
Received: 30 October 2017 Revised: 27 September 2018 Accepted: 26 October 2018

DOI: 10.1002/cpe.5085

R E S E A R C H A R T I C L E

A user-assisted thread-level vulnerability assessment tool

Isil Oz1 Haluk Rahmi Topcuoglu2 Oguz Tosun3

1Computer Engineering Department, Izmir

Institute of Technology, Izmir, Turkey
2Computer Engineering Department, Marmara

University, Istanbul, Turkey
3Computer Engineering Department, Bogazici

University, Istanbul, Turkey

Correspondence

Isil Oz, Computer Engineering Department,

Izmir Institute of Technology, Izmir, Turkey.

Email: isiloz@iyte.edu.tr

Summary

The system reliability becomes a critical concern in modern architectures with the scale down

of circuits. To deal with soft errors, the replication of system resources has been used at

both hardware and software levels. Since the redundancy causes performance degradation,

it is required to explore partial redundancy techniques that replicate the most vulnerable

parts of the code. The redundancy level of user applications depends on user preferences

and may be different for the users with different requirements. In this work, we propose a

user-assisted reliability assessment tool based on critical thread analysis for redundancy in

parallel architectures. Our analysis evaluates the application threads of a parallel program by

considering their criticality in the execution and selects the most critical thread or threads to be

replicated. Moreover, we extend our analysis by exploring critical regions of individual threads

and execute redundantly only those regions to reduce redundancy overhead. Our experimental

evaluation indicates that the replication of the most critical thread improves the system reliability

more (up to 10% for blackscholes application) than the replication of any other thread. The

partial thread replication based on critical region analysis also reduces the vulnerability of the

system by considering a fine-grained approach.

KEYWORDS

fault injection, fault tolerance, multicore architectures, reliability, thread vulnerability

1 INTRODUCTION

Chip multiprocessors (CMPs), which have multiple cores in a single chip, have been accepted as the best way for higher performance.1 While

the performance increases by the use of multiple cores, the reliability becomes an important concern due to the higher vulnerability of multicore

architectures. Continuously reducing transistor sizes and increasing the transistor frequencies lead chip components become more error prone,

and the transient error rate increases. Soft errors result from a fault in a single-bit and their rates keep increasing with smaller transistors and more

aggressive power modes.2 Soft errors may cause data corruption during program execution as well as program execution termination. Output

corrupting faults have different severity and it depends on the corruption magnitude and corruption location for an error to be important.3

Redundancy, as a fault tolerance technique, is the replication of hardware and/or software components of a system by targeting to increase

reliability.4-6 The program code is replicated at the instruction level,4,7 and the results of the duplicate instructions are compared for error

detection. On the other hand, there have been methods which execute a redundant copy of the whole program and compare the results at the

end of the execution.8

The fault tolerance mechanisms have been proposed for parallel applications as well as serial programs.9,10 The program code is replicated as

in the single-threaded case, but the atomic operations are synchronized between master and slave threads to provide correct execution.

Since the redundancy causes performance degradation and resource consumption, the replication of whole program may not be efficient and

practical. Therefore, partial redundancy techniques based on the selective replication of instructions in a program have been proposed for higher

performance and acceptable reliability.11-15

In multicore systems, each additional core used for replication increases the system reliability. On the other hand, each additional core induces

power consumption and affects energy efficiency badly. Moreover, potential performance improvement of additional processor core may be

Concurrency Computat Pract Exper. 2019;31:e5085. wileyonlinelibrary.com/journal/cpe © 2018 John Wiley & Sons, Ltd. 1 of 19
https://doi.org/10.1002/cpe.5085

https://doi.org/10.1002/cpe.5085
https://orcid.org/0000-0002-8310-1143
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcpe.5085&domain=pdf&date_stamp=2018-11-20

2 of 19 OZ ET AL.

obstructed by consuming the core for the replication. To provide performance, reliability, and energy efficiency, it is essential to utilize a few

cores for the optimum reliability requirement. If the system tolerates a given level of vulnerability, partial replication by using some of the cores

may be a reasonable choice. The soft error vulnerability of a program represents how a program behaves in case of an error, by considering its

vulnerable code segments.16 Since a data might be affected by an error during its lifetime, ie, between Write-Read and Read-Read operations,

the vulnerability is defined as the ratio of those intervals in a program. For parallel programs, the interaction between multiple threads also affects

the program vulnerability and is considered for the evaluation.17

In a parallel application, there are multiple threads running concurrently each responsible for individual task. While some multithreaded

applications exhibit data-parallel characteristics in which data is partitioned among threads, the others have multiple distinct tasks assigned for

each thread. If the final output is composed of the partial results obtained by different threads, a possible error in one thread causes the final

output corruption. However, partial data corruption may not have the same effect with the entire corruption for some applications.

Furthermore, the fault tolerance level of applications running on multicore systems may be selected based on user preferences. Different user

requirements may determine how much vulnerability is tolerable for the parallel execution. While some users prefer to execute their applications

in a system with a larger number of processors to provide higher reliability, others may tolerate vulnerability by considering higher hardware

expenses. A user may also define specific replication limits to be tolerated in terms of both cost and performance. By considering vulnerability

tolerance of the system and user-specific requirements, target application is analyzed in order to determine the critical parts to be replicated.

In a parallel program, it is reasonable to apply partial redundancy by considering the replication of the critical thread(s) affecting the system

vulnerability mostly. Additionally, thread-level redundancy may be extended by exploring critical regions of individual threads and execute

redundantly only those regions to reduce redundancy overhead.

Based on above motivations, in this paper, we propose a novel user-assisted reliability assessment tool based on critical thread/region analysis

for redundancy in parallel architectures. Thread Vulnerability Factor (TVF) has been proposed and evaluated in our previous work.17 TVF measures

the vulnerability of a thread (which is one of the threads of a multithreaded application) to soft errors by considering the codes of the threads

that communicate with that thread as well as the code of the thread itself. In this work, we propose a thread-level vulnerability assessment

methodology, which selects the critical thread/region analysis for redundancy in parallel programs, and use TVF for the evaluation of the

multithreaded applications' reliability while comparing the vulnerability of various redundancy cases. We can summarize the main contributions

of this work as follows:

• We present a reliability assessment tool for multithreaded applications which takes into account user preferences. Our tool evaluates the target

application for the most vulnerable threads or thread regions, then it recommends the most efficient way for the replicated execution. We

report vulnerability values of both redundant and non-redundant cases in terms of Thread Vulnerability Factor metric,17 which quantifies the

vulnerability of multithreaded applications running on multicore architectures.

• We propose a critical thread identification algorithm to evaluate the most critical thread in a parallel application for the redundancy. Our

algorithm determines the critical thread or threads by analyzing the program for both threads' vulnerability and interactions between threads.

• We extend our analysis to eliminate the thread regions that do not contribute to the system vulnerability. We propose a more efficient and

precise replication scheme by considering only the replication of critical regions.

• Our experimental evaluation shows that the replication of critical threads provides higher reliability (up to 10 %) than the replication of any

other thread in the parallel application. The replication of critical regions from several threads also increases the reliability.

The remainder of this paper is organized as follows. Section 2 explains our fault model considered for critical thread analysis and application

execution model. Section 3 presents our user-assisted reliability assessment tool by providing critical thread and critical region analysis. The

effect of redundancy on the system vulnerability is examined in Section 4. The experimental setup used in our evaluations is given in Section 5

and results from our experimental analysis are presented in Section 6. Section 7 presents the related work, and it is followed by conclusions

in Section 8.

2 SYSTEM MODEL

2.1 Fault model

We consider single bit-flip transient faults during the execution of a multithreaded application. Transient faults are transient transitions of

single-bit values due to external factors such as particle strikes, electrical noise, and cosmic rays.2

A single-bit fault may impact the applications in various ways. In this work, we assume that the execution is correct if the application terminates

successfully and produces correct results, and the execution is faulty if the computation results are different from the results without soft errors

(Silent Data Corruption).

We further assume that replication does not have any cost or negative impact on system vulnerability. We only consider the vulnerability

reduction (see Section 4) in case of any redundancy in the system.

OZ ET AL. 3 of 19

2.2 Application execution model

Our architectural model is a homogeneous multicore system with private L1 caches and one unified L2 cache. We assume that the system is

dedicated to the execution of our target multithreaded application, that is, there is no other application on the system. The target application

does not have any interaction with other processes and it is being executed without any interruption. Therefore, we can say that the criticality of

threads does not vary in different runs significantly.

We assume that the user provides a representative input data set, and our analysis, which depends on vulnerable intervals and thread

interactions, concludes with similar/predictable results for arbitrary input data.18 Therefore, once profiling the application for critical thread

identification with a representative data, the user will learn the most critical thread(s) for reliable execution of this application.

We further assume that we execute the application by mapping one thread onto one core. According to the user preferences, our analysis

profiles application with the specified number of threads and decides on the criticality of the threads for the target execution.

3 USER-ASSISTED RELIABILITY ASSESSMENT TOOL

Our reliability assessment tool (downloadable from http://mimoza.marmara.edu.tr/~isil.oz/research/criticalT.tar.gz) consists of two components

as illustrated in Figure 1:

• User: The user provides input to the analysis phase by specifying the number of cores to be used for redundant execution of a given parallel

application. The number of cores indicates the maximum number of cores that is required by the user for reliability improvement. Then,

the user executes the target application with redundant execution of threads and/or thread regions by considering direction advised by the

analysis phase. The user also provides input parameters for the application such as a representative input data and the number of threads for

the target execution.

• Analysis: Our critical thread/region analysis consists of a simulation environment, based on Simics toolset.19 The decision unit is a front-end

component which gets reliability preferences of users (in the form of number of cores for replications) and it initiates the execution of the target

application on the simulator. Our critical thread/region analyzer (which is a Simics module) works in parallel with the application, and collects

information about the execution threads at runtime. It calculates vulnerability value and criticality degree value of each thread (explored in

Section 3.1.3), and it performs region level analysis by considering the synchronization points to determine partial thread replications. At the

end of the execution, analyzer decides the most critical threads and/or thread regions. It reports the criticality results to the decision unit of

our tool. A complete application execution is the overhead of our tool, which is performed once to gather profiling data and perform criticality

analysis. Finally, our decision unit combines user preferences and criticality results to make a suggestion on redundant execution of the

application. Once the profiling data is obtained, the thread to be replicated is identified, and the redundant execution is performed by using

the critical thread information. The performance of this redundant execution does not depend on our analysis, since our tool is not active

during execution. Figure 1 clearly presents the Redundant Execution as a component outside Analysis part. The analysis part is performed for

a sample representative parallel execution before the target redundant execution, and the target execution is performed by replicating the

identified critical thread.

As an example, assume that a user has three available cores for replication of an application. Our decision unit may advise the replication of

three most critical threads if they are highly critical based on the analysis of our critical thread analyzer in our assessment tool or it may suggest

FIGURE 1 Flow of our reliability assessment tool

http://mimoza.marmara.edu.tr/~isil.oz/research/criticalT.tar.gz

4 of 19 OZ ET AL.

that two cores should be used for replication but third one may not be essential, which can be used for performance improvement or powered

off for energy efficiency. The decision unit may also advise region level replication if it is more appropriate than thread replication.

3.1 Critical thread replication

To decide the most critical thread for redundancy, we consider both local vulnerability and interactions between threads.

3.1.1 Local vulnerability of a thread

Local vulnerability of a thread, represented with Local Vulnerability Factor (LVF)17 in the literature, is the vulnerability induced on the thread's

target code, where architectural resources (including register file, ALU unit, and memory) are evaluated by considering their vulnerable intervals

in the code. The redundant execution of the thread that has the largest LVF value increases the system reliability by decreasing the vulnerability

of the thread. Since the thread is more vulnerable to soft errors locally, it becomes more appropriate for redundant execution than the other

alternatives, by having higher probability of soft error hits.

3.1.2 Thread interactions

In general, a thread that affects the other threads via remote memory write operations is critical for the system vulnerability since an error in this

thread probably causes a failure on the other dependent threads which read the erroneous data from the faulty thread.

Therefore, it seems to be efficient for redundancy analysis to discover thread that has the most remote writes, ie, the thread with the highest

out-degree value. Additionally, depth of a thread and number of writes to the same destination thread are the other concerns that are utilized for

retrieving thread interactions of our analyzer.

In a multithreaded application, the vulnerability of one thread induced by the other threads should also be considered. Since the threads

communicate via shared-memory, an error affecting one thread may cause failure in another thread which reads the erroneous data written

previously.

Figure 2 presents a thread interaction graph (TIG) for the threads in a multithreaded application, which illustrates the communication of the

threads in a timeline. In this application, T2 frequently writes data which is read by the other threads in the application. If an error hits T2 and it

calculates an erroneous data, the other threads may yield incorrect results using the wrong value. Since T2 has the largest out-degree, its failure

badly affects the system vulnerability by causing the reliability loss for all threads in the application.

There are several thread communication patterns in parallel applications. Figure 3 presents a thread behavior of an 8-thread execution, where

T1 writes data read by other two threads (T2 and T4). T2 and T4 read data directly from T1, ie, T1 writes a data value in a memory location, and

then T2 and T4 access this location and read the value written by T1. On the other hand, all other threads (T3 via T2; T5, T6, T7 and T8 via T4)

431T 2 T T T

FIGURE 2 Thread interaction graph with four threads (threads in a timeline)

 T 3 T 4 T 5 T 6 T 7 T 8T1 T 2

FIGURE 3 Thread behavior of an 8-thread application

OZ ET AL. 5 of 19

a

c

b

write X

write Y

write Z write Z

T1 T2 T3

FIGURE 4 An example thread interaction graph which has multiple remote write operations of a single thread

in the execution may be affected by T1 indirectly. Those threads may read the value written by T2 and T4, which calculate the values by using

the values from T1. Therefore, a failure in T1 is critical for all the other threads in the application. On the other hand, T4 has many outgoing

edges which indicate that many threads may be affected directly if an error hits T4. The effect of out-degree and the depth may depend on the

thread interaction graph of the given application. During the execution of a parallel application, one thread may write data and it is read by a

specific thread multiple times. Each remote write operation may affect the remote thread directly, since an error causing incorrect calculation

also corrupts the remote thread. Figure 4 presents an example communication scenario in which T2 writes data read by T1 for three times (X, Y,

and Z values). An error hit at the code segment marked with ‘‘a’’ possibly corrupts X value. The corruption of Y value is possible in case of an error

which hits the code segment ‘‘b.’’ Z value may be corrupted due to an error on the code segment ‘‘c,’’ similarly. Moreover, Y and Z values are

dependent on the code segment of T1 which includes ‘‘a’’ and ‘‘a+b,’’ respectively. Since we consider the code segment ‘‘a+b+c’’ for the last write

operation (Z value), it is not necessary to count the previous remote write operations (X and Y values) for the critical thread analysis. Although

these multiple write operations increase the dependency of T1 on T2, they do not enhance the importance of T2 for redundancy analysis. The

same Z value is also read by T3, and T2 becomes more critical since it affects two different threads. However, the remote write operations on T1

and T3 have the same effect on the critical thread analysis in our tool.

3.1.3 Critical thread identification algorithm

Our thread-level vulnerability assessment tool considers both local behavior of each individual thread and thread interactions to determine the

critical thread for redundancy in a parallel application. The critical thread analyzer (given in Figure 1, implemented as in Algorithm 1) dynamically

tracks memory load/store operations during program execution. We calculate LVF value of each thread during execution and we also keep track

of thread interactions.

The criticality degree of each node in a thread interaction graph is calculated by using two components, which are direct criticality degree

and indirect criticality degree. The former one represents the criticality induced from the write/read relationship between two threads (eg, the

interaction between T1 and T2 in Figure 3). If one thread alters a memory location and another thread reads that data, the writer thread directly

affects the reader thread and becomes more critical due to its effect on the reader thread. This interaction leads to an increase on direct criticality

degree value. Since the vulnerability is represented by LVF, we increase value of direct criticality degree of the writer thread by LVF amount of

the thread. On the other hand, the indirect criticality degree represents the criticality propagated from previous write/read relationships of the

writer thread (eg, the interaction between T1 and T5 in Figure 3). All threads having affected the writer thread has an indirect effect on the reader

thread. This causes a slight increase in indirect criticality degree value of the threads due to the weighted sum of direct and indirect criticality

degree values.

We track memory operations in our target parallel application running on a multicore architecture and store them on a hashmap, where each

entry of the hashmap contains a memory location and the number of the thread that writes to the given location. Whenever a store operation

occurs, a new entry, for representing thread that performs the store operation, is added to the hashmap. Algorithm 1 presents our criticality degree

calculation procedure. The direct and indirect criticality degree values are stored in direct_degree and indirect_degree matrices, respectively. If the

memory location in the load operation has been altered by another thread previously, the writer thread criticality degree value is incremented

due to its effect on the reader thread. In Algorithm 1, the [tidout][tidin] entry of direct_degree matrix, which stores total vulnerability effect of the

writer threads on the reader threads, is updated. Additionally, the indirect_degree matrix is modified by analyzing all threads. For both direct and

indirect criticality computations, there are three distinct structures of each resource including ALU, register, and memory. To reduce the effect of

the indirect threads, the vulnerability values are multiplied by a weight term which is a predefined value in the range [0..1].

6 of 19 OZ ET AL.

After running the multithreaded application and collecting statistics on the behavior of threads, the most critical thread or threads for

redundancy is determined based on the Algorithm 2. The algorithm considers criticality degree matrices of vulnerability factors based on a

predefined threshold value, 𝜀. If maximum number of remote memory write operations is larger than 𝜀, then degree metrics are utilized to

determine the critical thread. Otherwise, LVF values are used since local behavior of threads determines the critical thread in the application. We

assign the threshold value according to the pre-experimentation results by comparing values from different applications. The majority of the three

resources, which are ALU, memory, and registers, determines the most critical thread of the given application. As an example, if T1 is selected by

both ALU and memory, and T2 is selected by register unit as the critical thread, then our algorithm returns the T1 as the most critical thread.

3.1.4 An example execution

Figure 5 presents an example thread interaction graph for an 8-thread execution. For this execution scenario, T2 reads a value which is calculated

by T1 previously. Then, T2 writes a value which will be read by T3. T4 produces data, and the threads other than T1 and T2 read these data values

LVF2

LVF1 LVF4

 T 3 T 4 T 5 T 6 T 7 T 8T1 T 2

FIGURE 5 A thread interaction graph example with 8 threads

OZ ET AL. 7 of 19

TABLE 1 Matrix for direct and indirect criticality degree values for critical thread analysis

T1 T2 T3 T4 T5 T6 T7 T8

T1 - LVF1 w ∗ LVF1 - - - - -

T2 - - LVF2 - - - - -

T3 - - - - - - - -

T4 - - LVF4 - LVF4 LVF4 LVF4 LVF4

T5 - - - - - - - -

T6 - - - - - - - -

T7 - - - - - - - -

T8 - - - - - - - -

along their execution. T1 is the thread with the largest depth which writes to T2 directly, and T3 indirectly. LVF1, LVF2, and LVF4 values denote

the local vulnerability factor values in the course of remote write operation for threads T1, T2, and T4, respectively.

We may store remote write/read relationships in a matrix structure where the rows represent the writer threads and the columns represent

the reader threads (see Table 1). When a thread, T1, remotely writes a value which is read by another thread, T2, the entry in the first row and

the second column is filled with the vulnerability value that T1 has at the time of write operation, ie, LVF1 = LVF(T1). This entry indicates that

T1 affects the vulnerability of T2 by the specified value. The other remote write operation (ie, from T2 to T3) is more interesting since there is an

indirect communication between T1 and T3. Firstly, the cell of the second row and the third column in Table 1 is filled with LVF2 values for direct

communication between T2 and T3. This operation also leads to a new entry at the cell of the first row and the third column, due to an indirect

communication between T1 and T3. Since the effect is not direct and the possibility of that T1 impacts T3 is not large as the effect on T2, we may

reduce the vulnerability value by a constant rate (w). The other remote write operations by T4 to other threads are also added to the related

locations of the matrix. At the end of the execution, each row of the table presents the criticality degree of the corresponding thread.

3.2 Critical region replication

Since the redundancy introduces synchronization overhead between replicated threads, it may be more preferable not to replicate the complete

code of a thread if the reliability gain is not significant; one or more critical regions of the thread can be replicated, instead. For critical region

replication, we track communication points at thread codes and determine the code region that contributes most to the criticality of the thread.

The TIG of an application given in Figure 6 presents remote write operations of threads in an execution. For this figure, the most critical thread

for redundancy is T2 due to its plenty of remote write operations. However, full replication of T2 may not be necessary. Since most of the remote

write operations occur until the interaction 5, the replication of the thread code up to this point may be adequate for fault tolerance.

To determine the critical code region of a given thread, we perform criticality degree calculations at the end of each synchronization point

during program execution. After gathering thread-level criticality degree values at distinct points, we compare the values of consecutive points. If

the values are not significantly different, we may conclude that the replication of the last region is not crucial and suggest the partial replication of

the thread by excluding the ineffective region. As an example, if the criticality degree values between the last two write operations (interaction 5

and interaction 6 in Figure 6) are not much different, we may say that the redundancy of the code region after interaction 5 does not provide

significant gain.

5

3

1

4

2

6

T1 2 T3 T4 T

FIGURE 6 A TIG example to represent synchronization of thread regions

8 of 19 OZ ET AL.

 T 1 T 2 T 1

XX

comparison
X

LVF LVF

R

FIGURE 7 A TIG example for thread replication case

4 VULNERABILITY OF REDUNDANT COMPUTATIONS

To illustrate the effect of the selective thread redundancy on the system reliability, we adapt Thread Vulnerability Factor (TVF),17,20 which is a

new metric for quantifying the relative vulnerability of multithreaded applications. The TVF term has both remote and local parts, where Remote

Vulnerability Factor (RVF) constitutes the effect of the remote threads on the target thread and Local Vulnerability Factor (LVF) includes the

vulnerability of the target thread. Since TVF metric does not consider thread redundancy, we extend it to evaluate the thread vulnerability for

redundant executions. First of all, we should evaluate how TVF is affected by redundant computations and how to calculate TVF if there are

redundant threads. Since the LVF term represents the vulnerability of the thread induced by the code itself, its value decreases if there is a

redundant copy of the thread. While the redundancy increases the reliability of the redundant thread, it increases the reliability of the other

threads as well. The remote term of the thread vulnerability (RVF) represents the vulnerability impact of the threads that interact with the target

thread, and it is calculated by considering the vulnerability of remote threads. Specifically, RVF for T2 in Figure 5 can be calculated as follows:

RVF(T2) = TVF(T1)

= [wL × LVF(T1)] + [wR × RVF(T1)].

Assume that TR
1

is the replica of T1 in Figure 7. Then, the vulnerability (LVF) of the remote thread T1 decreases; therefore, LVF term should be

reduced in the above calculation. Although the reduction amount on vulnerability is not concise, we may consider an approximation to reveal the

replication effect. If we multiply the local term by itself, its value decreases and the effect of the redundancy appears in the vulnerability of the

dependent thread T2. RVF for T2 in the redundant execution of T1 becomes:

RVF(T2) = TVF(T1)

= [wL × (LVF(T1) × LVF(T1))] + [wR × RVF(T1)].

Since LVF term takes value in range [0..1], the local vulnerability of T1 (ie, the partial vulnerability of the remote vulnerability of T2) is reduced.

These reductions on the vulnerability of threads that read data from the redundant thread result in the reduction on the overall system vulnerability

which is calculated by augmenting TVF of each thread in the application. For the partial thread replication case, we calculate remote values with

the same consideration. We reduce remote values only for the replicated code regions, while the calculation is the same for non-redundant parts.

RVF value of one thread is calculated by adding TVF values of threads communicating with the target thread. Since LVF values have been

counted for RVF calculations, only RVF values are considered as the reliability metric by ignoring very small LVF values that are not counted for

RVF calculations.

4.1 A case study for redundant computations

To evaluate critical thread identification and the vulnerability computation of a redundant system, we execute a synthetic application with the

thread interaction graph given in Figure 5. In our application, the remote write operations consist of simple array element calculations. The amount

of data for each communication is fixed, that is, the number of elements written and read for each interaction is equal. Since the synchronization

part in the application is not related to our analysis, we exclude the barrier code which provides atomic operations in the parallel application. We

gather vulnerability data for three architectural resources including register, memory, and ALU. The reduction factor for indirect remote writes is

taken as 0.8 in our experiments.

The result of the critical thread analysis for this application is given in Table 2, which includes only threads' criticality degrees. We also provide

the number of remote write operations (given in remote count row) to point out the out-degree value, without concerning vulnerability concept.

Based on Table 2, the most critical thread for redundancy is T4, which has the largest criticality degree values for all resources. T4 has also the

largest number of remote write operations as seen in the last row.

OZ ET AL. 9 of 19

TABLE 2 Criticality degree values for critical thread analysis of the synthetic application

T1 T2 T3 T4 T5 T6 T7 T8

ALU 689.104 399.537 0.000 1839.236 0.000 0.000 0.000 0.000

register 775.859 430.016 0.000 2235.174 0.000 0.000 0.000 0.000

memory 1033.348 474.736 0.000 2457.000 0.000 0.000 0.000 0.000

remote count 1800 1001 0 5001 0 0 0 0

TABLE 3 RVF values of redundant executions of synthetic application

T1 T2 T3 T4 T5 T6 T7 T8 Total

ALU 0.000 0.191 0.239 0.000 0.184 0.184 0.184 0.184 1.166

No redundancy Register 0.000 0.215 0.272 0.000 0.223 0.224 0.224 0.224 1.382

Memory 0.000 0.287 0.313 0.000 0.245 0.246 0.246 0.247 1.584

ALU 0.000 0.191 0.182 0.000 0.068 0.068 0.068 0.068 0.645

Redundant=4 Register 0.000 0.216 0.211 0.000 0.100 0.100 0.101 0.101 0.829

Memory 0.000 0.291 0.252 0.000 0.121 0.122 0.122 0.123 1.031

ALU 0.000 0.074 0.210 0.000 0.184 0.184 0.184 0.184 1.020

Redundant=1 Register 0.000 0.094 0.242 0.000 0.223 0.224 0.224 0.224 1.231

Memory 0.000 0.172 0.285 0.000 0.246 0.246 0.247 0.247 1.443

After we determine the most critical thread for redundancy in the application, we gather TVF values for the redundant case. Table 3 represents

the vulnerability values of each thread in the synthetic application. We evaluate the redundant cases for T4, which is the largest criticality degree

values for our critical thread analysis, and T1, which is the largest depth (ie, its depth is equal to 2) in the dependency structure. Although our

analysis recommends us to replicate T4, we also evaluate vulnerability values for T1 redundancy in order to compare the results of different cases.

Table 3 demonstrates that T3, which has the most remote read operations (due to direct read from T2 and T4, and indirect read from T1), has the

largest remote vulnerability values for all resources. Since T1 and T4 have no dependent threads, their remote vulnerability factor values equal to

zero. The vulnerability values for the other threads are similar to each other due to the same number of remote read operations.

We calculate the vulnerability values for redundant cases as explained previously by reducing the vulnerability effect of the redundant thread.

While the vulnerability of all threads except T2 is decreased for the redundancy of T4, only T1 and T2 have smaller vulnerability values for

the redundancy of T1. Thus, total system vulnerability, which is equal to the sum of thread vulnerabilities, decreases by larger amount for T4

redundant case.

5 EXPERIMENTAL SETUP

5.1 Simulation platform

To evaluate our critical thread analysis for the multithreaded applications, we use the Simics toolset.19 We build an 8-core multicore architecture

with private L1 caches, and one unified L2 cache.

To track memory operations of our parallel applications, we use trace module of Simics, which provides both instruction and data trace of

the program.

5.2 Fault injection framework

In this subsection, we present details of our fault injection framework, which is for validation of our partial fault tolerance scheme. Fault

injection is a dependability validation technique based on the controlled experiments, which introduce faults into the system.21,22 We conduct

a simulation-based fault injection by assuming that the failures are uniformly distributed. A single bit flip on a register of one processor core

is introduced during the execution of the target application. In our framework, we select one bit position (among 32 bits), one register (among

8 registers), one processor core (among 8 cores), and one instruction (among number of instructions for the target application) for the injection

point. In our experiments, we take two sets of bit positions (one bit among the most significant 16 bits or one bit among the least significant

16 bits) and two sets of registers (one register among data registers or one register among address registers). The instruction number that is

executed at the injection time is randomly assigned. Therefore, we design 1600 different scenarios (ie, 2 sets of bit positions x 2 register types x

8 cores x 50 replications) for each application considered.

We build an automated tool for fault injection on Simics environment.23 Figure 8 illustrates our fault injection framework, which includes

several tools to implement the phases of the experiments.

10 of 19 OZ ET AL.

FIGURE 8 Our fault injection framework for validating thread vulnerability assessment tool23

Firstly, we randomly create uniformly distributed fault injection points by specifying fault injection instruction, core number, register number,

and register bit position and store the parameters of each experiment in a configuration file. Then, our simulation trigger module starts the

execution of the fault injection simulations by providing parameters of the fault data. Our fault injector module enables the trace module, which

tracks the target application. When the simulation reaches the fault injection point (the execution of the specified instruction on the specified

core), trace module activates the related procedure of the fault injector. At this point, the fault injector flips the specified bit and lets the

simulation end up. After the injection of the specified fault, the controller module waits for the termination of the target application and gathers

the result of the experiment by evaluating the termination condition. If the program terminates with an error code (segmentation fault, floating

point exception etc.), the experiment result is defined as program error. Similarly, the program may never terminate if the fault causes an infinite

loop error or similar stuck failure. The result of this kind of execution is also defined as program error. If the program terminates normally (with

zero exit status), there are two different scenarios: correct execution and output error. To understand the result of the execution, the controller

checks the output file created by the program by comparing it to the golden output file. If there is no difference between the output files, then

the result is a correct execution. Otherwise, the result has an output error and the details are logged into the fault injection result file. When a new

result is logged in the file, the simulation trigger finds out that the experiment finished, and continues with the following experiment. The result

file is formed online by executing the experiments and processed offline by an external analysis tool to conclude overall fault injection scenario.

5.3 Benchmark applications

In our experimental analysis, we perform critical thread evaluation for a variety of parallel programming patterns and thread behavior. We select

four main classes of patterns.24 We evaluate our analysis on parallel benchmark applications from PARSEC25 and SPLASH-226 suites by choosing

applications that exhibit different patterns.

• Task parallel: The thread tasks are balanced and there is no data dependencies between tasks (blackscholes, swaptions from PARSEC).

• Divide and conquer: The task is divided into subtasks, where the solutions to the subtasks are then combined to give a solution to the original

task (radix from SPLASH-2).

• Geometric decomposition: The problem is decomposed into smaller chunks operated in parallel, and the solution is composed of updates to

local chunks, and boundaries of chunks which induces data sharing between neighboring threads (barnes, FFT, LU from SPLASH-2).

• Pipeline: There is data flow between coarse grained tasks and it is executed on pipeline stages (canneal from PARSEC).

We use medium-sized input provided with PARSEC benchmark and default problem size with SPLASH-2 benchmark.

6 EXPERIMENTAL RESULTS

We execute our benchmark applications on an 8-core multicore architecture by mapping one thread onto one core. Our experimental analysis

consists of two phases including critical thread evaluation and critical region evaluation. We consider the replication of the execution codes (both

thread and region) in our redundancy experiments, with the assumption of improving the system reliability. In this work, we do not deal with

redundancy levels (duplicate, triplicate) that may have distinct effects on the reliability.

6.1 Evaluating critical thread replication

For evaluating our critical thread assessment tool, it requires critical thread analysis, replication, and validation phases, which are summarized at

the following subsections.

OZ ET AL. 11 of 19

6.1.1 Critical thread analysis

An application is executed and memory operations are tracked to construct dependency structures for critical thread analysis. At the end of the

execution, we figure out the most critical thread(s) for replication, and collect statistics to calculate the vulnerability (RVF) of the execution.

Figure 9 presents values of criticality degree terms of each thread for ALU, register, and memory resources, for 7 applications selected from

benchmark suites. When the results are examined, the criticality degree values are evidently larger for one thread (T1) in blackscholes, canneal,

and swaptions. Since blackscholes and swaptions have task-parallel characteristics, their threads have similar tasks. Therefore the threads other

than the first thread have similar criticality degree values which are not too large due to the lack of communication. Only the first thread, which

distributes the input data to other threads, has large criticality degree values for each resource. Canneal application, which exhibits pipeline

pattern, has large communication between its threads. However, the threads have similar criticality degree values due to the homogeneous work.

Again the first thread having the input data has the largest criticality degree value for all the resources. For blackscholes, canneal and swaptions, the

first thread should be selected for replication if we want to increase the reliability with minimum number of replications. Our analyzer suggests

exactly one thread replication to the user, and it advises not to use any other processor core for reliability improvement.

Since FFT threads exchange data along their executions, the criticality degree values are similar to each other. It is probable that the replication

of any thread results in the same amount of reliability gain. We cannot select the thread for redundancy with our critical thread analysis. We may

suggest to the user to use as much as possible cores for replication to improve system reliability.

On the other hand, the difference between the criticality degree values of application threads for LU, radix, and barnes is more apparent. Since

the application threads have diverse characteristics, the critical thread analysis becomes more essential for these applications. While LU threads

have more similar criticality degree values, radix and barnes threads exhibit diverse values. If we have resources for only one thread replication,

we select T3 for LU and T8 for radix as well as barnes in order to decrease the vulnerability in a most efficient way.

An inference on the least critical thread can be stated by using our critical thread analysis. Since each replication causes additional resource

and performance cost, it is also critical to decide the thread which may not be replicated. Radix application figures show that T3 and T4 have

almost no effect on the other threads. If we do not execute these threads redundantly, the reliability does not change significantly due to the

lack of remote effects of these threads.

6.1.2 Critical thread replication

After discovering the most critical thread(s) for redundancy, we re-execute our applications by a redundant copy of the most critical thread (if

any) and calculate the vulnerability values by considering the effect of the redundant copies. In this work, we do not deal with synchronization of

redundant copies and do not consider performance issues. We assume that redundant threads decrease the vulnerability and partial redundancy

reduces the vulnerability with smaller performance degradation. To validate and demonstrate the efficiency of our analysis, we also include

experiments of no redundancy and the replication of other threads in the application. We compare the vulnerability values for different replication

cases. Our executions include at most one thread replication for each case.

Figure 10 and Figure 11 present the vulnerability values for redundant cases of PARSEC and SPLASH-2 applications, respectively. We include

the normal execution case with no redundancy and two additional scenarios with one thread replication for each application. The figures

demonstrate the remote vulnerability factor values for each thread as well as the arithmetic mean (shown in A-m bars).

Since T1 is the most critical thread for blackscholes, canneal, and swaptions applications, we include the first thread replication which

demonstrates the vulnerability decrease in case of the most critical thread replication. We also execute a randomly selected thread (T6)

redundantly as a second scenario and calculate the vulnerability values. Figure 10 demonstrates that while T1 replication increases the reliability

significantly, there is almost no effect of T6 replication in the vulnerability values. We also note that the replication of any other thread would not

effect the vulnerability values significantly due to their small contribution to the vulnerability.

Since none of FFT threads exhibits distinct characteristics for critical thread analysis, we select two threads (T5 and T6) randomly for redundancy

in order to evaluate the effect of any thread's replication on the vulnerability. Figure 11A demonstrates that the vulnerability values decrease for

redundant cases, where the difference is not significant in average. We expect the same results for any thread replication case.

While LU has more diverse communication behavior between its threads, the average reliability improvement for T3 (the most critical thread)

replication is not much different compared to T5 (the least critical thread) replication. T3 is the most critical thread, but the difference between

the criticality degree values are not much significant. Therefore, the effect of the most critical thread replication is not clear for LU application.

While the distinct vulnerability values for individual threads differ, the mean values are similar.

The most interesting results that demonstrate the effect of critical thread analysis belong to radix and barnes applications. T8 is the most

critical thread for both applications. The replication of the most critical thread decreases the vulnerability values for each resource significantly.

We include the replication of the least critical threads in order to emphasize the difference between the partial replication cases. Although the

replication of thread T4 for radix and thread T6 for barnes causes vulnerability decrease for some threads, the overall reliability improvement is

smaller than the case of replicating the most critical thread. These results demonstrate that if we replicate the thread other than the most critical

one, the decreases at vulnerability values would not be so high. Therefore, the thread with the highest criticality degree value should be selected,

if there are limited resources for full redundancy.

12 of 19 OZ ET AL.

(A)

(B)

(C)

(D)

(E)

(F)

(G)

FIGURE 9 Criticality degree values for benchmark applications. A, blackscholes; B, canneal; C, swaptions; D, FFT; E, LU; F, radix; G, barnes

OZ ET AL. 13 of 19

(A) (B)

(C)

FIGURE 10 The vulnerability values for redundant cases of PARSEC applications. A, blackscholes; B, canneal; C, swaptions

(A) (B)

(C) (D)

FIGURE 11 The vulnerability values for redundant cases of SPLASH-2 applications. A, FFT; B, LU; C, radix; D, barnes

6.1.3 Validation of critical thread replication

We execute selected benchmark applications on our fault-injection framework to validate our critical thread-based fault tolerance scheme. SDC

(Silent Data Corruption) errors are subtle form of errors considered in our study, which include both self-thread errors and fault propagation

errors in a parallel program execution. SDC rate is utilized as a metric to compare results, which is the fraction of the injected faults that results in

unacceptable outputs.27 We do not classify the data corruptions as acceptable or unacceptable; we assume all data corruptions are unacceptable.

To analyze the output errors and detect data corruption, the application output should be deterministic and easy to compare. Therefore, we

select a subset of applications that have exact results from the Parsec and Splash-2 benchmarks for our fault injection experiments including

blackscholes, LU, FFT, and radix. Figure 12 represents the SDC rates of applications for different redundant cases. We include no redundancy

case as well as the replication of the most critical and the least critical threads evaluated at Section 6.1.2. While blackscholes has significantly

lower SDC rates for the most critical thread replication (T1), LU and FFT redundant cases have relatively similar results. It is also observed that

the replication of T8 and T6 which have the largest criticality degree values (see Figure 9) for radix application reduces the SDC rates more than

the replication of T3 and T4 which have the smallest criticality degree values.

In another experiment, SDC rates are computed by varying the number of redundant threads (see Figure 13). We start with no redundant

case and include one thread replication by considering the criticality degree value. For example, we assume the replication of T8, the replication

14 of 19 OZ ET AL.

None T1 T2 T3 T6
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01
S
D
C
 R
a
te

Redundant thread

(A)

None T5 T6 T7
0.1

0.11

0.12

0.13

0.14

0.15

0.16

S
D
C
 R
a
te

Redundant thread

(B)

None T3 T2 T4 T5 T6
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

S
D
C
 R
a
te

Redundant thread

(C)

None T8 T6 T4 T3
0.01

0.015

0.02

0.025

0.03

0.035

0.04

S
D
C
 R
a
te

Redundant thread

(D)

FIGURE 12 SDC rates of applications for redundant cases. A, Blackscholes; B, FFT; C, LU; D, Radix

of both T8 and T6, the replication of T8, T6, and T2 for radix application for the case of one, two, and, three thread replications, respectively.

We construct the complete graph by including one more thread replication and end with full redundancy which results in zero SDC rate. We

also conduct experiments for the replication of different number of threads and calculate the vulnerability values by considering the redundancy

effect on vulnerability values. The similar results for our RVF values are represented in Figure 13. These results validate our partial replication

scheme based on critical thread evaluation.

6.2 Evaluating critical region replication

We extend our critical thread analysis by considering synchronization points of the applications. We consider execution steps as thread codes

divided by these points in our critical region evaluation. The applications that have the behavior of geometric decomposition pattern are more

appropriate for critical region analysis due to much communication between threads and many synchronization points. Therefore, we select LU

for evaluating critical region replications. LU has 19 synchronization points in SPLASH-2 implementation. Since the first three intervals do not

have any criticality degree values, we include only the last 16 regions for our analysis. We calculate criticality degree values at the end of each

16 execution steps by considering register, ALU, and memory resources. Since register resource has the largest values, we use the results of the

that resource in our analysis. We construct graphs for distinct threads in Figure 14 to illustrate the criticality degree values at the end of each

execution step represented by the synchronization points in the code.

As presented in our previous critical thread analysis, the most critical threads for redundancy in LU application were T2, T3, and T4. While the

criticality degree values of these threads do not differ significantly, we may select T3 for critical thread replication if we have only one available

core. However, critical region analysis allows us to replicate different regions from different threads. The most critical regions of the most critical

OZ ET AL. 15 of 19

0 1 2 3 4 5 6 7 8
0

0.005

0.01
S
D
C
 R
a
te

of redundant threads

0 1 2 3 4 5 6 7 8
0

1

2

R
V
F
 (
re
g
is
te
r)

(A)

0 1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

S
D
C
 R
a
te

of redundant threads

0 1 2 3 4 5 6 7 8
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

R
V
F
 (
re
g
is
te
r)

(B)

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

S
D
C
 R
a
te

of redundant threads

0 1 2 3 4 5 6 7 8
2

2.5

3

3.5

4

R
V
F
 (
re
g
is
te
r)

(C)

0 1 2 3 4 5 6 7 8
0

0.01

0.02

0.03

0.04

0.05

S
D
C
 R
a
te

of redundant threads

0 1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3

R
V
F
 (
re
g
is
te
r)

(D)

FIGURE 13 SDC rates and RVF values of applications for different number of redundant threads. A, blackscholes; B, FFT; C, LU; D, radix

threads (T2, T3, and T4) are the execution intervals between 10-11, 5-6, and 6-8 (among 16 intervals), respectively. If the user has only one core

to use for redundancy, we may advise the selective redundancy for different time intervals. While T2 is executed redundantly between 10-11

execution steps, T4 is replicated at 6-8 execution steps. The interval between 5-6 execution step is more critical for T3, and the redundancy

level for other steps may be determined by similar observations. If the synchronization overhead for redundant threads is not tolerable for

performance, no redundancy may be applied for some intervals due to slight increase in vulnerability.

To illustrate the effect of critical region replication on the vulnerability of LU, we execute the application for different redundancy cases and

calculate vulnerability values based on our critical region replication technique. We gather values for both one critical thread replication and

partial replication of selective threads for LU application. Figure 15 represents RVF values for four cases including no replication, full replication

of thread T2, and two partial thread replication cases (stated as Partial v1 and Partial v2). For the case of Partial v1, we replicate the most effective

three regions from three most critical threads obtained from our critical region analyzer, which are the replication of T2 between 10-11 execution

steps, the replication of T3 between 5-6 execution steps, and the replication of T4 between 6-8 execution steps. We do not execute any redundant

code in any other regions. We include the redundancy of relatively less effective regions for Partial v2 case. Since we assume that we have one

available core for the redundant execution, all regions from different threads have been replicated to increase the reliability of the application.

We select the replicated thread by considering its contribution at the region and compare the values for the eight threads. For LU application,

we determine following replications: the replication of T2 between 1-5 and 10-11 execution steps, the replication of T3 between 5-6 execution

steps, and the replication of T4 between 6-10 and 11-16 execution steps. As illustrated in Figure 15, Partial v2 case, which considers both the

critical region redundancy from the critical threads and the utilization of the available core for the redundancy, has the smallest vulnerability

values. While Partial v1 case does not present the best case for the vulnerability, it may be a choice to avoid from the performance loss that is

induced by the synchronization overhead of the replicated threads.

Another benchmark application for our analysis is FFT, which we do not conclude any critical thread identification for full thread replication.

The execution steps also have similar behavior for FFT threads (see Figure 16). While the first two intervals do not contribute the criticality

16 of 19 OZ ET AL.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

T1

execution step

cr
it

ic
al

it
y

d
eg

re
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

T2

execution step

cr
it

ic
al

it
y

d
eg

re
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

T3

execution step

cr
it

ic
al

it
y

d
eg

re
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

T4

execution step

cr
it

ic
al

it
y

d
eg

re
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

T5

execution step

cr
it

ic
al

it
y

d
eg

re
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

T6

execution step

cr
it

ic
al

it
y

d
eg

re
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

T7

execution step

cr
it

ic
al

it
y

d
eg

re
e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

T8

execution step

cr
it

ic
al

it
y

d
eg

re
e

FIGURE 14 Criticality degree values of LU execution steps for distinct threads

OZ ET AL. 17 of 19

T1 T2 T3 T4 T5 T6 T7 T8 A−m
0

0.1

0.2

0.3

0.4

0.5

R
V
F

None

Full T3

Partial v1

Partial v2

FIGURE 15 Vulnerability values for partially redundant cases of LU application

FIGURE 16 Criticality degree values of FFT execution steps for distinct threads

significantly, the last two intervals (especially interval 3-4) are effective for all threads. We may advise to replicate only the code region between

3-4 if the synchronization overhead is very crucial.

7 RELATED WORK

While the replication of hardware components is a method for reliability,28-31 there have been software redundancy methods which execute the

program code redundantly.4,7,8

18 of 19 OZ ET AL.

Since the redundancy methods incur performance overhead in the system, partial redundancy schemes have been proposed to reduce

performance loss of full redundancy scheme. Partial explicit redundancy (PER) distinguishes execution phases as Single Execution Mode (SEM)

and Redundant Execution Mode (REM).11 While SEM only executes the main thread, in REM the redundant thread executes with the main

thread by considering IPC characteristics. It provides both high soft error-coverage and low performance degradation due to partial redundancy

scheme. SlicK proposes a partial redundant threading mechanism based on SRT processor.32 It uses a set of predictors to estimate the output of

the master thread without re-execution. Since the instructions, whose output has been predicted, do not need to be executed redundantly, the

performance degradation of full redundancy scheme is reduced. Soundararajan et al12 propose a selective redundancy mechanism which selects

a set of instructions for redundancy to provide maximum performance and minimum vulnerability based on a greedy heuristic dealing with the

constraints. Jacques-Silva et al33 propose a partial redundancy scheme for stream processing applications. Their scheme is based on application

quality analysis by considering an application-specific output score function.

Instruction-level redundancy schemes duplicate the instructions in a program at the compile time and compare the results of the replicated

instructions at runtime.4,7 To reduce the cost of the full redundancy, there have been partial redundancy techniques which analyzes how

the instructions affect the final application output.13,34 Instruction-level fault tolerance configurability (ILCOFT) technique34 provides different

protection levels for different instructions in an application by specifying the critical instructions which affect the output at most. ILCOFT-enabled

system uses Instruction Vulnerability Factor (IVF) metric to determine the protection level of each instruction. Kumar and Aggarwal35 propose an

instruction-level partial redundancy method to reduce both performance loss and energy consumption. They define self-checking instructions,

which do not need replication for fault tolerance, and reduce instruction redundancy level by implementing self-checking in redundant

multi-threading scheme. Li et al36 also propose a selective instruction replication technique by identifying vulnerable instructions at compile time,

and replicate a subset of instructions to protect the execution by satisfying worst-case execution time constraints.

There have been redundancy techniques for fault tolerance of shared-memory multithreaded applications as well as single-threaded

applications.9,10 Sanchez et al9 propose a new design for simultaneous and redundantly threaded method to reduce performance degradation of

atomic operations. Atomic operations in parallel applications are handled by synchronizing master and slave threads in the redundant execution.

An efficient redundancy scheme to deal with communication latency and nondeterministic ordering of communication events is proposed by

mining available redundancy in the program execution.10

8 CONCLUSION AND FUTURE WORK

In this paper, we propose a user-assisted reliability assessment tool based on critical thread analysis for redundancy in parallel architectures. Our

analysis evaluates the application threads of a parallel program by considering their criticality in the execution and it selects the most critical

thread and critical region, which affect the other threads via remote memory write operations. We demonstrate the efficiency of our tool by

providing vulnerability values for executions with different redundancy levels. Our experimental evaluation indicates that the replication of the

most critical thread improves the system reliability more than the replication of any other thread. The partial thread replication based on critical

region analysis also reduces the vulnerability of the system by considering a fine-grained approach.

We build a proof-of-concept fault injection framework and use single event upset (SEU) in our vulnerability analysis. On the other hand,

multi-bit upset (MBU) analysis can be easily adapted in a future work.

ORCID

Isil Oz https://orcid.org/0000-0002-8310-1143

REFERENCES

1. Olukotun K, Nayfeh BA, Hammond L, Wilson K, Chang K. The case for a single-chip multiprocessor. In: Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS VII); 1996; Cambridge, MA.

2. Shivakumar P, Kistler M, Keckler SW, Burger D, Alvisi L. Modeling the effect of technology trends on the soft error rate of combinational logic.
In: Proceedings International Conference on Dependable Systems and Networks; 2002; Washington, DC.

3. Shye A, Moseley T, Reddi VJ, Blomstedt J, Connors DA. Using process-level redundancy to exploit multiple cores for transient fault tolerance. Paper
presented at: 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'07); 2007; Edinburgh, UK.

4. Reis GA, Chang J, Vachharajani N, Rangan R, August DI. SWIFT: software implemented fault tolerance. Paper presented at: International Symposium
on Code Generation and Optimization; 2005; New York, NY.

5. Reis GA, Chang J, Vachharajani N, Rangan R, August DI, Mukherjee SS. Design and evaluation of hybrid fault-detection systems. Paper presented at:
32nd International Symposium on Computer Architecture (ISCA'05); 2005; Madison, WI.

6. Reis GA, Chang J, Vachharajani N, Rangan R, August DI, Mukherjee SS. Software-controlled fault tolerance. ACM Trans Archit Code Optim.
2005;2(4):366-396.

7. Oh N, Shirvani PP, McCluskey EJ. Error detection by duplicated instructions in super-scalar processors. IEEE Trans Reliab. 2002;51(1):63-75.

8. Shye A, Blomstedt J, Moseley T, Reddi VJ, Connors DA. PLR: a software approach to transient fault tolerance for multicore architectures. IEEE Trans
Dependable Secure Comput. 2009;6(2):135-148.

https://orcid.org/0000-0002-8310-1143
https://orcid.org/0000-0002-8310-1143

OZ ET AL. 19 of 19

9. Sanchez D, Aragon JL, Garcia JM. Extending SRT for parallel applications in tiled-CMP architectures. Paper presented at: 2009 IEEE International
Symposium on Parallel & Distributed Processing; 2009; Rome, Italy.

10. Hyman R Jr, Bhattacharya K, Ranganathan N. Redundancy mining for soft error detection in multicore processors. IEEE Trans Comput.
2011;60(8):1114-1125.

11. Gomaa MA, Vijaykumar TN. Opportunistic transient-fault detection. Paper presented at: 32nd International Symposium on Computer Architecture
(ISCA'05); 2005; Madison, WI.

12. Soundararajan NK, Parashar A, Sivasubramaniam A. Mechanisms for bounding vulnerabilities of processor structures. In: Proceedings of the 34th
Annual International Symposium on Computer Architecture (ISCA); 2007; San Diego, CA.

13. Borodin D, Juurlink BHH. Protective redundancy overhead reduction using instruction vulnerability factor. In: Proceedings of the 7th ACM International
Conference on Computing Frontiers; 2010; Bertinoro, Italy.

14. Feng S, Gupta S, Ansari A, Mahlke S. Shoestring: probabilistic soft error reliability on the cheap. In: Proceedings of the Fifteenth Edition of ASPLOS
on Architectural Support for Programming Languages and Operating Systems; 2010; Pittsburgh, PA.

15. Vera X, Abella J, Carretero J, González A. Selective replication lightweight technique for soft errors. ACM Trans Comput Syst. 2009;27(4):40-70.

16. Sridharan V, Kaeli DR. Eliminating microarchitectural dependency from architectural vulnerability. Paper presented at: 2009 IEEE 15th International
Symposium on High Performance Computer Architecture; 2009; Raleigh, NC.

17. Oz I, Topcuoglu HR, Kandemir M, Tosun O. Thread vulnerability in parallel applications. J Parallel Distrib Comput. 2012;72(10):1171-1185.

18. Sridharan V, Kaeli DR. The effect of input data on program vulnerability. Paper presented at: Workshop on System Effects of Logic Soft Errors
(SELSE-5); 2009; Stanford, CA.

19. Magnusson PS, Christensson M, Eskilson J, et al. Simics: a full system simulation platform. Computer. 2002;35(2):50-58.

20. Oz I, Topcuoglu HR, Kandemir M, Tosun O. Reliability-aware core partitioning in chip multiprocessors. J Syst Archit. 2012;58(3-4):160-176.

21. Clark JA, Pradhan DK. Fault injection: a method for validating computer-system dependability. Computer. 1995;28(6):47-56.

22. Arlat J, Crouzet Y, Karlsson J, Folkesson P, Fuchs E, Leber GH. Comparison of physical and software-implemented fault injection techniques. IEEE
Trans Comput. 2003;52(9):1115-1133.

23. Oz I, Topcuoglu HR, Kandemir M, Tosun O. Examining thread vulnerability analysis using fault-injection. Paper presented at: 2013 IFIP/IEEE 21st
International Conference on Very Large Scale Integration (VLSI-SoC); 2013; Istanbul, Turkey.

24. Mattson TG, Sanders BA, Massingill BL. Patterns for Parallel Programming. Boston, MA: Pearson Education; 2004.

25. Bienia C, Kumar S, Singh JP, Li K. The PARSEC benchmark suite: characterization and architectural implications. Paper presented at: 2008 International
Conference on Parallel Architectures and Compilation Techniques (PACT); 2008; Toronto, Canada.

26. Woo SC, Ohara M, Torrie E, Singh JP, Gupta A. The SPLASH-2 programs: characterization and methodological considerations. In: Proceedings of the
22nd Annual International Symposium on Computer Architecture; 1995; Santa Margherita Ligure, Italy.

27. Hari S, Kumar S, Li M-L, Ramachandran P, Choi B, Adve SV. mSWAT: low-cost hardware fault detection and diagnosis for multicore systems. Paper
presented at: 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO); 2009; New York, NY.

28. Austin TM. DIVA: a reliable substrate for deep submicron microarchitecture design. In: Proceedings of the 32nd Annual ACM/IEEE International
Symposium on Microarchitecture; 1999; Haifa, Israel.

29. Reinhardt SK, Mukherjee SS. Transient fault detection via simultaneous multithreading. In: Proceedings of the 27th Annual International Symposium
on Computer Architecture (ISCA); 2000; Vancouver, Canada.

30. Avirneni NDP, Somani AK. Low overhead soft error mitigation techniques for high-performance and aggressive designs. IEEE Trans Comput.
2012;61(4):488-501.

31. Gupta S, Feng S, Ansari A, Mahlke S. StageNet: a reconfigurable fabric for constructing dependable CMPs. IEEE Trans Comput. 2011;60(1):5-19.

32. Parashar A, Gurumurthi S, Sivasubramaniam A. SlicK: slice-based locality exploitation for efficient redundant multithreading. In: Proceedings of the
12th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS); 2006; San Jose, CA.

33. Jacques-Silva G, Gedik B, Andrade H, Wu K-L, Iyer RK. Fault injection-based assessment of partial fault tolerance in stream processing applications.
In: Proceedings of the 5th ACM International Conference on Distributed Event-Based System (DEBS); 2011; New York, NY.

34. Borodin D, Juurlink BB, Hamdioui S, Vassiliadis S. Instruction-level fault tolerance configurability. J Signal Process Syst. 2009;57:89-105.

35. Kumar S, Aggarwal A. Self-checking instructions: reducing instruction redundancy for concurrent error detection. Paper presented at: 15th International
Conference on Parallel Architecture and Compilation Techniques (PACT 2006); 2006; Seattle, WA.

36. Li J, Xue J, Xie X, Wan Q, Tan Q, Tan L. Epipe: a low-cost fault-tolerance technique considering WCET constraints. J Syst Archit. 2013;59(10):1383-1393.

How to cite this article: Oz I, Topcuoglu HR, Tosun O. A user-assisted thread-level vulnerability assessment tool. Concurrency Computat

Pract Exper. 2019;31:e5085. https://doi.org/10.1002/cpe.5085

https://doi.org/10.1002/cpe.5085

	A user-assisted thread-level vulnerability assessment tool
	Abstract
	INTRODUCTION
	SYSTEM MODEL
	Fault model
	Application execution model

	USER-ASSISTED RELIABILITY ASSESSMENT TOOL
	Critical thread replication
	Local vulnerability of a thread
	Thread interactions
	Critical thread identification algorithm
	An example execution

	Critical region replication

	VULNERABILITY OF REDUNDANT COMPUTATIONS
	A case study for redundant computations

	EXPERIMENTAL SETUP
	Simulation platform
	Fault injection framework
	Benchmark applications

	EXPERIMENTAL RESULTS
	Evaluating critical thread replication
	Critical thread analysis
	Critical thread replication
	Validation of critical thread replication

	Evaluating critical region replication

	RELATED WORK
	CONCLUSION AND FUTURE WORK
	References

