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İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Physics

by
Elif ÜNSAL
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patience, valuable guidance and encouragement throughout my study.

I would like to thank the committee members of my thesis, Assoc. Prof. Dr. Özgür
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ABSTRACT

ELECTRONIC, VIBRATIONAL AND TRANSPORT PROPERTIES OF

QUASI-ONE DIMENSIONAL TRANSITION METAL

DICHALCOGENIDE STRUCTURES

Thermoelectric materials have attracted great attention due to their ability to con-

vert heat to electrical energy. As the application area of nanoscience expands, nanos-

tructuring becomes a promising approach for enhancing thermoelectric properties. In

this thesis, thermoelectric enhancement of the T-phase HfSe2 structures is studied via

nanostructuring. Density functional theory (DFT) based electronic and vibrational spec-

tra of two-dimensional (2D) and quasi-one dimensional T-phase HfSe2 structures are in-

vestigated and their ballistic thermoelectric transport properties are examined within the

Landauer formalism. For the first time, it was reported that the nanoribbons of the T-

phase HfSe2 are dynamically stable and semiconducting materials. They have promising

thermoelectric properties. We reported the enhancement of the p-type ZT parameter of

T-phase HfSe2 at both low and high temperatures. Moreover, the width dependency of the

thermoelectric properties of the nanoribbons are studied.
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ÖZET

KUASİ BİR BOYUTLU GEÇİŞ METALİ YAPILARIN ELEKTRONİK,

TİTREŞİMSEL VE TAŞINIM ÖZELLİKLERİ

Termoelektrik malzemeler, ısı ve elektrik enerjisi arasında çevirim yapabildik-

leri için büyük ilgi çekmektedirler. Nanobilimdeki uygulama alanları genişledikçe, ter-

moelektrik verimliliği artırmada, nanoyapılandırma umut vadeden bir yaklaşım olmuştur.

Bu çalışmada, T-fazına sahip HfSe2 yapısının termoelektrik verimliliğinin nanoyapılan-

dırma ile artırılması çalışılmıştır. Yoğunluk fonksiyoneli (DFT) teorisi kullanılarak, iki

boyutlu ve kuasi-bir boyutlu malzemelerin elektronik ve titreşimsel bant yapıları incelen-

miş ve balistik termal taşınım özellekleri Landauer formalizmi kullanılarak elde edilmiştir.

İlk defa bu çalışmada, T-fazı HfSe2’nin kuasi-bir boyutlu nanoşeritleri incelenmiştir. Di-

namik olarak kararlı bulunmuşlardır ve her bir malzeme yarı iletken karaktere sahiptir.

Hem düşük, hem de yüksek sıcaklıklarda p-type ZT parametresinde artış hesaplanmıştır.

Nanoşeritlerin kalınlıklarına bağlı termoelektrik özellikleri de incelenmiştir.
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Özbal et al. (2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 4.8. Lorenz number L of the nanoribbons (NRs) is given as a function of

chemical potential μ at 300 K. Red dashed lines represent the degen-

erate (Sommerfeld) limit which has a value of 2.44 ×10−8WΩK−2.

Vmax and Cmin are the valence band maximum and conduction band

minimum values, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ix



LIST OF TABLES

Table Page

Table 4.1. Calculated parameters of the single layer (SL-HfSe2) and nanoribbon

(NR) structures are; the lattice constant b; the thickness of the struc-

tures, t; the width of the structures; w, the energy band gaps calculated

with PBE and PBE+HSE06 functionals, EPBE
g and EPBE+HSE06

g , re-

spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 4.2. The calculated parameters of the single layer (SL-HfSe2) (Özbal et al.,
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CHAPTER 1

INTRODUCTION

Following the the synthesis of graphene (Novoselov, 2004), the family of two-

dimensional (2D) materials have expanded and they have been the focus of the interest.

In this study, we focused on the transition metal dichalcogenides (TMDs) (Mak, 2010;

Kong, 2013; Huang, 2014) due to their unique physical properties and potential in nano-

electronics, nano-optics and energy conversion applications. The bulk forms of TMDs are

composed of atomically thin sub-layers bonding via weak van der Waals forces while in-

plane bonding of the sub-layers are strong which makes them highly stable materials and

they exhibit mechanical flexibility (Castellanos-Gomez A, 2012; Velusamy DB, 2015).

Having a high chemical stability and controllable synthesis are important for the device

applications and 2D TMDs meet these requirements (Zhang and He, 2019; Yu and Chang,

2015). The electronic characteristics of TMDs varies ranging from insulating, semicon-

ducting, half- and semi- metallic to superconducting. Having a wide range of band gaps

enables these materials to be used in electronic and optic device applications and it is

known that their band gaps are layer-dependent tunable (Wang, 2012). Moreover, TMDs

have lower lattice thermal conductivity which make them practical for the applications,

such as thermoelectric cooling devices (Zhang, 2015; Sahoo et al., 2013).

Thermoelectric materials have an ability of a conversion between heat and elec-

trical energy via thermoelectric effect. Thermoelectric effect determines the relation be-

tween the temperature and the voltage differences that occur between the two edges of

a material. Seebeck and Peltier are examples of the thermoelectric effects and they have

been known and studied for a long time. In Seebeck effect, a temperature gradient of a

metal or a semiconducting material causes a potential difference between the two ends of

the material. On the contrary, in Peltier effect, the electrical energy is used to drive heat

by applying bias which results in a temperature difference between the two ends of the

device. This is used for the cooling. For instance, the working principle of a thermocou-

ple is based on Seebeck effect and it can be used for converting the heat loss to electrical

energy also known as the power generation.

Increasing the efficiency of the thermoelectric materials are important in device

technologies. The efficiency to energy conversion of a thermoelectric material is mea-

sured with a dimensionless figure of merit, ZT = σS2T/κ, where σ, S and κ are elec-
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trical conductivity, Seebeck coefficient and total thermal conductivity, respectively and

T is temperature. The total conductivity is defined as κ = κel + κp where κel and κ

are the thermal conductivities of electrons and phonons, respectively. An efficient ther-

moelectric material has a high Seebeck coefficient and electrical conductivity, and a low

thermal conductivity. Typical ZT values are about 1 for commercial and reaches 3 or

higher in laboratory conditions (Poudel and Ren, 2008; Mao and Ren, 2019; Xiao and

Zhao, 2018). Therefore, in order to enhance the thermoelectric efficiency, the Seebeck

coefficient and the electrical conductivity of the material can be increased or the total ther-

mal conductivity can be reduced. However, according to Wiedemann-Franz law (Franz,

1853), the electrical thermal conductivity of electrons is linearly dependent to the elec-

trical conductivity. Reducing the thermal conductivity of electrons leads to a decrease

in the electrical conductivity. Thus, improving the Seebeck coefficient and reducing the

phonon thermal conductance are mostly preferred for the enhancement of thermoelectric

efficiency (G. J. Snyder, 2008).

Decreasing the phonon thermal conductance can be achieved via reducing the

dimensions of the structure. As the dimension of a material is reduced, the surface scat-

terings occur more frequently which results in a decrease in the lattice thermal conductiv-

ity (Hicks and Dresselhaus, 1993a,b). Thus, enhancement in the material efficiencies can

be achieved via nanostructuring (Balandin, 2011; H. Alam, 2013), such as generating het-

erostructures or reducing their dimensions via forming their nanoribbons, quantum dots

etc.

In this study, we focused on the single layer T-phase HfSe2 since it is recently

reported that its 2D structure is air-stable and fabricated down to three-layer thickness

(Mleczko and Pop, 2017). Moreover, among TMDs, Hf based structures have relatively

higher ZT values and the calculated values at low (high) temperatures are close to one

(two) (Özbal et al., 2019). Herein, we aimed to enhance the thermoelectric properties

of the T-phase HfSe2 structures via nanostructuring. By performing density functional

theory-based ab initio calculations, first, we investigated the electronic and vibrational

spectra of two-dimensional (2D) and quasi-one dimensional T-phase HfSe2 structures.

For the nanoribbon structures, ballistic transport properties are analyzed within the Lan-

dauer formalism. We reported that the enhancement of the p-type ZT parameter of T-

phase HfSe2 at both low and high temperatures. Moreover, the width dependence of the

thermoelectric properties of the nanoribbons are studied. With their enhanced thermo-

electric properties, quasi-one dimensional HfSe2 structures are promising candidates for

the thermoelectric device applications.
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CHAPTER 2

DENSITY FUNCTIONAL THEORY

Density Functional Theory (DFT) is a computational method which is beneficial

for investigating properties of many-body systems. In reality, the electrons are dependent

with each other and nuclei, thus the wave function of N-electron system is not separable

and the degrees of freedom of the system is 3N. Solving the Schrödinger equation for the

wave function of such a system is impossible even for its ground state. Instead of the

many-body wave function, in principle, density functional theory is based on a position-

dependent ground state electron density:

n(�r) = N

∫
|ψ(�r, �r2, · · · , �rN)|2d�r2�r3 · · ·�rN (2.1)

where ψ(�r, �r2, · · · , �rN) is the many-body wave function and �ri’s are the positions of the

electrons. The ground state energy of the system is a functional of the density written

in terms of the wave function. The advantageous part of DFT is that the method gives

accurate solutions for large and complex systems and it also lowers the computational

cost for such systems by reducing the degrees of freedom by defining the density.

To understand the logic of DFT, it is beneficial to start from the Thomas-Fermi-

Dirac model which is known as the root of DFT. Then we will continue with Hohenberg-

Kohn theorems which make DFT possible and Kohn-Sham ansatz that provides a way to

construct approximate functionals for many-electron systems.

2.1. Thomas-Fermi-Dirac Model

Llewellyn Thomas and Enrico Fermi have developed a theory for the electronic

structure of systems which include many particles (Fermi, 1927) for the first time. They

realized that the ground state energy of the free Fermi gas, can be written in terms of a

function of electron density. Functional offered by Thomas and Fermi neglect the corre-

lated motion of the electrons in a quantum mechanical system. The electrons influence

3



the movements of each other and the measure this influence on electrons leads to correla-

tion energy which has a form of Coulombic potential. Thomas and Fermi also ignored the

exchange interaction of electrons. Considering the Pauli exclusion principle, the electrons

those have same spin are affected from each other repulsively when they are close to each

other. After Thomas and Fermi offered their functional, Dirac (Dirac, 1930) improved

this functional with adding the exchange-correlation terms.

2.2. Hohenberg-Kohn Theorems

Hohenberg and Kohn proved that the ground state energy is a unique functional

of density which makes DFT possible (Hohenberg and Kohn, 1964). The many-electron

wave function contains all physical information of the system, thus the density functional

contains that information. The two different many-electron systems only differ in the

external potential. Therefore, two different potential cannot give the same density. If the

ground state density of a many-electron system is known, one can calculate the external

potential of the system.

Hohenberg and Kohn also stated that the energy functional can be defined in terms

of ground-state density which minimizes the functional to its global minimum and the

energy of the system varies with the density.

2.3. Many-body Hamiltonian

Considering the construction of the many-body Hamiltonian, there are three kinds

of interaction between the particles of interest.

1) Nucleus-nucleus interaction: According to Born-Oppenheimer (Born and Oppen-

heimer, 1927), nuclei can be treated as classical particles. Thus, they are assumed

to be static. Even with this simplification, calculating the potential energy caused

by the interactions of nuclei is challenging. In order to handle the calculation of

long-range Coulombic interaction in the periodic systems, one can utilize Ewald

summation (Ewald, 1921). As a result of this interaction, the obtained term for Nn

number of nuclei is:

V̂nn = +
e2

4πε0

1

2

Nn∑
I

Nn∑
J �=I

ZIZJ

| �RI − �RJ |
(2.2)
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where e and ε0 are the charge of the electron and the vacuum permittivity, respec-

tively. ZI and ZJ are the atomic numbers of the I th and J th nuclei. �RI and �RJ

represents the positions of nuclei.

2) Nucleus-electron interaction: Since the nuclei are taken as static particles, poten-

tial of nucleus is like a single-body external potential acting on an electron.

V̂ne = − e2

4πε0

Ne∑
i

Nn∑
I

ZI

|�ri − �RI |
(2.3)

where Ne is the number of electrons in the system and �ri denotes the position of

ith electron. Minus sign is a result of the attractive interaction between nucleus and

electron. In order to calculate the potential of the nuclei, for practicality, pseudopo-

tentials are used which will be mentioned later.

3) Electron-electron interaction: The complexity of the many-electron system arises

mostly due to this term because all electrons are affected from each other.

V̂ee = +
e2

4πε0

1

2

Ne∑
i

Ne∑
j �=i

1

|�ri − �rj| (2.4)

This term has a positive sign since the interaction is repulsive. Coefficient of 1/2

is important for avoiding the double-counting, and in order to prevent the self-

interaction of particles, J �= I and j �= i terms are considered for V̂nn and V̂ee.

In Hamiltonian, the kinetic energy term is assumed to only come from the motion

of the electrons.

T̂e =
�
2

2me

Ne∑
i

∇2
i (2.5)

where � and me denotes the Planck’s constant divided by 2π and the electron mass, re-

spectively.

In this work, the materials of interest are non-magnetic. Therefore, the spin part

will not be included since the solutions remains almost unchanged. Taking into account

all above, the Hamiltonian of a system, which has Ne number of electrons and Nn number

of nuclei, is constructed as :
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Ĥ = − �
2

2me

Ne∑
i

∇2
i +

e2

4πε0

[
−

Ne∑
i

Nn∑
I

ZI

|�ri − �RI |
+

1

2

Ne∑
i

Ne∑
j �=i

1

|�ri − �rj|

+
1

2

Nn∑
i

Nn∑
J �=I

ZIZJ

| �RI − �RJ |

]
(2.6)

2.4. Hartree-Fock Approximation

Hartree-Fock method is developed for fulfilling the anti-symmetry requirement for

the many-body fermion wave-function (Fock, 1930). General form of the wave function

of many-body system is defined as the product of occupied orbitals which is also known

as the Hartree product (Hartree, 1928). However, Hartree product fails when a system of

many electrons (fermions) is considered. A fermionic system obeys the Pauli exclusion

principle in which a wave function describing fermions are anti-symmetric with respect

to the interchange of their spins. The Pauli exclusion principle is satisfied by defining the

wave function of system of N electrons with the Slater determinant.

Φ(�x1 . . . �xN) =
1√
N !

∣∣∣∣∣∣∣∣
φ1(�x1) . . . φN(�x1)

...
. . .

...

φ1(�xN) . . . φN(�xN)

∣∣∣∣∣∣∣∣
(2.7)

Form of the orbitals can be calculated as a result of the energy minimization pro-

cedure by utilizing the variational method. This method allows to calculate the ground

state energy approximately. In this method, a trial wave function which depends on some

variational parameters is assigned for the related system. Then these parameters are ad-

justed until the energy of the wave function is minimized. An exact solution of wave

function can be obtained by calculating the expectation value of the Hamiltonian for this

variational wave function.

6



E[variational parameter] =
〈Φ|Ĥ|Φ〉
〈Φ|Φ〉 , (2.8)

with a constraint of 〈Φ|Φ〉 = 1.

2.5. Kohn-Sham Equations

The total energy is minimized with respect to the density, through the Hohenberg-

Kohn theorems which show that the minimum energy is the ground state energy. While

minimizing the energy dealing with the kinetic energy of interacting many-electron sys-

tem is challenging. In this case, fictitious and distinguishable Kohn-Sham orbitals φi(�r)

are defined (W. Kohn, 1965).

n(�r) =
Ne∑
i=1

|φi(�r)|2 (2.9)

The total energy can be minimized with respect to these orbitals instead of the

density (Martin, 2004). Differentiation can be done by using the chain rule for functional

derivative except for the kinetic energy term. Since the kinetic energy of the system is

divided into two parts which are kinetic energy of the orbitals and the correction term, the

terms of orbitals can be differentiated directly in terms of the orbitals. Moreover, φ∗
i (�r)

will be used instead of φi(�r) since φi(�r) is defined as real function. Therefore, the choice

of conjugate does not alter the solution which is formed as seen below.

δEe

δφ∗
i (�r)

=
δTs

δφ∗(�r)
+

[
δEext

δn(�r)
+

δEHartree

δn(�r)
+

δExc

δn(�r)

]
δn(�r)

δφ∗
i (�r)

= 0 (2.10)

Ee is the energy of the electronic system, which indicates that the energy obtained

from the nucleus-nucleus interaction is omitted and this term is taken to be constant. Eext

and Exc are the external and the exchange-correlation energies, respectively. EHartree

represents the Coulombic potential due to the electron-electron interaction. The Eq. 2.10

is same as the derivation of the Schrödinger equation.
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−1

2
∇2φi(�r) +

[
Vext +

∫
n(�r′)

|�r − �r′|d
�r′ + εxc[n] + n(�r)

δεxc[n]

δn(�r)

]
φi(�r) = εiφi(�r)

(2.11)

where,

∫
n(�r′)

|�r − �r′|d
�r′ = VHartree and εxc[n] + n(�r)

δεxc[n]

δn(�r)
φi(�r) = Vxc (2.12)

Eq. 2.11 is known ad the Schrödinger-like Kohn-Sham equations written in

Hartree units in which me, e, �, and 1/(4πε0) are taken as equal to one. The interaction

between the nuclei and electrons are replaced by pseudopotential included in Vext term.

For a known exact exchange-correction energy, Kohn-Sham equations can be solved nu-

merically and this leads to the exact ground state density of the electronic system. Solving

the Eq. 2.11 simultaneously gives the solutions of the many-body system in term of the

single-body system. The summation of all potential terms (Vext + VHartree + Vxc) in Eq.

2.11 are called effective potential (also known as the Kohn-Sham potential). Taking the

derivative of the potential with respect to the orbitals leads to the solution of orbitals.

This problem can be handled by self-consistent solutions of the Kohn-Sham equations

(Toffoli, 2012).

2.6. Exchange-Correlation Functionals

Potential energy term of electron-electron interaction, Vee is written in terms of

two-particle density which gives the probability of both electron at �r and electron at �r′.

However, this probability cannot be solved easily. Therefore, these terms can be con-

structed with two different densities and also with an extra term which comes from the

correction.

Vee =
1

2

∫ ∫
d�rd�r′

n(�r)n(�r′)

|�r − �r′| +ΔVee (2.13)
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When the density is defined in terms of the Kohn-Sham orbitals, kinetic energy

term has the form as follows.

TKS = −1

2

Ne∑
i

∫
φ∗
i (�r)∇2φi(�r)d�r (2.14)

Calculating the kinetic energy of these orbital is still not the solution, because it

belongs to the fictitious system. The essential kinetic energy of the system is formed as

seen below.

Tee = −1

2

Ne∑
i

∫
ψ∗(�r1, ..., �rN)∇2ψ(�r1, ..., �rN)d�r1...d �rN (2.15)

= −1

2

Ne∑
i

∫
φ∗
i (�r)∇2φi(�r)d�r +ΔTee (2.16)

The ΔVee term in Eq. 2.13 and the ΔTee in Eq. 2.16 comes from the exchange-

correlation of the electrons and they can be written as seen below.

Exc = ΔVee +ΔTee =

∫
n(�r)εxc(n)d�r (2.17)

2.6.1. Local Density Approximation

As mentioned in previously, Dirac introduced a exchange functional for the uni-

form electron gas. The exchange energy is defined as the Coulomb interaction energy

between the electron and its exchange hole. Exchange part of εhomxc (n(�r)) is an exact re-

sult of Hartree-Fock and the correlation part is calculated from Quantum Monte Carlo

data. Within this approximation, exchange-correlation functional of a system depends

only on the local density at a given point.

ELDA
xc =

∫
d�rn(�r)εhomxc (n(�r)), (2.18)

where n(�r) is the homogeneous electron gas at the density and εhomxc (n(�r)) is its exchange

correlation energy density.
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2.6.2. Generalized Gradient Approximation

In local density approximation (LDA) system is assumed to be homogeneous;

however, in reality, density of the system varies slowly over space due to the screening of

the nuclei. In order to take this into account, a function f is defined in terms of density

and also its gradient and the exchange-correlation functional is defined by this function.

EGGA
xc =

∫
d�rf(n(�r),∇n(�r)), (2.19)

When the second-order derivatives of the density are included in the function f ,

one obtains the meta-generalized gradient approximation (MGGA).

2.6.3. Heyd-Scuseria-Ernzerhof Hybrid Functional

Hybrid functional is a sort of approximation to exchange-correlation energy func-

tional which is a combination of certain amount of exact exchange from Hartree-Fock

theory and local or semi-local density functional.

The exact Hartree-Fock exchange calculation causes computational cost particu-

larly for the metallic systems due to the divergence of the derivative of the orbital energies

with respect to k (N. W. Ashcroft, 1975a). The divergence originates from the Fourier

transform of the Coulomb potential (4π/k2). If the screened potential is shorter than a

range of 1/r Coulomb potential, the divergence is suppressed. In order to eliminate the

divergence, Heyd et al. proposed a hybrid functional based on a screened Coulomb po-

tential only for the the exchange interaction in which the long-range part of the exact

exchange is screened (J. Heyd, 2003). Later, Krukau et al. enhanced this hybrid func-

tional known as HSE06. In HSE functional, the Coulomb potential is separated into two

parts, short-range (SR) and long-range (LR):

1

r
=

1− erf(ωr)

r
+

erf(ωr)

r
, (2.20)

where first and second part are SR and LR parts, respectively and erf is error function.

ω is the screening parameter that defines the separation range. The hybrid exchange

functional is:
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EHSE
XC =

1

4
EHF,SR

X (ω) +
3

4
EPBE,SR

X (ω) + EPBE,LR
X (ω) + EPBE

C , (2.21)

where EHF,SR
X (ω) is the exact exchange for short-range, EPBE,SR

X (ω) and EPBE,LR
X (ω)

are the PBE exchange functional for short-range and long-range, respectively. EPBE
C is

the PBE correlation energy.

2.7. Simulation Package Used

In this work, first-principle calculations based on DFT were performed as imple-

mented in the Vienna ab initio Simulation Package (VASP) (Kresse and Hafner, 1993;

Kresse and Furthmüller, 1996)

In the beginning, it is assigned an initial guess for the electron density required

for effective potential calculation, the diagonalization of the Kohn-Sham equations, and

the subsequent values of density, so the total energy. If the convergence criterion cannot

be reached, the numerical procedure is relaunched with the last n(r) as the initial guess.

Otherwise, the output quantities are computed. A flow chart of the iteration scheme is

given in Fig. 2.1.

In this study, we used pseudopotential approximation supplied with VASP; there-

fore, a brief information about pseudopotential approximation will be beneficial. Pseu-

dopotentials are generated to replace the deep Coulombic interaction near the nuclei to

avoid the technical difficulties which it poses. In creating a pseudopotential, one assumes

that the core electrons of the atoms are included in the nucleus and their effects are re-

placed with an effective potential. Especially for large atoms with many electrons, this

approximation shortens the calculations even if the calculations are computational. Proce-

dure of generating the pseudopotentials begins with using the Kohn-Sham approach. By

using Kohn-Sham orbitals, a distinction between the valence and core electronic states are

made. The effects of the core states are switched by a new potential which is derived in for

an isolated atomic configuration. While the real atomic states oscillate rapidly around the

core states, this new potential provides to make valence states smoother due to screening

of the ionic potential by the core electrons (Toffoli, 2012).

Herein, the Perdew-Burke-Ernzerhof (PBE) form of generalized gradient approx-

imation (GGA) was adopted (Perdew et al., 1996) in order to describe the exchange-
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correlation energy, and HSE06 (A. V. Krukau, 2006) hybrid functional was used for the

band gap estimation.

Initial Guess n
 
(r)

Calculate Effective Potential

Solve Kohn-Sham Equations

Evaluate the Electron Density and the Total Energy

Reach the Convergence Criteria?

Yes

No

Output Quantities

Forces, Eigenvalues ...

Compare the Input and Output n
 
(r)

Different

Same

Calculate the Forces on Atoms

Update 

Coordinates 

Figure 2.1. Flow-chart of DFT-based self-consistent calculations are given.

12



CHAPTER 3

QUANTUM TRANSPORT

Quantum transport deals with the conduction of the electrons in mesoscopic scale,

an intermediate scale in which the materials with nano-scaled dimensions and of materials

measuring micrometers.

In this chapter, a detailed information about formalism that we used for the cal-

culation of electronic and phononic transport will be given. Herein, we used Landauer

formalism for the electronic transport, and a heuristic Landauer-type heat current formula

is utilised for the phononic transport.

3.1. Electronic Transport

Within electronic transport problem, there are several methods depending on the

length scales. In this thesis, we investigated the quasi-one dimensional materials partic-

ipated in ballistic regime. Therefore, a brief information about the length scales will be

given, and then the ballistic transport of electrons and phonons will be explained in detail.

3.1.1. Transport Regimes

Comparison between the size of the structure and the average distance between

scattering events (or mean free path of the carrier) is a key for the determination of the

electronic transport regime (L. E. F. F. Torres, 2014). In ballistic regime, both width and

length of the structure are smaller than the mean free path of the carrier. In this case,

elastic scatterings from the boundaries of the structure identify the transport properties.

Therefore, the structure geometry take an important role in the such kind of transport.

In diffusive regime, mean free path of the carrier is much smaller than the size of

the sample; therefore, the carrier dwells in the sample and goes through many collisions.

In this case, the scattering from impurities is influential for the determination of transport

properties.

There is also another regime, Anderson localization regime, in which again the
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length of the structure is larger than the mean free path of the carrier. In this case, elec-

trons are localized due to the potential of impurities which causes an exponential relation

between the resistance and the length of the structure (R ∝ e−L/L0) (L. E. F. F. Torres,

2014). In this work, transport properties of quasi-one dimensional structures are investi-

gated. Since their sizes are much smaller than the mean free path, the ballistic transport

regime is considered.

3.1.2. Landauer Formalism and Total Current

Landauer (Landauer, 1957, 1970; Y. Imry, 1999) suggested that the electrical cur-

rent can be considered as a result of charge carrier injection and the transmission proba-

bility of the carriers from drain to source. Landauer’s suggestion is for the current through

a conductor in two-lead systems. Later Büttiker (Büttiker, 1986) generalized his theory

for multi-lead systems.

Let us start with the modeling of the two-lead system and the current flow in Lan-

dauer formalism (Datta, 2009, 2004; D. K. Ferry, 2009). Suppose a device is connected

to two reservoirs which have chemical potentials ( μL and μR ) as represented in left panel

of Fig. 3.1. Assume that the reservoirs (source and drain) are in the equilibrium state with

the device channels (or available energy states). For the generation of the electric current

through the channels of the device, there should be a difference between the chemical

potentials of the reservoirs. If a small bias voltage ΔV is applied, the chemical potential

of the drain decreases while the chemical potential of the source increases. The chemical

potentials of source and drain are separated by qΔV which is shown in right panel of

Fig. 3.1. Each reservoir tends to be in the equilibrium with the device. While the source

is ejecting electrons, the drain keeps collecting electrons back. Therefore, both of the

reservoirs cannot reach the equilibrium with the device and the device is forced to be in a

non-equilibrium state balancing between source and drain.

When the small bias is applied, the equilibrium between the device and the reser-

voirs is disrupted and the Fermi distributions of the source and drain differ from each

other and the applied bias can be written as follows.

ΔV =
μL − μR

q
, (3.1)

where q is the charge of the carrier. The applied bias is assumed to be small which
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means that (μL − μR) is assumed to be much smaller than kBT . Transmission function

represents the average transition probability of an electron going from one reservoir to

another. Within this assumption, transmission function of the charge carriers τ(E) has a

constant value in the energy range where the transport takes place and it can be approxi-

mately calculated at an energy equal to the Fermi energy EF . This is known as the linear

response regime.

Left Reservoir

(R
L
)

Right Reservoir

(R
R
)

Ballistic Device

Channels

μ μ
L 

μ
R 

μ
L 
-

 
μ

R 
=qV

bias

V
bias

 is

 applied

Figure 3.1. A device in equilibrium with two reservoirs (RL and RL ) is shown in the

left panel. In equilibrium, RL and RR have same chemical potential μ.

When a applied bias Vbias is applied the equilibrium is disturbed as shown

in right panel and the chemical potentials of the reservoirs differ from each

other.

(R
L
) (R

R
)Device

x

V(x)

V
0

μ
L μ

R 

Voltage drop, ΔV

Figure 3.2. A square potential barrier in one-dimensional (1D) system in equilibrium

state is shown with red dashed line. When a bias voltage Vbias is applied,

the potential of the right reservoir is changed and a voltage drop ΔV occurs

(shown as black line). In Landauer formalism, the Vbias is assumed to be

small which means ΔV is much smaller than the potential barrier. Thus

the transmission function can be calculated for the square barrier in which

transmission function has a constant value in the energy range where the

transport takes place (Brocks, 2005; Datta, 2009).

Transmission coefficient represents the average transition probability of an elec-
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tron going from one reservoir to another. In linear response regime expression for current

can be written as:

I = qnvτ(E) = −envτ(E) (3.2)

where n and v are the density (concentration) and the velocity of charge carrier, respec-

tively. n and v are defined as follows.

n =

∫
D(E)f(E)dE (3.3)

v =
1

�

∂E

∂k
(3.4)

where D(E) is density between �k and �k+ d�k (or density per unit energy) and f(E) is the

the Fermi distribution function.

Since Landauer’s formalism is obtained for one-dimensional system, let us start

with the definition of density of wire-like one-dimensional ideal electron gas sample with

a length of L. By definition, density of states is d(N1D/L)/dE where N1D is the number

of available electronic states:

N1D = 2× 2kf
2π
L

=
2L

π

(
2mE

�2

)1/2

(3.5)

where the factor 2 is for the electron spin. 2kf and (2π)/L are the length of the Brillouin

Zone and one electronic state, respectively. m and � are the effective mass of the electrons

and the Planck’s constant (h) divided by 2π, respectively. N1D is written in terms of the

energy by using the parabolic relation between k and E. Then D(E) in 1D can be written

as follows.

D(E) =
1

π

(
2m

�2

)1/2

E−1/2 (3.6)

Then the electron concentration of the conduction band is defined as:
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n =

∫ ∞

μ

D(E)f(E)dE (3.7)

=

∫ ∞

μ

(
(E − μ)−1/2(2m)1/2

�π

)
f(E − μ)dE

By using the defined expressions of n and v in Eq. 3.2 the electrical current in-

jected from left to right can be written as:

I =

(
−e

∫ ∞

0

DL(E)fL(E)vLτ(E)dE

)
+

(
e

∫ ∞

0

DR(E)fR(E)vRτ(E)dE

)
(3.8)

=

(
−e

∫ ∞

0

(
(E − μL)

−1/2(2m)1/2

�π

)
fL(E)vLτ(E)dE

)

+

(
e

∫ ∞

0

(
(E − μR)

−1/2(2m)1/2

�π

)
fR(E)vRτ(E)dE

)

in which the velocity is rewritten by using the parabolic relation between k and E vL,R =√
2(E − μL,R)/m. fL(E) and fR(E) are the Fermi distributions of the left and right

reservoirs, respectively:

fL(E) =
1

1 + e
(E−μL)

kBT

= f0(E − μL) (3.9)

fR(E) =
1

1 + e
(E−μR)

kBT

= f0(E − μR) (3.10)

where kB and T are the Boltzmann constant and temperature respectively. By using the

expressions of n and v, the current equation can be modified as:

I =
2e

�π

[
−
∫ ∞

0

fL(E)τ(E)dE +

∫ ∞

0

fR(E)τ(E)dE

]
(3.11)

=
e

h
=

∫ ∞

−∞
[fL(E)− fR(E)] τ(E)dE
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In general, the total current in Landauer formalism can be written as:

I = −2e

h

∫ +∞

−∞
dετ(ε) [fL(ε)− fR(ε)] , (3.12)

As mentioned before, at the equilibrium state, both of the reservoirs have the same chemi-

cal potential and the current is zero. When there occurs small deviations from the equilib-

rium state, the current is proportional the applied bias. The applied bias is infinitesimal;

thus, the distribution function, f(ε), can be expanded around equilibrium values of the

chemical potential and temperature by using the Taylor’s series expansion.

fi(ε) ∼= f(ε) +
∂f(μ)

∂μ
(μ− μi) +

∂f(T )

∂T
(T − Ti), (3.13)

where i = L,R. Let (ε − μ)/(kBT ) = x, then find an expression for ∂f(μ)/∂μ and

∂f(T )/∂T in terms of f(ε). By using the chain rule:

∂f(μ)

∂μ
=
∂f

∂x

∂x

∂μ
=

1

kBT

ex

(ex + 1)2
= −∂f(ε)

∂ε
(3.14)

∂f(T )

∂T
=
∂f

∂x

∂x

∂T
=

ε− μ

kBT 2

ex

kBT (ex + 1)2
=

ε− μ

T
(−∂f(ε)

∂ε
) (3.15)

Substituting ∂f(μ)/∂μ and ∂f(T )/∂T into Eq. 3.13:

fL(ε)− fR(ε) =f(ε) + (μ− μL)(−∂f(ε)

∂ε
) + (T − TL)

ε− μ

T
(−∂f(ε)

∂ε
) (3.16)

−
[
f(ε) + (μ− μR)(−∂f(ε)

∂ε
) + (T − TR)

ε− μ

T
(−∂f(ε)

∂ε
)

]

=(μL − μR)
∂f(ε)

∂ε
+ (TL − TR)

ε− μ

T

∂f(ε)

∂ε

Then the current can be written as follows.

I =
2e2

h

∫ +∞

−∞
dετ(ε)ΔV

∂f(ε)

∂ε
− 2e

h

∫ +∞

−∞
dετ(ε)ΔT

ε− μ

T

∂f(ε)

∂ε
(3.17)
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where μL − μR = qΔV = −eΔV and TL − TR = ΔT .

By recalling the Ohm’s law (V = IR), one can define the conductance (which is

the inverse of the resistance R) G = I/V . By using the current expression in Eq. 3.17 in

which ΔT goes to zero, G is defined as:

G =
2e2

h

∫ +∞

−∞
dετ(ε)(−∂f(ε)

∂ε
), (3.18)

which is known as Landauer’s formula and the linear response of current to the applied

bias can be deduced from this expression of conductance G.

3.2. Phononic Transport

Green’s functions are being used to describe various phenomena in many branches

of physics which includes the electronic (Meir and Wingreen, 1992) and phononic trans-

port (Ozpineci and Ciraci, 2001; Mingo and Yang, 2003; Yamamoto and Watanabe,

2006). In phonon transport, the Green’s function method is used for describing the heat

current and for an expression for the transmission function obtained by Yamamoto and

Watanabe (Yamamoto and Watanabe, 2006). Here, a brief information about retarded

Green’s functions are given for the equilibrium state (Sevinçli et al., 2019).

For the beginning, Hamiltonian is defined for obtaining the total energy of the

system described with the atomic displacements from the equilibrium positions of the

atoms. The mass-normalized displacements are defined as ui,α =
√
mixiα, where mi is

the mass of ith atom and xiα defines the displacements of ith atom along the α-direction

(α = x, y, z).

H =
1

2

∑
i,α

u̇2
i,α +

1

2

∑
ij,αβ

φij,αβui,αuj,β + · · ·+ 1

3!

∑
ijk,αβγ

ψijk,αβγui,αuj,βuk,γ (3.19)

+
1

4!

∑
ijkl,αβγθ

ψijkl,αβγθui,αuj,βuk,γul,θ,

where φij,αβ = ∂2Etot/(∂uiα∂ujβ) are the the dynamical matrix elements and, ψijk,αβγ =

∂3Etot/(∂uiα∂ujβukγ) and ψijkl,αβγθ = ∂4Etot/(∂uiα∂ujβukγulθ) defines the anharmonic
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force constants (which are mass-normalized). The second order terms are defined as the

harmonic part of the Hamiltonian, Hharm, and the third and the higher order terms are

included in the non-linear part (Hint). Harmonic part of the Hamiltonian is actually an

eigenvalue problem.

Φ|uq〉 = ω2|uq〉, (3.20)

where uq and ω2 are the eigenvectors and the corresponding eigenvalue, respectively and

Φ is the dynamical matrix.Eq. 3.20 is the mass-normalized form of the eigenvalue prob-

lem. Without mass-normalization, it has a form as

V (2)|xq〉 = ω2M |xq〉, (3.21)

where the terms V
(2)
ij,αβ = ∂Etot/(∂xiαxjβ) are the harmonic force constants and M repre-

sents the diagonal matrix of the atomic masses.

For the diagonalization of the Hharm =
∑

q �ω(a
+
q aq +

1
2
), one can use the anni-

hilation and creation operators

aq =

√
ωq

2�
(uq +

i

ωq

u̇q) (3.22)

a+q =

√
ωq

2�
(uq − i

ωq

u̇q) (3.23)

which satisfy the [aq, a
+
q ] = δqq′ .

Before defining the Green’s function, it is necessary to remind that the left reser-

voir has a higher temperature and there is no scattering process inside the reservoirs. The

sample part of the device is denoted as the central region (C) the connection between two

reservoirs. All scattering events are included in this region. The related retarded Green’s

function is defined as

Gr(ω) = [(ω + iδ)2I− Φ]−1, (3.24)

where δ is a positive number with an infinitesimal value and I represents a unit matrix.
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In the diagonal basis, the elements of the retarded Green’s function can be defined as

Gr
qq′ = δqq′/(ω

2 − ω2
q + iδ) with δqq′ being the Kronecker-δ function.

The dynamical matrix and the retarded Green’s function can be expressed in terms

of matrices. Then the Eq. 3.24 becomes

⎡
⎢⎢⎣
(ω + iδ)2I− ΦLL −ΦLC 0

−ΦCL (ω + iδ)2I− ΦCC −ΦCR

0 ΦRC (ω + iδ)2I− ΦRR

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣
GLL,r GLC,r GLR,r

GCL,r GCC,r GCR,r

GRL,r GRC,r GRR,r

⎤
⎥⎥⎦ = I. (3.25)

The second column of the product in Eq. 3.25 is the result of the following equa-

tions.

(gL,r)−1GLC,r − ΦLCGCC,r = 0, (3.26)

ΦCLGLC,r + [(ω + iδ)2 − ΦCC,r]GCC,r − ΦCRGRC,r = I, (3.27)

(gR,r)−1GRR,r − ΦRCGRC,r = 0, (3.28)

where the retarded Green’s functions are defined as gL/R,r = [(ω + iδ)2I − ΦLL/RR]−1

for uncoupled reservoirs. Green’s function of the central region is attained by using the

equations above.

GCC,r = [(ω + iδ)2I− ΦCC − ΣL,r − ΣR,r]−1 (3.29)

where ΣL/R = ΦCL/CRgL/CΦLC/RC are the self energies caused by the coupling to the

reservoirs.

By using the Green’s function method, Rego and Kirczenow (Rego and Kir-
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czenow, 1998) reproduced the Landuer-type formula for the heat current which is defined

as follows.

J =

∫ ∞

0

dω

2π
�ω[fBE(ω, TL)− fBE(ω, TR)]τ(ω) (3.30)

where fBE is the Bose-Einstein distribution function. TL,R and τ(w) are the temperature

and frequency dependent transmission function, respectively.

3.3. Thermoelectric Properties

Thermoelectric materials convert heat to electrical energy. The efficiency of ther-

moelectric materials are given in terms of a dimensionless figure of merit which is defined

as ZT = (σS2T )/κ, where σ is the electrical conductivity and S represents the Seebeck

coefficient, respectively. The total thermal conductivity, κ is inversely proportional to the

ZT . The total thermal conductivity has contributions from the electron thermal conduc-

tivity, κe and the phonon thermal conductivity, κph. From the definition of ZT , one can

deduced that higher efficiency requires the higher electrical conductivity and the higher

Seebeck coefficient and less the thermal conductivity.

1) Conductance: According to Ohm’s law, in macroscopic scale, conductance of a

conductor, G, is directly proportional to its conductivity, σ, and its cross-sectional

area, A. The conductivity is an intrinsic property of the conductor. When the length

of the conductor is reduced, the conductance is expected to increase indefinitely

since G is inversely proportional to the length of the material. By definition, con-

ductance is the ability to conduct electricity and it can be measured as:

G = −
(

I

ΔV

)
ΔT=0

(3.31)

Conductance can also expressed in terms of transmission coefficient τ(E) using the

total current derived is Landauer formalism.
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G =− 1

ΔV

(
2e2

h

∫ +∞

−∞
dετ(ε)ΔV

∂f(ε)

∂ε
− 0

)
(3.32)

=
2e2

h

∫ +∞

−∞
dετ(ε)(−∂f(ε)

∂ε
) = e2L0,

where

Ln =
2

h

∫ +∞

−∞
dετ(ε)(−∂f(ε)

∂ε
)(ε− μ)n (3.33)

2) Seebeck Coefficient: Seebeck coefficient gives the magnitude of conversion of heat

to electrical power or vice versa. When a non-zero temperature gradient is applied

to a device, there occurs a voltage between the two ends of the material. The ratio of

the resulting voltage and the temperature difference is called the Seebeck coefficient

whose absolute is known as the thermopower.

S = −
(
ΔV

ΔT

)
I=0

(3.34)

For the derivation of the Seebeck coefficient in terms of transmission coefficient

τ(E), one can start from making the total current in Landauer formalism equal to

zero.

0 =
2e2

h

∫ +∞

−∞
dετ(ε)ΔV

∂f(ε)

∂ε
− 2e

h

∫ +∞

−∞
dετ(ε)ΔT

ε− μ

T

∂f(ε)

∂ε
(3.35)

or

2e2

h

∫ +∞

−∞
dετ(ε)ΔV

∂f(ε)

∂ε
=

2e

h

∫ +∞

−∞
dετ(ε)ΔT

ε− μ

T

∂f(ε)

∂ε
(3.36)

By solving any of these equations for −ΔV/ΔT the one can obtain S.
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−ΔV

ΔT
= −

2
h

∫ +∞
−∞ dετ(ε)ΔT ε−μ

T
∂f(ε)
∂ε

2
h

∫ +∞
−∞ dετ(ε)ΔV ∂f(ε)

∂ε

= −(
L1

eTL0

) (3.37)

3) Thermal Conductance of Electrons: Thermal conductivity is an intrinsic prop-

erty of the material which measures the ability to conduct heat. It can be defined

as the amount of heat which passes in unit time through a particular area and thick-

ness when a temperature difference is applied between the two end of the material.

Thermal current IQ and thermal conductivity κel are defined as:

IQ =
2

h

∫ +∞

−∞
dEτ(E)[fL(E)− fR(E)](E − μ) (3.38)

κel = −
(

IQ
ΔT

)
I=0

(3.39)

By equaling the heat current to zero and solving the equation for the applied bias:

2e2

h

∫ +∞

−∞
dετ(ε)ΔV

∂f(ε)

∂ε
=
2e

h

∫ +∞

−∞
dετ(ε)ΔT

ε− μ

T

∂f(ε)

∂ε
(3.40)

eΔV
2

h

∫ +∞

−∞
dετ(ε)

∂f(ε)

∂ε
=
ΔT

T

2

h

∫ +∞

−∞
dετ(ε)(ε− μ)

∂f(ε)

∂ε
(3.41)

eΔV L0 =
ΔTL1

T
(3.42)

ΔV =
ΔT

eT

L1

L0

(3.43)

Using the resulting expression for ΔV in the heat current:
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IQ =
2

h

∫ +∞

−∞
dετ(ε)(ε− μ)

[
−eΔV

∂f(ε)

∂ε
+ΔT

(ε− μ)

T

∂f(ε)

∂ε

]
(3.44)

=− eΔV (−L1) +
ΔT

T
(−L2) (3.45)

=
ΔV L1

2

TL0

− ΔT

T
(L2) (3.46)

Then thermal conductance of electrons can be written as:

κel = −
(

IQ
ΔT

)
I=0

=
1

T
(L2 − L1

2

L0

) (3.47)

4) Lorenz Number: Electrons carry charge and heat and there is a relation between

their electrical and thermal conductivity investigated within the Wiedemann-Franz

law. According to this law, the ratio of the thermal conductivity to the electrical

conductivity in metals is directly proportional to a constant times temperature. This

constant is called Lorenz number defined as L = κel/(σT ) (Kittel, 1996). How-

ever, for semiconducting materials L fluctuates and it can have values between 0.2

and 10 (Esfarjani et al., 2006). Lorenz number takes an important role for the

determination of the estimated value of phonon thermal conductivity experimen-

tally (H.-S. Kim and Snyder, 2015).

Theoretical value of Lorenz number can be defined as:

L =
κel

GT
=

1

T 2
(L2 − L2

1

L0

)
1

e2L0

=
1

e2T 2
(
L2

L0

− L2
1

L2
0

) (3.48)

The theoretical value of Lorenz number can be calculated analytically for a mate-

rial whose chemical potential is set to zero. Considering the transport regime is

ballistic, we calculated the theoretical value of Lorenz number for a simple metal

and semiconductor. For a semiconductor with τ(E) = Θ(E),
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L0 =
2

h

∫ +∞

0

dε(−∂f(ε)

∂ε
) =

1

h
(3.49)

L1 =
2

h

∫ +∞

0

dε(−∂f(ε)

∂ε
)ε =

2

h
kBT log(2) =

2

h
kBT (0.69315) (3.50)

L2 =
2

h

∫ +∞

0

dε(−∂f(ε)

∂ε
)ε2 =

2

h
(kBT )

2π
2

6
(3.51)

By using the Ln values in Eqs. 3.49- 3.51, Lorenz number is found to be 1.37(kB/e)
2

for a semiconductor at the band edges. For a simple metal, one can assume constant

transmission probability, which leads L1 integral is to be zero and the obtained value

for Lorenz number is (π2/3)(kB/e)
2 (which is approximately 2.44×10−8WΩK−2).

This result is exactly same as the Sommerfeld value of the Lorenz number which is

also known as the degenerate limit (N. W. Ashcroft, 1975b).
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Figure 3.3. The band structure of a semiconductor is shown on the left. Fermi level

is set to zero. In the right panel, Lorenz number L at 300 K of a

semiconductor is given as a function of chemical potential. Red dashed

lines represent the degenerate (Sommerfeld) limit which has a value of

2.44× 10−8WΩK−2 and green dashed line is the lower limit with a value

of approximately 0.75× 10−8WΩK−2.
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It was reported that L converges to the degenerate limit inside the bands; however,

as approaching the band edges this value drops to 1.1 × 10−8WΩK−2 (H. Zhou,

2016b). By using the Eqs. 3.48- 3.51, we investigated the dependence of L on

chemical potential μ and temperature. At 300 K, the relation between the L and

μ is given in Fig. 3.3. As it is seen, L converges to the degenerate limit inside the

bands and it is started drop as approaching to the band gap. Inside the band gap, L

is approximately 0.75× 10−8WΩK−2.

5) Thermal Conductance of Phonons: Phonons conduct heat in any case. Thermal

conductance of phonons can be described as:

κp =
1

2π

∫ +∞

−∞
dw�ωτ(ω)

∂fBE(ω, T )

∂T
(3.52)

where fBE is Bose-Einstein distribution function, fBE = 1/(exp(�ω/kBT ) − 1)

and τ(ω) is the frequency dependent transmission function.
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CHAPTER 4

STRUCTURAL, ELECTRONIC, VIBRATIONAL AND

TRANSPORT PROPERTIES OF HfSe2 STRUCTURES

In this study, the structural, electronic, vibrational and thermoelectric properties

of T-HfSe2 nanoribbons (NRs) having various widths are examined and the results are

discussed. In the following sections, we discussed particular NRs in order to see the

effect of nanostructuring on the properties of T-HfSe2. The detailed information about the

properties of all NRs and the computational methodology of our calculations are given in

Appendix A.

4.1. Structural Properties

Top and side views of the relaxed single layer and NR geometries are shown in

Fig. 4.1 and their calculated parameters are given in Table 4.1 The single layer HfSe2 (SL-

HfSe2) is formed with the arrangement of three atomic sub-layers in the sequence of Se-

Hf-Se. Here, the octahedral 1T phase of the SL-HfSe2 which belongs to the P 3̄m1(D3d)

is investigated.

During the construction of the NRs, structures with zigzag and armchair edges are

investigated. The structures with zigzag edges reveal metallic characteristics; thus, NR

Table 4.1. Calculated parameters of the single layer (SL-HfSe2) and nanoribbon (NR)

structures are; the lattice constant b; the thickness of the structures, t; the

width of the structures; w, the energy band gaps calculated with PBE and

PBE+HSE06 functionals, EPBE
g and EPBE+HSE06

g , respectively.

b t w EPBE
g EPBE+HSE06

g

Structure (Å) (Å) (nm) (eV) (eV)
SL-HfSe2 3.76 3.14 - 0.60 1.50
n=13 6.54 3.26 2.30 0.66 1.35
n=12 6.54 3.26 2.12 0.72 1.41
n=7 6.53 3.27 1.18 0.67 1.37
n=6 6.60 3.25 0.99 0.98 2.01
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structures with periodicity along the armchair direction are studied. Naming of NRs is

based on the number of atoms, n, in the width of nanoribbon. As seen in Figs. 4.1(c)

and (d), there is a the difference between the arrangement in the edges of the structures

with even and odd n. Considering the structures with odd n, both of edges are symmetric

with respect to each other which means structures has the mirror image symmetry with a

symmetry line passes through the center of the structures. This symmetry breaks down in

the structures with even n and they reveal glide reflection symmetry. NRs are thicker than

the SL-HfSe2 and the change in the thickness is about 4% When NRs are compared with

the 2D counterpart, the bond lengths near the edges become shorter, but the average bond

length in NR does not change drastically.

Hf Se
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Figure 4.1. The geometries of the single layer (SL-HfSe2) and nanoribbons (NRs) are

represented. (a) Blue and orange lines show the armchair and zigzag direc-

tions, respectively. (b) Atoms marked with red circles define the number

of atoms in the width of NR, n. In (c) and (d), NRs with two different type

of edges are illustrated.

4.2. Electronic Properties

The calculated electronic band spectra of the structures are demonstrated in Fig.

4.2. According to our calculations, SL-HfSe2 is a nonmagnetic semiconductor with en-

ergy gap calculated within PBE is 0.60 eV which is consistent with the literature (Özbal

et al., 2019). As the dimension of the structure is reduced, the semiconducting character

is preserved and the energy band gap increases . Reducing the number of chains one by

one or in pairs effects the electronic band dispersion differently. As seen from the Figs.

4.2(b)-(e) the structures with odd (even) n reveals the same dispersion trend among them-
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selves. This results from that structures with odd and even n have different symmetries as

shown in Fig. 4.2(f).
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Figure 4.2. Electronic band structures for (a) single layer (SL-HfSe2) and (b)-(e)

nanoribbon (NR) structures with n=6,7,12,13 are presented. The Fermi

level is set to zero. (f) NRs with even n have glide reflection symmetry,

while NRs with odd n have mirror image symmetry. (g) As the width of

the NR is getting wider, the energy band gap value converges to the band

gap value of SL-HfSe2.

As represented in Fig. 4.2, as the NR structure enlarges, the band gap of the NR

converges to the band gap of the SL-HfSe2. This is expected since the structure ap-

proaches to the 2D-limit. Moreover, the contributions come from the holes and the elec-

trons cancels with each other when the energy band gap of the material is less than 10kBT

which results in suppression of the Seebeck coefficient (G. S. Nolas, 2001). In order to

overcome this problem HSE06 hybrid functional is used for the band gap estimation.

4.3. Vibrational Properties

Here, the vibrational properties of SL-HfSe2 and NR structures are examined. The

calculated phonon spectra of the structures are shown in Fig. 4.3. The vibrational analyses

reveal that each structure has non-negative phonon branches through the whole BZ. This

indicates the dynamical stability of the structures at T = 0 K.

Maximum frequency of the optical phonon branch for 2D structure is less than

250 cm−1. When the dimension is reduced, this value increases over 250 cm−1 and does

not differs with the width of the NR structures. Since Hf and Se atoms are relatively
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massive and the bonds in the material is weak, the maximum value of the frequency has

value about 250 cm−1.
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Figure 4.3. Phonon band spectra of the single layer (SL-HfSe2) and nanoribbon (NRs)

structures are presented.

For each structure, there are 3N number of phonon branches where N is the num-

ber of atoms in the unit cell. Decrease in the number of branches can be seen in Fig. 4.3

with the decreasing of N . In 2D structures, there are 3 acoustic and 3N -3 optical phonon

branches. When dimension is reduced to 1D, the number of acoustic phonon branches

increase up to four since a rotational motion that costs zero energy is participated and the

motion reveals itself as acoustic vibration.

Moreover, the optical phonon mode with the lowest energy has an in-plane charac-

teristics. As it seen from Figs. 4.3, the frequencies of these mode increase as the structure

is getting narrower. Thus, these modes are essential for the determination of the widths

of the NR structures.

4.4. Thermoelectric Properties

In this section, thermoelectric properties of the single layer and NR structures; and

particularly, the width dependency of the thermoelectric figure of merit ZT are discussed.

The calculated values of these thermoelectric coefficients such as the Seebeck coefficient

S, the power factor P and the ZT at various temperatures are given in Table. 4.2. The

given ZT values are the maximum values (near the conduction and valance band edges),

and the Seebeck coefficient and the power factor values correspond to the chemical po-

tentials at which ZT peaks.

For the NR structure with n=12, ZT and the phonon thermal conductance per
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Table 4.2. The calculated parameters of the single layer (SL-HfSe2) (Özbal et al.,

2019) and nanoribbon structures are; p- and n-type Seebeck coefficient, S;

power factor, P , thermoelectric figure of merit, ZT , and phonon thermal

conductance per nm, κp.

S (10−4V/K) P (10−3nW/K2nm2) ZT
Structure 300 K 800 K 300 K 800 K 300 K 800 K
SL-HfSe2 1.92 / -2.20 2.12 / -2.65 0.56 / 1.84 0.92 / 2.61 0.26 / 0.75 0.84 / 2.11
n=13 2.35 / -2.36 2.47 / -2.63 1.40 / 1.08 1.78 / 2.25 0.89 / 0.62 1.96 / 2.16
n=12 2.39 / -2.15 2.49 / -2.65 1.32 / 1.48 1.66 / 1.96 0.83 / 0.95 1.97 / 2.11
n=7 2.37 / -2.22 2.55 / -2.45 1.12 / 0.82 1.37 / 1.13 1.08 / 0.85 2.57 / 2.09
n=6 2.25 / -2.45 2.72 / -2.68 0.83 / 1.47 1.24 / 1.38 0.94 / 1.55 2.62 / 3.12

width are shown as a function of temperature and ZT is also given as a function of chem-

ical potential in Fig. 4.4. At the temperatures above 300 K, ZT reveals increasing perfor-

mance. This results partly from that the phonon thermal conductance is constant for those

temperature values since the maximum frequency remains at 250 cm−1 (see Fig. 4.3).

ZT decreases with increasing the phonon thermal conductance; thus, the main contribu-

tion to total κ comes from the electronic part and the thermoelectric efficiency increases

almost linearly. As seen in Fig. 4.4, for the temperatures above 900 K, ZT values start

to decrease with the increasing temperature because 10kBT limit is reached. Therefore,

n-type and p-type contributions start to cancel each other which results in a decrease in

ZT value.
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Figure 4.4. From left to right, thermoelectric figure of merit (ZT) as a function of

temperature , the phonon thermal conductance (κp) and ZT as a function

of chemical potential (μ) are given for nanoribbon (NR) with n=12.

The temperature and width dependencies of ZT are investigated and they are

shown in Fig. 4.5. When the dimension of the structure is reduced, p-type Seebeck co-
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efficient and power factor values increase. At both low and high temperatures, p-type

ZT values of NRs with odd and even n are enhanced. At low temperatures, n-type ZT

shows the same trend as p-type. As the width of the NR enlarges, the ZT values of NRs

converge to the 2D limit.
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Figure 4.5. In the top panel, variation of n-type thermoelectric figure of merit (ZT)

with the width of the nanoribbon (NR) and ZT as function of temperature

for NRs with even and odd n are given. p-type ZT values are given in the

bottom panel.

ZT value is expected to decrease as the width of the structure increases. As seen

in Fig. 4.5, n-type ZT values of structures with odd n at 800 K show a different trend from

the expected. In order to understand this behaviour in ZT -width relation, the electronic

band and their transmission spectra are investigated in detail. Their band dispersion and

transmissions; and at various temperatures, the power factor and ZT graphs are shown

in Fig. 4.6. ZT of the structure with n=11 and n=13 have higher values than that of

the narrower ones. As seen in Fig. 4.6, as n increases, first conduction plateau of the

transmission spectrum of the structures is getting narrower due the band degeneracy in

their electronic band structure. This results in having two peaks with similar values in their

power factor values. At low temperatures, these two peaks are separated from each other.

As the temperature increases, these peaks interfere with each other constructively and

this causes an increase in n-type ZT values of the NRs with n=11 and n=13. Moreover,

increase in the number of electronic band leads an increase in transmission. This also
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makes contribution to the increment of ZT values.

The width and temperature dependence of phonon thermal conductance κp is in-

vestigated. The calculated κp values for 300 and 800 K are given in Fig. 4.7. κp is also

given as a function of temperature in Fig. 4.7. The given values are scaled with respect

to the width of the NRs. The κp of SL-HfSe2 along zigzag and armchair directions are

isotropic and they are scaled with respect to the width of the unit cell (Özbal et al., 2019).
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Figure 4.6. For the nanoribbons (NRs) with n=9, n=11 and n=13, the electronic band

and their transmission spectra are given in the first row. Power factor and

thermoelectric figure of merit (ZT) are shown in the second and third rows,

respectively.

As seen in Fig. 4.7, the calculated κp values at 300 and 800 K are close to each

other. As the width of the structure decreases, κp values increase. The lattice thermal con-

ductance and the with do not change with the same rate. In order to see the convergence
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of κp to 2D limit, one can construct NRs with widths larger than 2.68 nm; however, this

increases the computational cost. Therefore, NR structures larger than 2.68 nm are not

considered in this study.
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Figure 4.7. In the left panel, the phonon thermal conductance (κp) of the single layer

T-HfSe2 (SL-HfSe2) and nanoribbon (NR) structures are given at 300 and

800K. In the right panel, κp of NR structures are given as a function of

temperature. κp values are the scaled values with respect to the width of

the NRs. κp values of SL-HfSe2 are from the study of Özbal et al. (2019).

Furthermore, Lorenz number of the NRs are calculated at 300 K and the calcu-

lated values are close to the degenerate semiconductor (Sommerfeld) limit. The scaled

values of L (with respect to Sommerfeld value) are given in Appendix A. The chemical

potential of a material can be tuned by doping or applying a gate voltage and the chemical

potential dependency of Lorenz number is a study topic in literature (H. Zhou, 2016a).

Therefore we calculated L values of NRs given as a function of chemical potential given

in Fig. 4.8. The L values where the chemical potential within the conduction and valence

bands converge to the degenerate limit. When the chemical potential inside the band

gap, the proportionality is altered since there is no carrier in that energy range (H. Zhou,

2016b).

As it is seen in Fig. 4.8, near the conduction and valence band edges, L is higher

than the theoretical value (0.75 × 10−8WΩK−2) mentioned in Ch. 3. Inside the bands,

L value fluctuates around Sommerfeld value for each NR structure and the fluctuations

result from the change in the transmission function (given in Appendix A).
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Figure 4.8. Lorenz number L of the nanoribbons (NRs) is given as a function of chem-

ical potential μ at 300 K. Red dashed lines represent the degenerate (Som-

merfeld) limit which has a value of 2.44 ×10−8WΩK−2. Vmax and Cmin

are the valence band maximum and conduction band minimum values, re-

spectively.

In literature, the deviations from the theoretical value of Lorenz number is an

object at issue. It was reported that using a constant value for L is not convenient in

cases where there is not enough information about the band structure and the scattering

mechanism. For the degenerate limit, it was suggested a correction which depends on

the thermopower. It was also mentioned that the deviations are caused by multiple band

behaviour in thermopower-dependent Lorenz number (H.-S. Kim and Snyder, 2015).
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CHAPTER 5

CONCLUSIONS

In the beginning of this thesis, we mentioned the 2D materials, particularly, TMDs

and several structural and electronic properties of TMDs that make them relevant about

thermoelectricity. Moreover, a brief information about the thermoelectric materials and

their working principles were given and discussed how to enhance their thermoelectric

efficiencies.

Here, we investigated the enhancement in ZT values of 2D T-HfSe2. As men-

tioned before, the nanostructuring is one of the effective methods in that manner. There-

fore, we generated NR structures with various widths and investigated their electronic and

phononic band structures via density functional theory-based first-principles calculations.

The quasi-one dimensional T-phase HfSe2 structures were found to be dynamically stable

at zero Kelvin and analyzed how their electronic band structure varies with their widths.

In this study, our main focus was to enhance the thermoelectric properties of the

T-phase HfSe2 structures via nanostructuring. We investigated the ballistic transport prop-

erties within the Landauer formalism. In conclusion, we calculated that the p-type ZT

parameter of T-phase HfSe2 at both low and high temperatures are enhanced. Moreover,

thermoelectric properties of the NR with different width are compared with each other

and as a result, we found that the thermoelectric properties HfSe2 is enhanced forming

its quasi-one dimensional structures as predicted. Beside reducing the dimensions, we

found that the effect of band degeneracy has also contribution to the ZT increment. We

reported that NR structures of T-phase HfSe2 are suitable candidates in thermoelectric

device applications.
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APPENDIX A

NANORIBBON STRUCTURES OF T-HfSe2

In this study, we constructed ten different nanoribbons (NRs) and their widths vary

between n = 6 to n = 15. In this part, detailed information about structural, electronic,

vibrational and thermoelectric properties of each NR are given. Computational details are

also given in this part.

A.1. Structural Properties

The geometrical optimization is performed by adopting Perdew-Burke-Ernzerhof

(PBE) form of the generalized gradient approximation (GGA) functional for describing

the exchange-correlation energies. The cutoff energy of the plane-wave basis set was

taken to be 250 eV. For the convergence criterion, the energy difference between succes-

sive electronic steps was chosen to be 10−5 eV and the Hellmann-Feynman forces on each

atom were reduced to a value of less than 10−4 eV/Å. For the Brillouin Zone integration

of the unit cell, we used 1×12×1 Γ-centered mesh. The NR structures are assumed to
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Figure A.1. The optimized geometries of the nanoribbon (NR) structures with odd n
(upper row) and even n (lower row) are given. Grey and yellow atoms

represents the Hf and Se atoms, respectively.

44



Table A.1. Calculated parameters of the single layer (SL-HfSe2) and nanoribbon (NR)

structures with various n are; the lattice constant b; the thickness of the

structures, t; the width of the structures; w, the energy band gaps calcu-

lated with PBE and PBE+HSE06 functionals, EPBE
g and EPBE+HSE06

g ,

respectively.

b t w EPBE
g EPBE+HSE06

g

Structure (Å) (Å) (nm) (eV) (eV)
SL-HfSe2 3.76 3.14 - 0.60 1.50
n=15 6.53 3.26 2.68 0.66 1.34
n=14 6.54 3.26 2.49 0.69 1.38
n=13 6.54 3.26 2.30 0.66 1.35
n=12 6.54 3.26 2.12 0.72 1.41
n=11 6.54 3.26 1.93 0.67 1.36
n=10 6.55 3.26 1.74 0.76 1.46
n=9 6.54 3.26 1.56 0.68 1.37
n=8 6.57 3.26 1.37 0.83 1.54
n=7 6.53 3.27 1.18 0.67 1.37
n=6 6.60 3.25 0.99 0.98 2.01

be periodic in the y-direction; therefore, at least 12 Å of vacuum space is used for the

confined directions (x- and z-directions). Top and side views of relaxed geometries of

each NR are shown in Fig. A.1. Their calculated structural and electronic parameters are

given in Table A.1.

A.2. Electronic Properties

The electronic band dispersions of each NR are calculated within the PBE and

HSE06 hybrid functional was adopted for the band gap estimation. For the electronic

band structure calculations, we used the same convergence criteria as used in geometri-

cal optimization. Transmission spectrum is calculated by counting the number of bands

(channels) in the corresponding energy range.

The calculated band diagrams and the edge symmetries of the two different type

of armchair NRs are given in Fig. A.2. Different trend in the electronic band dispersion of

the structures with odd and even n can be seen from the Fig. A.2. For the each structure,

the electronic band structures and transmissions calculated within PBE are also given.

The band degeneracy and the transmission increase as the width of the structure enlarges.
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Figure A.2. The electronic band structures and transmissions calculated within PBE are

given for the nanoribbon (NR) structures with odd n (first row) and even

n (second row). The electronic band structures of NRs with odd n (third

row) and even n (fourth row) calculated within PBE and PBE+HSE06 are

shown. The symmetry of the sytuctures are also given. grey and yellow

atoms represent the Hf and Se atoms, respectively.

A.3. Vibrational Properties

For the phonon band spectrum calculations, the convergence criteria were not

changed. For the Brillouin Zone integration, 1×10×1 Γ-centered mesh was used. The

vibrational properties of NRs were investigated for 1×6×1 supercell by using the small

displacement method as implemented in Phonopy code (Togo and Tanaka, 2015). Trans-

mission spectrum gives the number of modes in the corresponding frequency range.

For the structures with n =15 and n =14, negative frequency occurs around Γ

high symmetry point caused by numerical error. The structures with n =15 and n =14 in-

clude relatively more atoms within their unitcells. Therefore, for these structures, 1×5×1

46



supercell and 1×6×1 Γ-centered mesh were used for the phononic band calculations.

The calculated phononic band spectra and their transmission functions are given

in Fig. A.3 and as it is seen, each nanoribbon structure is found to be dynamically stable.

The number of atoms in the unit cell increases with the width of the NR; thus, the number

of phonon branches and the transmissions increase.
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Figure A.3. The vibrational spectra and their transmissions for the nanoribbon (NR)

structures with odd (upper row) and even (lower row) n are given.

A.4. Thermoelectric Properties

In order the compute the thermoelectric properties, we calculated the Ln integral

in Eq. 3.33 for n = 0, 1, 2 and we used the definitions of electrical conductance, See-

beck coefficient, power factor and thermal conductance mentioned in Chapter 3.3. The

transmission spectrum for electrons (phonons) is calculated by counting the number of

channels in the corresponding energy (frequency) range.

By definition, conductivity gives the ratio of the conductance to cross-sectional

area. However, in this study, the electrical and thermal conductances are calculated for

the unit cell and they divided by the width of the corresponding nanoribbon. Therefore,

the given values are not the conductivities, but the conductance per nanometer. The con-

ductance values given in Ref. (Özbal et al., 2019) are calculated in the similar way. The

conductace values are scaled with respect to the width of the unit cell. The calculated See-

beck coefficient, power factor and the ZT values at 300 and 800 K are given in Table. A.2.
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Table A.2. The calculated parameters of the single layer (SL-HfSe2) and nanoribbon

(NR) structures are; p- and n-type Seebeck coefficient, S; power factor, P ,

thermoelectric figure of merit, ZT , and phonon thermal conductance per

nm, κph Results of SL-HfSe2 structure is from the Ref. (Özbal et al., 2019)

S (10−4V/K) P (10−3nW/K2nm2) ZT
Structure 300 K 800 K 300 K 800 K 300 K 800 K
SL-HfSe2 1.92 / -2.20 2.12 / -2.65 0.56 / 1.84 0.92 / 2.61 0.26 / 0.75 0.84 / 2.11
n=15 2.37 / -2.25 2.54 / -2.64 1.42 / 1.42 2.03 / 2.73 0.76 / 0.66 1.86 / 2.24
n=14 2.11 / -2.17 2.54 / -2.68 1.33 / 1.52 1.85 / 2.61 0.77 / 0.88 1.90 / 2.21
n=13 2.35 / -2.36 2.47 / -2.63 1.40 / 1.08 1.78 / 2.25 0.89 / 0.62 1.96 / 2.16
n=12 2.39 / -2.15 2.49 / -2.65 1.32 / 1.48 1.66 / 1.96 0.83 / 0.95 1.97 / 2.11
n=11 2.39 / -2.24 2.45 / -2.62 1.31 / 0.97 1.58 / 2.00 0.91 / 0.61 2.01 / 2.10
n=10 2.38 / -2.44 2.54 / -2.70 1.31 / 1.47 1.50 / 1.72 0.94 / 1.07 2.15 / 2.27
n=9 2.38 / -2.20 2.52 / -2.54 1.31 / 0.80 1.47 / 1.31 1.02 / 0.68 2.24 / 1.81
n=8 2.37 / -2.45 2.57 / -2.83 1.12 / 1.47 1.38 / 1.75 0.95 / 1.27 2.43 / 2.69
n=7 2.37 / -2.22 2.55 / -2.45 1.12 / 0.82 1.37 / 1.13 1.08 / 0.85 2.57 / 2.09
n=6 2.25 / -2.45 2.72 / -2.68 0.83 / 1.47 1.24 / 1.38 0.94 / 1.55 2.62 / 3.12

We also calculated Lorenz number for the NR structures. The calculated values are

scaled with respect to the degenerate limit (Sommerfeld value) and the results are given

in Table. A.3. Given L values correspond to chemical potential where ZT is maximum.

As it is seen from the Table. A.3, the calculated Lorenz number for the NR structures are

close to the theoretical value for the degenerate semiconductors (2.44× 10−8WΩK−2).

Table A.3. For nanoribbon (NR) structures, the calculated p- and n-type Lorenz num-

bers scaled with respect to the Sommerfeld value are given.

at 300 K at 800 K
Structure p-type n-type p-type n-type
n=15 0.8 1.3 1.0 1.0
n=14 0.8 0.8 1.0 1.2
n=13 0.8 1.2 1.0 1.1
n=12 0.8 0.7 0.9 1.1
n=11 0.8 1.0 1.0 1.2
n=10 0.8 0.7 0.8 0.9
n=9 0.8 0.9 0.8 1.1
n=8 0.9 0.7 0.7 0.9
n=7 0.9 0.9 0.8 1.0
n=6 1.1 0.7 0.8 0.6

For the each NR structure, the electrical conductance G, Seebeck coefficient S, the

thermal conductance of electrons κel, the power factor P and ZT are given as a function of
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chemical potential μ in Fig. A.4 (for odd n) and Fig. A.5 (for even n). The thermoelectric

properties are calculated for 300 and 800 K.

The band degeneracy in electronic spectrum of the NR structures with n = 11 and

n = 13 reveals itself in the power factor results. These structures have two peaks near

the conduction band edges and that causes an increment of the n-type ZT values. Except

from these two structures, as the ribbon width increases the ZT value decreases and it

converges to the two-dimensional limit.
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Figure A.4. The thermoelectric properties of the nanoribbon (NR) structures with odd

n are given at 300 and 800K. The calculated parameters are; electrical

conductance, G; Seebeck coefficient, S; thermal conductance of electrons,

κel; power factor, P; and the thermoelectric figure of merit, ZT.
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Figure A.5. The thermoelectric properties of the nanoribbon (NR) structures with even

n are given at 300 and 800K. The calculated parameters are; electrical

conductance, G; Seebeck coefficient, S; thermal conductance of electrons,

κel; power factor, P; and the thermoelectric figure of merit, ZT.
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