between ligand

and the surface. The spectra of the HOMO and the LUMO levels are shifted with increas-

ing the broadening and the dressed states have narrow peaks. The level spectra have the

same behavior as passivation configuration for cis-OA- ligand on the surface as seen in

Figure 4.9(e); however the spectrum of the HOMO shifts more from its bare state in Fig-

ure 4.10(i). These result in that their occupations have the same behavior with fluctuations

during decay in Figure 4.10(j). We see that the occupations of passivation configurations

for trans1-OA- and trans2-OA- ligands on the surface yield very similar results as the sur-

face capped by cis-OA- ligand can be seen in Figure 4.9(f) and Figure 4.10(j). The half

life of the HOMO and the LUMO read again 0.04 picoseconds. For the cis-OA-, trans1-

OA- and trans2-OA- ligands on the Zn rich surface, we observe that the HOMO and the

LUMO levels have the same behaviors as in the simplified model with the inter-level

hopping t′ = 0 where the hopping terms are identical values and the energy band gap is

narrow and wider, and the occupations of these passivation configurations yield similar

results as in the simplified in Figures 4.4(c,g).

Up to this part, we investigate the interaction between a single oleic acid and the

Zn rich surface. We continue analyzing by increasing the amount of capping ligands on

the surface. In Figure 4.11(a) and (b), the analysis for unrelaxed and relaxed unit cells

shows that we observe that each trans3-OA- ligands binds to two surface Zn atoms. Fig-

ure 4.11 shows that the 3 × 3 × 1 supercell is constructed from two trans3-OA- ligands

per optimizated unitcell in z direction in (c) and in the xy plane in (d). In the case of two

trans3-OA- ligands per unit cell, we can clearly see that the Lorentzian widths overlap and

their shapes are effectively distorted compared to passivation configurations of one ligand

binding to the surface as shown in Figure 4.11(e). It is observed that the spectrum of the

HOMO level has sharp peaks spreading around between 9 and 9.6 eV, the other spectrum

of the LUMO level has sharp peaks spreading around between 9.6 and 10 eV. We can

also see that their behavior significantly affects the time-dependent occupancy of HOMO

and LUMO levels as shown in Figure 4.11(f). The time dependent occupancies of the

states are obtained rapidly fluctuating during decay by difference oscillations of molec-

ular levels. Additionally, the time dependent occupancy of the HOMO level has more

oscillations than the LUMO level, because of having its Lorentzian peaks. The behavior

of the HOMO and the LUMO levels due to the overlap shape resemble the simplified

model with the inter-level hopping t′ = 0.20 as Figure 4.3(g), where the hopping terms

are identical values and the energy band gap is wider. The spectra behaviors are obtained

fluctuations during decay with the different oscillation rates for this simplified model and
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trans3-OA- ligand in Figure 4.5(e) and Figure 4.11(f).

We have evaluated passivation configurations for the ligands on the Zn rich sur-

face and, the calculations of the spectral function and the time dependent occupancy for

different configurations. We now consider trans4-OA- ligand on the S rich surface. Fig-

ure 4.12(a) demonstrates the unrelaxed structure of the unit cell of the trans4-OA- ligand

binding to two surface S atoms. The relaxed unit cell is shown as Figure 4.12(b) and we

observe this ligand binds to the same Zn atom. The important point is that the (111) sur-

face has rich S atom; however the O atoms in the carboxylate functional group of oleate

molecule bond to the same Zn atom below the surface. Furthermore, another ligand on the

S rich surface is trans5-OA-. In Figure 4.13, (a) demostrates the unrelaxed unit cell of the

trans5-OA- ligand binding to the same surface S atom and the surface defects are formed

in the relaxed unit cell as shown in (b). After the relaxation of the unit cell, the trans5-OA-

ligand bind to the Zn atom, such as the trans4-OA ligand. However, the trans5-OA- lig-

and that only one O atom of its carboxylate functional group bonds to one Zn atom binds

differently to the surface than the trans4-OA- ligand. In Figure 4.12 and Figure 4.13, the

3× 3× 1 supercell is constructed from the relaxed unit cell of trans4-OA- and trans5-OA-

ligands on the S rich surface in z direction in (c) and in the xy plane in (d), respectively.

For the spectrum of the HOMO and the LUMO levels, Lorentzian shapes are distorted, the

shift and the broadening increases as seen in Figure 4.12(e) and Figure 4.13(e). However,

the spectra of trans5-OA- ligand on the surface overlap slightly more than trans4-OA-

ligand on the surface. In the time dependent occupancies of the molecular levels, the fluc-

tuactions overlap completely during decay as seen in Figure 4.12(f) and Figure 4.13(f).

Both of the Lorentzian widths of the frontier molecular orbitals read 0.05 eV , and the

same result is observed with comparing to the Lorentzian widths of ligands on the Zn rich

surface without two ligands on the surface per unit cell. The half life is measured to be

0.04 picoseconds for each occupation of the molecular levels. According to the Heisen-

berg uncertainty relations, the half life are found to consistent with the predicted values

for realistic models.

We consider two ligands on the ZnS (111) surface for the S rich atoms per unit

cell. Figure 4.14(a) shows that the unrelaxed unit cell is two trans6-OA- ligands on the

S rich surface. The relaxed unit cell is shown in Figure 4.14(b). We observe that surface

defects are formed while Zn atoms relax by aligning them with S atoms and each trans6-

OA- ligand binds to one Zn atom on the surface. In Figure 4.14, the 3 × 3 × 1 supercell

is constructed from two trans6-OA- ligands on the S rich surface per unit cell as shown in

z direction in (c) and in the xy plane in (d). We can see that the Lorentzians overlap and
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their shapes are significantly distorted as seen in Figure 4.14(e). For the S rich surface,

the shift and the broadening of the spectral functions on molecular levels for trans6-OA-

ligand on the surface spread around between 9 and 10 eV with having lots of peaks when

compared to that the first two ligands as trans4-OA- and trans5-OA-. The spectrum of

LUMO distinctly has two peaks, and the spectrum of HOMO has several peaks. These

behaviors result in the oscillations during decay as illustrated in Figure 4.14(f). The spec-

trum of LUMO decays faster than the spectrum of the HOMO due to having the different

Lorentzian widths of them. The behavior of the level spectra is similar composed to the

simplified model with the inter-level hopping t′ = 0.20 as Figure 4.3(e), where the hop-

ping terms are identical values and the energy band gap is narrow. For the time dependent

occupancy of molecular levels of this simplified model and two trans6-OA- ligands per

unit cell, the fluctuations during decay have the similar behaviors as in Figure 4.5(e) and

Figure 4.14(f).

To sum up, the passivation configurations are relaxed by binding between OA- lig-

and and the Zn atom on the ZnS (111) surface, even if the atoms on the surface are Zn or S

atoms. In the Zn and S rich surfaces, the dressed states for the trans and cis configurations

of oleic acid ligand on the surface have a narrowing the Lorentzian widths. Besides, we

have observed that the Lorentzians overlap and their shapes are extremely distorted for the

spectral function on frontier molecular orbitals for two trans-OA- ligand on the Zn and S

rich surfaces per unit cell. We have investigated that their spectra behavior affects on their

time dependent occupancies. Additionally, we compared our passivation configurations

with a simplified model showing the same spectra behavior. For one ligand binding to

the surface, the Lorentzian width read in the Figures and the half life is calculated using

the uncertainty relations. Afterwards, we acquired that the measured value of the half

life from the time dependent occupancy is consistent with the predicted value from the

uncertainty relations.

In order to analyze the interaction between different configurations of oleate mole-

cule binding to the ZnS (111) surface, the binding energies are determined by

Ebind = Etot − Esurf − Elig (4.42)

where Etot is the total energy of the optimized structure with the ZnS surface-bound oleate

ligands per unit cell, Esurf is the energy of the relaxed ZnS (111) surface without any

capping ligand per unit cell and Elig is the energy of the free oleate molecule. In the

surface with terminated Zn layer, the binding energies of the surface-capping ligands
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for cis-OA-, trans1-OA-, trans2-OA- and trans3-OA- are calculated -7.25 eV, -7.28 eV,

-7.05 eV and -6.31 eV, respectively. In the surface with terminated S layer, the binding

energies of the surface-capping ligands for trans4-OA-, trans5-OA- and trans6-OA- are

calculated -2.38 eV, -1.36 eV and -1.49 eV, respectively. The binding energies of different

configurations are calculated accordingly to the Equation 4.42 as shown in Table 4.2,

where the binding energy of the surface-bound ligands (trans3-OA- and trans6-OA-) is

written for two oleate molecules.

Table 4.2. The binding energies of the capping ligands.

ZnS (111) surface with terminated Zn layer

Passivation

The binding energy (eV)
per unit cell

cis - OA- -7.25

trans1 - OA- -7.28

trans2 - OA- -7.05

trans3 - OA- -12.62*

ZnS (111) surface with terminated S layer

Passivation

The binding energy (eV)
per unit cell

trans4 - OA- -2.38

trans5 - OA- -1.36

trans6 - OA- -2.97*

* The binding energy is for two oleate ligands.

Both observations indicate that oxygen atom, which is in the carboxylate group of

oleate, binds to the Zn atoms on the surface. Hence, in realistic models, the ligand binding

energy on S rich surface is much smaller than that on Zn rich surface. In all possible

binding configurations, trans1-OA- bind more strongly to the surface than other ligands.

Additionally, trans1-OA- ligand binding energies on Zn rich surface are consistent with

the experimental value of -7.52 eV cohesive energy for ZnO as a semiconductor [62].
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Figure 4.9. ZnS (111) surface capped by cis-OA- molecule. (a) Unrelaxed and (b)

relaxed unit cell in side-view. (c) 3× 3× 1 supercell from the relaxed unit

cell in side-view. (d) The supercell with truncated tail chains in top-view.

(e) Spectral function of the HOMO and the LUMO. (f) The time dependent

occupancy of the HOMO and the LUMO.
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Figure 4.10. (a,b,c,d) and (e,f,g,h) for ZnS (111) surface capped by trans1-OA- and

trans2-OA- molecules, respectively. (a,e) Unrelaxed and (b,f) relaxed unit

cell in side-view. (c,g) 3 × 3 × 1 supercell from the relaxed unit cell in

side-view. (d,h) The supercell with truncated tail chains in top-view. (i)

Spectral function of the HOMO and the LUMO. (j) The time dependent

occupancy of the HOMO and the LUMO.
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Figure 4.11. ZnS (111) surface capped by trans3-OA- molecule. (a) Unrelaxed and (b)

relaxed unit cell in side-view. (c) 3× 3× 1 supercell from the relaxed unit

cell in side-view. (d) The supercell with truncated tail chains in top-view.

(e) Spectral function of the HOMO and the LUMO. (f) The time dependent

occupancy of the HOMO and the LUMO.
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Figure 4.12. ZnS (111) surface capped by trans4-OA- molecule. (a) Unrelaxed and (b)

relaxed unit cell in side-view. (c) 3× 3× 1 supercell from the relaxed unit

cell in side-view. (d) The supercell with truncated tail chains in top-view.

(e) Spectral function of the HOMO and the LUMO. (f) The time dependent

occupancy of the HOMO and the LUMO.
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Figure 4.13. ZnS (111) surface capped by trans5-OA- molecule. (a) Unrelaxed and (b)

relaxed unit cell in side-view. (c) 3× 3× 1 supercell from the relaxed unit

cell in side-view. (d) The supercell with truncated tail chains in top-view.

(e) Spectral function of the HOMO and the LUMO. (f) The time dependent

occupancy of the HOMO and the LUMO.
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Figure 4.14. ZnS (111) surface capped by trans6-OA- molecule. (a) Unrelaxed and (b)

relaxed unit cell in side-view. (c) 3× 3× 1 supercell from the relaxed unit

cell in side-view. (d) The supercell with truncated tail chains in top-view.

(e) Spectral function of the HOMO and the LUMO. (f) The time dependent

occupancy of the HOMO and the LUMO.
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CHAPTER 5

CONCLUSION

In this thesis, we have investigated the excitation dynamics on semiconductor sur-

faces, which are passivated with organic molecules for different molecular configurations

by modeling them using density functional theory based tight binding (DFTB).

The simplified model was constructed to better understand the excitation dynamics

on the surface by calculating time dependent occupations of frontier molecular orbitals for

two different cases with interacting and non-interacting between the highest occupied and

the lowest unoccupied molecular orbitals (HOMO and LUMO). In order to explain the

time dependent occupations, we have investigated the behaviors of the spectral functions.

In the simplified model, we investigate the effects of coupling strength and inter-

level spacing on the shape and widths of the spectral functions. The obvious effect of the

interaction is to shift and broaden the HOMO and LUMO levels. When the broadening

is small compared to inter-level spacing, the spectral functions of the dressed states do

not overlap appreciably, hence they do not affect each other and each level’s decay rate

is determined with its coupling strength to the reservoir. On the other hand, when the

broadening is comparable with the inter-level spacing the dressed states’ spectra start to

overlap and they indirectly affect each other. Antiresonance line shape is observed at the

energy where the neighboring states’ spectrum has a maximum. When the spectral width

exceeds the inter-level spacing, the effect is even more pronounced and the spectral shape

is strongly disturbed so that the Lorentzian shape is almost lost. Accordingly, one ob-

serves oscillatory decay in the time dependent occupations of the molecular levels. Once

a coupling term is introduced between the molecular levels, the dressed states contain

two peaks from both of the bare states. Hence the time dependent occupation displays

stronger and periodic oscillations during decay.

For the realistic system, the spectral function and the time dependent occupancy

are calculated based on the same formulation. We have designed different binding po-

sitions for ZnS (111) surface such as Zn atoms and S atoms rich surfaces passivated

with oleic acid (OA) molecule. We have constructed the realistic models that cis-OA-,

trans1-OA- trans2-OA-and trans3-OA- molecules are bound to Zn rich surfaces and then

trans4-OA-, trans5-OA-and trans6-OA- are bound to S rich surfaces. First, cis and trans

configuration of oleic acid are bound to Zn rich surfaces and similar spectral function
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behaviors are obtained using cis-OA-, trans1-OA- and trans2-OA- molecules, as their op-

timized structures are relaxed with the same configurations. For S rich surface, the spectra

of trans4-OA- and trans5-OA- molecules binding the surface have very similar behaviors,

but the spectra overlap very little for surface passivated with trans5-OA- molecule. Their

occupations continue to overlap with each other. Next, we have increased the amount of

ligands on the surface as two oleate molecules in the unit cell. Consequently, Lorentz-

tian widths overlap and their shapes are deformed more effectively for trans3-OA- and

trans6-OA- molecules bound to Zn and S rich surfaces, respectively. This behavior dra-

matically affects the time dependent occupancy of the HOMO and the LUMO where the

fluctuations increase more rapidly. The half life is quantified from the Lorentzian width

and it is found to be consistent with the predicted values by the uncertainty relations for

the simplified and realistic models. Moreover, we have obtained that oxygen atoms in

the carboxylate group of oleate are bonded to Zn atoms even if there are S atoms on the

surface. Secondly, the binding energies of different coverage ratios of surfaces are calcu-

lated. The binding energies of the Zn rich surface bound capping ligands are consistent

with experimental results, where trans1-OA- bind more strongly to the surface than other

ligands.

In addition to these studies, the energy band gap for the quaternary Zn1-xCdxS1-ySey

nanoalloys are calculated. The lattice parameters of ternary and quaternary bulk nanoal-

loys are obtained by linear interpolation. X-Ray diffraction spectra of some nanoalloys

have also been investigated.
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APPENDIX A

DETERMINATION OF SURFACE LAYER SIZE

In experiments, quantum dots are much larger as compared to the clusters in theo-

retical study. In order to obtain correspondence, the results of XRD patterns of (2×2×2)

bulk materials (Zn0.50Cd0.50S0.75Se0.25, Zn0.50Cd0.50 S0.50Se0.50, Zn0.25Cd0.75S0.50Se0.50) are

compared with experimental measurements of quantum dots and the results are consonant

with each other. Thus, it is decided to use bulk materials instead of quantum dots. The

size of the supercell is small for this approach, we need to increase the number of atoms

in the supercell in order to defect how many neighbouring atoms are enough for the sim-

ulation. The construction of the supercell starts with the primitive unit cell ZnS. In the

following Figure A.1, we can see this constructed ZnS supercell (6 × 6 × 6) containing

216 S and 216 Zn atoms.

Figure A.1. Supercell 6×6×6 from the primitive unit cell of ZnS. The gray and yellow

balls stand for Zn and S atoms, respectively.

All matrix elements of this supercell are calculated by using the DFTB method.

Beginning with the calculation of overlap matrix, the interaction between neighbouring

orbitals are found. The supercell consists two different species, where S atom consists a

3s and three 3p valence orbitals and Zn atom consists a 4s and five 3d valence orbitals.

In addition to this, three 3p are included in the calculation of overlap for Zn atom. The
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overlap integral S values are calculated for s, p and d atomic orbitals. The overlap matrix

is a square matrix and it is always symmetric. ZnS supercell has the overlap matrix with

2808 x 2808 dimensions.
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Figure A.2. Magnitude of the elements of overlap matrix for nearest-neigbour overlap

only. 160. Zn atom and 340. S atom are selected from supercell.

In Figure A.2, the overlap values are shown where the matrix element of each

atom is taken its maximum absolute value. An atom which is Zn atom or S atom in ZnS

supercell can be selected random atomic index for calculation of overlap matrix, because

it has same result for all Zn or S atoms. Also, we can calculate the distance between

atoms, so S and Zn atoms are chosen from in the center of the supercell. We can select

160. Zn atom and 340. S atom in the center of the supercell. The calculation of overlap

matrix and distances between atoms in supercell are done with these selected Zn and S

atoms. Then, distances can be determined between each atom in the supercell for 160. Zn

atom and 340. S atom, which is demonstrated in Figure A.3. Detailed information about

Figure A.3, distances of Zn and S atoms with nearest neighbour atoms are given in Table
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A.1. Figure A.2 investigates only nearest neigbour atoms and checking number of atoms

at nearest neighbour levels from Figure A.3, and consequently there are 6 and 4 nearest

neighbour for Zn and S atoms, respectively. After these calculations, we can obtain that

fourth nearest neighbour atoms can be enough for constructing Hamiltonian for a ZnS

cluster. However, we can decide to design the surface structure of ZnS by sixth nearest

neighbour atoms, because the computational cost will not change dramatically.
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Figure A.3. From left to right, distance between 160. Zn atom and each atom, 340. S

atom and each atom in ZnS supercell.
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Table A.1. Number of atoms, distances between atoms (in Å) and kind of bond at

nearest neighbour levels, for 160. Zn atom and 340. S atom in ZnS super-

cell.

Zn atom

Nearest neighbours Number of atoms

Distance between
atoms (Å) Kind of bond

1 4 2.3891 Zn-S
2 12 3.9013 Zn-Zn
3 12 4.5747 Zn-S
4 6 5.5173 Zn-Zn
5 12 6.0124 Zn-S
6 21* 6.7573 Zn-Zn

S atom
1 4 2.3891 S-Zn
2 12 3.9013 S-S
3 12 4.5747 S-Zn
4 6 5.5173 S-S
5 12 6.0124 S-Zn

* In Figure A.2, the sixth nearest neighbour has 24 atoms.
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