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Newton-type method and nonlinear integral equations. The mathematical foundation of the 
method is presented and the feasibility is illustrated by numerical examples.
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1. Introduction

In this study, we are interested in the numerical reconstruction of surface impedance functions from the knowledge of far 
field measurements of a scattered wave associated with a few incident plane waves at a given frequency. The generalized 
impedance boundary conditions (GIBC’s) are used to model obstacles coated with a thin layer of a penetrable material, 
obstacles with corrugated surfaces or to model more accurately imperfectly conducting obstacles. These boundary conditions 
were introduced in 1940s for modeling electromagnetic wave propagation over irregular terrains, [22]. Since then GIBC’s are 
used for simplifying the analytical solutions or reducing the cost of numerical solutions for problems involving complex 
structures not only in electromagnetics [10] but also in many other disciplines, in particular, three-dimensional acoustic 
problems, [1,2,12,16].

The inverse problem we are interested in is to determine the surface impedance functions for a given obstacle from 
the knowledge of the far field pattern for a few incident plane waves. This problem appears in practical application such 
as NDT for detecting porosity, reconstruction of surface roughness or coating thickness, [3], for modeling related to stealth 
technology or antennas, [4]. Additionally, it is motivated by the need to minimize the wave reflected by the obstacle in 
some directions what can be achieved by introducing a coating on the surface of the obstacle. Moreover, the study on this 
inverse problem lays down the foundation to a reconstruction algorithm for a coated obstacle, i.e. simultaneous recovery of 
surface impedances and shape of the obstacle.

The literature overview for the inverse GIBC related problems in two dimensions reveals the following research results. 
In the case of Leontovich boundary condition the problem for reconstruction the impedance and the shape of the obstacle is 
well-studied, see e.g. [20]. The numerical solution for the general case of a second order impedance boundary condition was 
investigated by Bourgeois et al. [4,6] with the aid of variational formulation for the solution of the direct problem and by 
Kress [19] with the solution method completely based on the boundary integral equations. Assuming that the boundary �
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is also unknown the variational approach was extended to the simultaneous reconstruction of the shape and the impedance 
functions, [5]. A closely related inverse scattering problems with generalized oblique derivative boundary condition was 
considered in [23] and the linear sampling method was developed for the shape reconstruction, [24].

Regarding the inverse GIBC related problems in three dimensions the currently available literature is scarce. For the 
inverse impedance problem a nonlinear boundary integral equation approach was proposed in [14] for the case of Leontovich 
boundary condition. Furthermore, the theoretical study on the boundary integral equation methods for the direct scattering 
problem with generalized impedance boundary condition was recently undertaken by Kress, [18].

In this paper, we present a reconstruction algorithm based on an iteratively regularized Newton-type method and non-
linear boundary integral equations. More specifically, extending the study of [14] to the second order boundary condition 
we employ an analogue of the Huygens’ principle for the generalized impedance scattering and derive a system of nonlinear 
boundary integral equations equivalent to the inverse problem.

The paper is organized as follows. Section 2 is devoted to the solution of the direct boundary value problem and to the 
review on the uniqueness results for the inverse problem. We proceed in Section 3 with reduction of the inverse impedance 
problem to the system of nonlinear boundary equation. Section 4 is allocated to the description of the iterative algorithm. 
In Section 5, the numerical implementation of the method is described. Finally, in Section 6 the feasibility of the method is 
illustrated by numerical examples.

2. Direct and inverse problem

To generate synthetic data for the inverse problem we firstly review the known results for the direct problem. Mathemat-
ically, the direct scattering problem for an obstacle with generalized impedance boundary condition can be stated as follows. 
Let D ⊂ R3 be a simply connected bounded domain with boundary �. Given the incident plane wave ui(x) = eik x·d with 
wave number k > 0 and the direction of propagation d the scattering problem consists in finding the total field u = us + ui

such that u satisfies the Helmholtz equation

�u + k2u = 0 in R3 \ D̄, (2.1)

the generalized impedance boundary condition (GIBC)

∂u

∂ν
+ ik(λ − DivμGrad)u = 0, on � (2.2)

where Grad and Div are surface gradient and surface divergence operators on � and ν is the outward unit normal vector to 
�. For brevity of notations, we introduce the differential operator

G(λ,μ; u) = ik(λ − DivμGrad)u.

The scattered field has also to satisfy the Sommerfeld radiation condition

lim
r→∞ r

(
∂us

∂r
− ikus

)
= 0, r = |x|, (2.3)

uniformly with respect to all directions. The Sommerfeld radiation condition guarantees the following asymptotic behavior 
of the scattered field

us(x) = eik|x|

|x|
{

u∞
(

x

|x|
)

+ O

(
1

|x|
)}

, |x| → ∞,

uniformly in all directions with the far field pattern u∞ defined on the unit sphere S2, [8].
Due to [18] we have the following well-posedness for the boundary value problem (2.1)-(2.3).

Theorem 2.1. Let D ⊂ R3 be a bounded domain with a connected boundary � of Hölder class C4,α . Assume λ ∈ C1(�), μ ∈ C2(�)

with Reλ, Reμ ≥ 0 and |μ| > 0. Then there exists a unique solution u ∈ H2
loc(R

3 \ D̄) to (2.1)–(2.3).

Proof. For the sake of completeness, we recall the ideas of proof presented in [18,19]. Since u|� ∈ H
3
2 (�) GIBC has to be 

understood in the weak sense∫
�

(
η

∂u

∂ν
+ ikληu + ikη Gradη · Grad u

)
ds = 0, ∀η ∈ H

3
2 (�). (2.4)

By Rellich’s lemma, [8, Theorem 2.13], the direct problem has at most one solution provided Reλ, Reμ ≥ 0.
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Representing the solution as the combined layer potential

us(x) =
∫
�

{
	(x, y) + i

∂	(x, y)

∂ν(y)

}
ϕ(y)ds(y), x ∈R3 \ D̄, ϕ ∈ H

3
2 (�)

substituting it into GIBC (2.2) and using the jump relations of layer potentials yields equivalence of (2.1)–(2.3) to the integro-
differential equation

ϕ − K ′ϕ − iTϕ − G(λ,μ; Sϕ + iϕ + iKϕ) = 2
∂ui

∂ν

∣∣∣∣∣
�

+ 2G(λ,μ; ui |�),

where S and K are the single- and double-layer potential operators, correspondingly are defined by

(Sϕ)(x) := 2
∫
�

	(x, y)ϕ(y)ds(y), (Kϕ)(x) := 2
∫
�

∂	(x, y)

∂ν(y)
ϕ(y)ds(y), (2.5)

and K ′ϕ := ∂ Sϕ
∂ν , Tϕ := ∂ Kϕ

∂ν are their normal derivatives. The operator

(K ′ϕ)(x) := 2
∫
�

∂	(x, y)

∂ν(x)
ϕ(y)ds(y) (2.6)

is adjoint to the operator K with respect to L2 bilinear form. The statement is completed by showing that the modified 
Laplace-Beltrami operator ϕ 	→ − Div Gradϕ + ϕ is an isomorphism from H

3
2 (�) onto H− 1

2 (�), employing boundedness of 
S, K : H

3
2 (�) → H

5
2 (�) in the case � being of Hölder class C4,α , [17], using compact embedding I

H
1
2 (�)↪→H− 1

2 (�)
and finally 

applying the Riesz theory. �
Newly the following existence result was proved under the weaker conditions on the boundary and the surface 

impedance functions, [9].

Theorem 2.2. Let D ⊂R3 be a bounded domain with a connected boundary � of Hölder class C3,α . Assume λ ∈ C(�), μ ∈ C1(�) with 
Reλ, Reμ ≥ 0 and |μ| > 0. Then there exists a unique solution u ∈ H1,1

loc (R3 \ D̄) = {u ∈ H1
loc(R

3 \ D̄) : u|� ∈ H1(�)} to (2.1)–(2.3).

We seek the scattered field us ∈ H2
loc(R

3 \ D̄) in the form of a single-layer potential

us(x) =
∫
�

	(x, y)ϕ(y)ds(y), x ∈R3 \ D̄,

where 	(x, y) = 1

4π

eik|x−y|

|x − y| , x 
= y is the fundamental solution to the Helmholtz equation in R3 and ϕ ∈ H
1
2 (�). Substitut-

ing the total field to the boundary condition (2.2) and using the jump relations for the single-layer potential, [8], we obtain 
the following integro-differential equation

ϕ − K ′ϕ − G(λ,μ; Sϕ) = 2
∂ui

∂ν

∣∣∣∣∣
�

+ 2G(λ,μ; ui |�) (2.7)

It is shown, [18], that the operator A(λ,μ; ·) : H
1
2 (�) → H− 1

2 (�) defined by

A(λ,μ;ϕ) := ϕ − K ′ϕ − G(λ,μ; Sϕ) (2.8)

has a bounded inverse provided k2 is not a Dirichlet eigenvalue for the negative Laplacian in D . Hence, our synthetic data 
u∞ ∈ L2(S2) can be found as follows

u∞(x̂) = 1

4π

∫
�

e−ikx̂·yϕ(y)ds(y), x̂ := x

|x| ∈ S2.

The inverse problem (IP) we are concerned with is formulated as follows.
Given the shape �, the location of the obstacle D and the far field pattern u∞ for several incident plane waves determine 

the surface impedance functions λ and μ.
Before starting to solve the inverse problem we need to figure out what is the minimal number of far field patterns 

to guarantee the uniqueness of the solution. Due to the result of Bourgeois, Chaulet, Haddar [5] it is known that both 
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the shape and the impedance functions are uniquely determined by the far field patterns for an infinite number of incident 
waves with distinct incident directions and one fixed wave number. The more suitable result for the numerical methods was 
recently found by Cakoni and Kress, [7,19], in the case of two dimensions. They have shown that three far field patterns 
corresponding to the scattering of plane waves with different incident directions uniquely determine the impedance function 
for a given shape �. Unfortunately, there is no straightforward conclusion for the uniqueness in three dimensions. Moreover, 
extending the counter example given in [19], we can show non-uniqueness for the inverse impedance problem with finite 
number of far field patterns corresponding to incident spherical wave.

Let D be a ball of radius R centered at the origin and let λ, μ be constants such that Re λ ≥ 0, Reμ ≥ 0, |μ| > 0. We 
consider incident spherical waves ui(x) = jn(k|x|)Yn
(x̂), |
| ≤ n, n ∈ N where jn is the spherical Bessel function and Yn
 is 
the spherical harmonic of n degree and 
th order. The corresponding total fields are given by

u
(x) =
(

jn(k|x|) − an h(1)
n (k|x|)

)
Yn
(x̂).

Substituting the total fields in the generalized impedance boundary condition (2.2) and recalling that the spherical harmon-
ics are eigenfunctions of the Laplace-Beltrami operator we find the coefficients

an = k j′n(kR) + ik
(
λ + n(n + 1)μ/R2

)
jn(kR)

k h(1)′
n (kR) + ik

(
λ + n(n + 1)μ/R2

)
h(1)

n (kR)
. (2.9)

The denominator in (2.9) does not vanish due to Rellich’s lemma and the assumptions on the impedance coefficients. Hence, 
we can choose different combinations of impedances λ and μ giving the same value of an and 2n + 1 linear independent 
total fields.

Note, this model example demonstrates also another difficulties of the inverse impedance problem such as nonlinearity 
and severe ill-posedness which will be addressed in the following sections.

3. Numerical solution of the inverse problem

The main idea of the method we propose is to replace the solution of the inverse problem (IP) by the solution of a 
system of nonlinear integral equation. To derive the system we employ Green’s formula, [8, Theorem 2.5], to the scattered 
field

us(x) =
∫
�

{
us(y)

∂	(x, y)

∂ν(y)
− ∂us(y)

∂ν(y)
	(x, y)

}
ds(y), x ∈R3 \ D̄

and Green’s theorem to the entire solution ui and 	(x, ·)

0 =
∫
�

{
ui(y)

∂	(x, y)

∂ν(y)
− ∂ui(y)

∂ν(y)
	(x, y)

}
ds(y), x ∈R3 \ D̄.

Substituting the total field to the boundary condition (2.2) we find its representation in terms of the boundary traces, i.e., 
for x ∈R3 \ D̄

u(x) = ui(x) +
∫
�

{
∂	(x, y)

∂ν(y)
u(y) + 	(x, y)G(λ,μ; u)(y)

}
ds(y). (3.1)

Considering that the influence of a given object on an incident field is described by a distribution of the so-called “secondary 
sources” along the surface we may interpret (3.1) as Huygens’ principle, [8], for generalized impedance scattering.

As the next step we recall the single- and double-layer operators S, K : H− 1
2 (�) → H

1
2 (�) defined by (2.5) and introduce 

the far fields for single- and double-layer operators S∞, K∞ : H− 1
2 (�) → L2(S2) defined by

(S∞ϕ)(x̂) := 2

4π

∫
�

e−ikx̂·yϕ(y)ds(y),

(K∞ϕ)(x̂) := −2ik

4π

∫
�

e−ikx̂·y x̂ · ν(y)ϕ(y)ds(y).

From the jump relations for single- and double-layer potentials, the asymptotic behavior of the Hankel functions we 
derive the following theorem which lays a foundation for the inversion method.
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Theorem 3.1. For a given boundary �, an incident field ui and the corresponding far field pattern u∞, assume that the surface 
impedance functions λ, μ and the density ϕ satisfy the system of nonlinear boundary integral equations

ϕ − Kϕ − S G(λ,μ;ϕ) = 2ui|�, (3.2)

K∞ϕ + S∞ G(λ,μ;ϕ) = u∞. (3.3)

Then λ, μ are the solutions to the inverse impedance problem (IP).

Proof. Consider the total field expressed via (3.1). Then its far field u∞ is represented by K∞ϕ + S∞ G(λ, μ; ϕ) and hence 
the data equation (3.3) guarantees that the scattered field has a correct far field pattern. Recalling that ϕ = u|� and taking 
the Dirichlet trace of (3.1) by the jump relation for layer potentials, [8], we find

2ϕ = 2ui|� + ϕ + Kϕ + S G(λ,μ;ϕ).

Hence the field equation (3.2) ensures the boundary condition (2.2). �
Note, the obtained system is ill-posed due to the data equation which contains the compact operators with exponentially 

decreasing singular values. We list several methods to solve the system (3.2)–(3.3).

1. Introducing the new unknown χ = G(λ, μ; ϕ) we can interpret the system as linear which can be solved by the 
Tikhonov regularization. The unknown impedance functions are then solved from the above differential equation.

2. Solving the density ϕ from the field equation and linearizing the data equation.
3. Reversing the order of the equations in the 2nd method.
4. Simultaneous linearization of both equations with respect to all unknowns.

The first method resembles in some way the direct approach for the inverse problem with the Leontovich boundary con-
dition, [14]. The overview of the methods 2-4 for the boundary shape reconstruction can be found for example in [9, 
Section 5], [15]. Since the first method was found to be less stable as compare to the method based on the simultaneous 
linearization we continue the study on the latter one, method 4.

In order to investigate the properties of the boundary integral operators appearing in (3.2)–(3.3) we introduce a bounded 
linear operator A′(λ, μ; ·) : H−1/2(�) → H1/2(�) defined by

A′(λ,μ;ϕ) := ϕ − Kϕ − S G(λ,μ;ϕ)

and a bounded linear operator A′∞(λ, μ; ·) : H−1/2(�) → L2(S2) defined by

A′∞(λ,μ;ϕ) := K∞ϕ + S∞ G(λ,μ;ϕ).

Note that the operator A′(λ, μ; ·) is adjoint of the operator A(λ, μ; ·) defined by (2.8) in the dual system < H1/2(�),

H−1/2(�) > with respect to L2 bilinear form. Applying the Fredholm alternative we find that the operator A′(λ, μ; ·) :
H−1/2(�) → H1/2(�) has a bounded inverse.

Having found the Fréchet derivatives of the operators in (3.2)–(3.3) we are ready to formulate the fully linearized system. 
The inverse problem is not uniquely solvable for one incident plane wave and uniqueness for the finite number of incident 
direction is an open problem in three dimensions. Motivated by the uniqueness result in two dimensions we consider the 
nonlinear system (3.2)–(3.3) for p ≥ 3 incident plane waves

ui

(x) = eik x·d
 , d
 ∈ S2.

Given the current approximation ϕ
 = u
|� , 
 = 1, p, λ, μ the fully linearized system reads

A′(λ,μ;ψ
) − S G(η, ζ ;ϕ
) = 2ui

|� − A′(λ,μ;ϕ
), 1 ≤ 
 ≤ p, (3.4)

A′∞(λ,μ;ψ
) + S∞ G(η, ζ ;ϕ
) = u∞,
 − A′∞(λ,μ;ϕ
), 1 ≤ 
 ≤ p, (3.5)

for the unknown updates ψ
 , η, ζ of the functions ϕ
 , λ, μ, correspondingly.
In order to apply the Tikhonov regularization we need to investigate injectivity of the system (3.4)–(3.5) at the exact 

solution. Unfortunately, this issue is not resolved yet since it is directly related to the question of unique reconstruction of 
the surface impedances. To demonstrate the connection between the uniqueness issue and the injectivity of the operator in 
the system (3.4)–(3.5) we define a function V
 for x ∈R3 \ D̄ by

V
(x) = 2
∫ {

∂	(x, y)

∂ν(y)
ψ
(y) + 	(x, y)G(λ,μ;ψ
)(y) + 	(x, y)G(η, ζ ;ϕ
)(y)

}
ds(y),
�
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where ϕ
 = u
|� is the restriction of the total field corresponding to the incident plane wave ui

 to the boundary �. The 

equation (3.5) guarantees V∞,
 = 0, and by Rellich’s lemma we obtain V
 = 0 in R3 \ D̄ . From the jump relations for single-
and double-layer potentials, [8], it follows that ψ
 ≡ 0. From (3.5) and the assumption k2 is not a Dirichlet eigenvalue for 
the negative Laplacian in D we can conclude that G(η, ζ ; ϕ
) = 0, i.e.

(η − Div ζ Grad)ϕ
 = 0

This leads us to the unsolved uniqueness problem. Indeed, choosing D to be a ball of radius R centered at the origin, η and 
ζ to be constants, recalling that the spherical harmonics are dense in L2(S2) we arrive to the equation

η + n(n + 1)ζ = 0.

Since η and ζ are the unknown updates, we cannot put positivity restriction on their real or imaginary parts and hence 
there is a nontrivial solution.

The remedy to this might lie in a special choice on incident directions. However, there is no solution available at the 
moment and this issue will be closed automatically once the uniqueness question is resolved.

4. Iterative method

For the numerical solution of the system of boundary integral equations (3.4)–(3.5) we assume that the surface � is 
C4,α-smooth and homeomorphic to the unit sphere S2, i.e. we introduce a parametrization z : S2 → �,

� := {z(x̂) : x̂ ∈ S2}.
The parametrized single-layer operator S : H−1/2(S2) → H1/2(S2) takes the form

(Sυ)(x̂) =
∫
S2

	(z(x̂), z( ŷ))υ( ŷ) J z( ŷ)ds( ŷ), x̂ ∈ S2,

where υ = u ◦ z and J z is the Jacobian of the transformation. In a similar way we define the parametrized form of the 
operators K , S∞ , K∞ .

Let Dz be the total derivative which maps the tangent plane to S2 to the tangent plane to �. The operator [Dz∗]−1 maps 
the cotangent plane to the unit sphere S2 to the cotangent plane to the given surface �. To define the parametrized form 
of the operators G , A′, A′∞ we use the following transformation formulas

(Grad u) ◦ z = [Dz∗]−1 GradS2(u ◦ z),

(Divυ) ◦ z = 1

J z
DivS2

(
J z[Dz]−1(υ ◦ z)

)
.

The parametrized form of the system (3.4)–(3.5) for a single incident wave reads

F ′
ϕ,λ,μ

⎡
⎣ ψ

η
ζ

⎤
⎦= b − F

⎡
⎣ ϕ

λ

μ

⎤
⎦ , b =

[
2ui ◦ z
u∞

]
(4.1)

with F , F ′
ϕ,λ,μ : H−1/2(S2) × Hsλ (S2) × Hsμ(S2) → H1/2(S2) × L2(S2) given by

F

⎡
⎣ ϕ

λ

μ

⎤
⎦=

[
A′[λ,μ]ϕ
A′∞[λ,μ]ϕ

]
and F ′

ϕ,λ,μ

⎡
⎣ ψ

η
ζ

⎤
⎦= F

⎡
⎣ ψ

λ

μ

⎤
⎦+

[−S

S∞

]
G(λ,μ;ϕ).

By a slight abuse of notation, we use the same symbols for the parametrized densities and the impedance functions.
The inverse surface problem cannot be solved with the far field for a single incident field therefore we extend the 

operator in (4.1) to the case of p incident directions, i.e. let

ϕ = [ϕ1, . . . ,ϕp]T and F

⎡
⎣ ϕ

λ

μ

⎤
⎦=

⎡
⎣F

⎡
⎣ ϕ1

λ

μ

⎤
⎦ , . . . , F

⎡
⎣ ϕp

λ

μ

⎤
⎦
⎤
⎦

T

.

We compute an approximate solution to

F ′
ϕ,λ,μ

⎡
⎣ ψ

η
ζ

⎤
⎦= b − F

⎡
⎣ ϕ

λ

μ

⎤
⎦
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by the Iteratively Regularized Gauss-Newton Method (IRGNM), [13]. One iteration of the method can be written as follows⎡
⎣ ϕN+1

λN+1

μN+1

⎤
⎦ := argmin

ψ,η,ζ

⎛
⎜⎝
∥∥∥∥∥∥

p∑

=1

F ′
ϕN


 ,λN ,μN

⎡
⎣ ψ


η
ζ

⎤
⎦− b
 + F

⎡
⎣ ϕN




λN

μN

⎤
⎦
∥∥∥∥∥∥

2

+ αN

p∑

=1

‖ψ
 + ϕN

 − ϕ0


 ‖2 + βN‖η + λN − λ0‖2 + γN‖ζ + μN − μ0‖2

)
.

Here the regularization parameters are chosen of the form αN = χ−Nα0, βN = χ−Nβ0 and γN = χ−Nγ0, with χ > 1. For a 
given approximation (ϕ, λ, μ) on the Nth iteration the correction (ψ, η, ζ ) is found as the unique solution to the following 
regularized linear equation⎡

⎣
⎛
⎝ αN I

(H− 1
2 )p

0 0

0 βN IHsλ 0
0 0 γN IHsμ

⎞
⎠+ F ′ ∗

ϕ,λ,μ F ′
ϕ,λ,μ

⎤
⎦
⎡
⎣ ψ

η
ζ

⎤
⎦= (4.2)

F ′ ∗
ϕ,λ,μ

⎛
⎝b − F

⎡
⎣ ϕ

λ

μ

⎤
⎦
⎞
⎠+

⎡
⎣ αN(ϕ − ϕ0)

βN(λ − λ0)

γN(μ − μ0)

⎤
⎦ .

The L2 adjoint to the operator occurring in the final system F ′
ϕ,λ,μ is found as below

F ′ ∗
ϕ,λ,μ

[
g
g∞

]
=
⎡
⎣ A′(λ,μ; g) + K′∞ + G(λ,μ;S∞ g∞)

−ik ϕ (Sg − S∗∞g∞)

ik Divϕ(Grad Sg − S∗∞g∞)

⎤
⎦ .

The iterative scheme.
Step 1. Choose an initial pair of surface impedance functions (λ, μ) and solve the initial densities ϕ from the parametrized 
form of the well-posed integral equation of the second kind (3.2) for p incident plane waves.
Step 2. Given the approximation (ϕ, λ, μ) solve the system (4.2) for the corrections ψ , η, ζ .
Step 3. Update (ϕ, λ, μ) by adding (ψ, η, ζ ).
Step 4. Repeat the last two steps until a stopping criterion is fulfilled, e.g. Morozov’s discrepancy principle for the noise 
level δ and τ > 1( p∑


=1

‖A′∞(λ,μ;ϕ
) − u∞,
‖L2

)1/2

≤ τδ. (4.3)

5. Numerical implementation

To obtain a fully discrete version of (4.2) we apply the fully discrete Galerkin method by Ganesh and Graham, [11], to 
the parametrized linear boundary integral equations. The method is based on approximations by spherical harmonics and 
converges super algebraically in the case of smooth boundaries. We start with the numerical integration formula over the 
unit sphere for a continuous function, the so called Gauss trapezoidal product rule,

∫
S2

u(x̂)ds(x̂) ≈
2n+1∑
ρ=0

n+1∑
τ=1

μρντ u(x̂ρτ ), x̂ρτ = x̂(θτ ,φρ), (5.1)

μρ = π

n + 1
, φρ = ρπ

n + 1
, θτ = arccos ζτ ,

where ζτ are the zeros of the Legendre polynomial P 0
n+1 of degree n + 1 and ντ are the corresponding Gauss-Legendre 

weights. The formula (5.1) is exact for the scalar spherical polynomials of order less than or equal to 2n + 1. This induces 
the discrete inner product (·, ·)n

(ϕ1,ϕ2)n =
2n+1∑
ρ=0

n+1∑
τ=1

μρντϕ1(x̂ρτ )ϕ2(x̂ρτ ),

on the space of all scalar spherical harmonics Ylj , for j = −l, . . . , l and l = 1, 2, . . ., of degree less than or equal to n. We 
introduce a projection operator 
n defined by
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nu =
n∑

l=0

l∑
j=−l

(u, Ylj)nYlj .

For the numerical approximation of the integral operators with smooth kernels K∞ , S∞ , we apply the Gauss trapezoidal 
product rule. The singularity in the weakly singular kernels of the operators K, K′ , S, is moved by an orthogonal trans-
formation to the north pole n̂ = (0, 0, 1)T . To approximate the resulting integrals we use the modified Gauss trapezoidal 
rule ∫

S2

u(x̂)

|n̂ − x̂|ds(x̂) ≈
∫
S2

(
nu)(x̂)

|n̂ − x̂| ds(x̂) =
2n+1∑
ρ=0

n+1∑
τ=1

ατμρντ u(x̂ρτ ), ατ =
n∑

l=0

P 0
l (ζτ ),

which is based on the fact that the scalar spherical harmonics are eigenfunctions of the single-layer potential on the sphere.
To approximate the surface differential operators we introduce the vectorial spherical harmonics

Y(1)

l j = 1√
l(l + 1)

GradS2 Ylj, Y(2)

l j = 1√
l(l + 1)

CurlS2 Ylj,

for j = −l, . . . , l and l = 1, 2, . . . which form a complete orthonormal system in the spaces of tangent vectors fields L2
t (S2). 

The corresponding projection operator Ln on the space generated by the orthonormal basis of tangential vector spherical 
harmonics is defined by

Lnυ =
2∑

i=1

n∑
l=1

l∑
j=−l

(υ|Y(i)
l j )n Y(i)

l j ,

where (υ1|υ2)n =
2n+1∑
ρ=0

n+1∑
τ=1

μρντυ1(x̂ρτ ) · υ2(x̂ρτ ).

Both impedance functions are approximated by the scalar spherical harmonics of degree K , i.e.

μ ≈
K∑

l j,l=1

μl j Ylj.

The surface differential operator G(λ, μ; ·) can be approximated as follows

DivμGradS2 Ylj ≈ 1

J z
DivS2 Ln μGradS2 Ylj.

Since

DivS2 GradS2 = �S2 , DivS2 CurlS2 = 0, and �S2 Ylj = −l(l + 1)Ylj

we obtain

(DivμGradS2 Ylj, Yl′ j′) ≈
n∑

pq,p=1

(
1

J z
Y pq, Yl′ j′

)
n

(
μGradS2 Ylj|Y(1)

pq

)
n
(−√p(p + 1)).

For the representation of the tangential gradient of the spherical harmonics we refer to [21]. The fully discrete system (4.2)
is solved by the conjugate gradient (CG) method. In the CG algorithm we compute L2 adjoint F ′ ∗

ϕ,λ,μ and evaluate norms in 
corresponding Hs(S2) spaces for s ∈R which can be characterized by

Hs(S2) =
⎧⎨
⎩υ =

∞∑
l=0

l∑
j=−l

υl j Ylj, υl j ∈C,

∞∑
l=0

l∑
j=−l

(1 + l2)s|υl j|2 < ∞
⎫⎬
⎭ .

6. Numerical experiments

In this final section, we illustrate the feasibility of the method by several numerical experiments. The synthetic data are 
obtained by solving the boundary integral equation (2.7) with nsyn = 20 for an ellipsoid with parametrization

z(θ,φ) = (sin θ cosφ,0.5 sin θ sinφ,0.5 cos θ), θ ∈ [0,π ], ϕ ∈ [0,2π ]
and the incident directions (1, 0, 0), (0, 0, 1), (0, 0, −1) depicted on Fig. 1. The performance of the method is investigated 
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Fig. 1. The scatterer D and the impedance. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

on the examples where the impedance functions are linear combinations of a constant and the function g given by

g(θ,φ) = 1

1 − 0.1 sin 2θ
, θ ∈ [0,π ].

The perturbed far field pattern was generated as detailed below

uδ∞,
 = u∞,
 + �
,

p∑

=1

‖�
‖2
L2 < δ2, δ = 0.02, p = 3,

where �
 is a random complex variable with normally distributed real and imaginary parts. The wave number was chosen 
k = π/2 such that the wavelength 2π/k is of a comparable size to the diameter of the obstacle D since we consider 
scattering for frequencies in the resonance region. The discretization parameters were chosen as follows: n = 15 and K = 5. 
The regularization parameters in (4.2) are selected as αN = βN = γN = α0χ

N , α0 = 0.001, χ = 10/11. The indexes for 
the Sobolev space used in the parametrization of impedance functions λ and μ are chosen as sλ = 1.1 and sμ = 2.1, 
correspondingly. The iterations are terminated according to the Morozov’s discrepancy principle (4.3) with τ = 1.001. The 
reconstructions are obtained from the far field pattern for 3 incident directions if not stated otherwise.

In the first example we consider the case when the imaginary parts Imλ, Imμ of the surface impedance functions are 
known. The sought surface impedance functions are chosen as follows

λ = g, μ = λ.

We test the inversion algorithm for the initial guess λ0 = 1, μ0 = 1. As can be seen from the Fig. 2a) the impedance 
function λ is accurately reconstructed whereas μ is affected by the noise more substantially. Increasing the number of 
incident directions to 6 improves slightly the quality of the reconstruction and reduces the number of iterations, see Fig. 2b). 
Under the plots we included the relative errors for surface impedance functions, defined by errN

λ := ‖λN − λ‖L2/‖λ‖L2 , 
errN

μ := ‖μN − μ‖L2/‖μ‖L2 , where N is the iteration number.
In the next example we consider impedances such that Re λ ≥ 0, Imλ ≤ 0 and Imμ < 0, Reμ ≥ 0, in particular, let

λ = g, μ = −iλ̄.

The reason of choosing the above restrictions on the impedance functions is due to the result by Bourgeois and Haddar, [6], 
which states that if Im λ ≤ 0, Reμ ≥ 0 is known and μ = const then the uniqueness and local stability for the method based 
on the impedance to far field operator (2D) is guaranteed.

As we can see in Fig. 3, the method proposed in this paper provides accurate reconstructions of both surface impedance 
functions for only 3 incident plane waves and λ0 = 1, μ0 = −i. The quality of the reconstructions of unknown Im λ, Reμ
has improved significantly as compare to the previous example, Fig. 2a).

Further, we investigate the impact of the sign of Imμ on the quality of the reconstruction for a more general case. Let 
the functions be chosen in the following way

λ = g − 0.2i, μ = −iλ̄, μ̃ = iλ

with the corresponding initial guesses λ0 = 1, μ0 = −i, and μ̃0 = i. Similar as observed in the previous example the 
reconstruction is much more accurate in the case Imμ < 0, see Fig. 4.
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Fig. 2. Reconstruction for λ = g , μ = λ with 3 a) and 6 b) incident waves.

Fig. 3. Reconstruction for λ = g , μ = −iλ̄.

The last example illustrates the behavior of the algorithm for classical Leontovich boundary condition, i.e. μ = 0. The 
reconstruction of the impedance function λ = g − 0.2i for the initial condition λ0 = 1 is outlined in Fig. 5. Employing 
the algorithm twice, i.e. finding the proper initial guess as a constant (K = 0) at the first step, improves the quality of 
reconstructions and allows to use a less accurate initial guess.

To summarize, the proposed inversion method is efficient from the computational point of view since the solutions of 
boundary value problems appearing in the classical Newton iteration are replaced by matrix-vector products. The algorithm 
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Fig. 4. Reconstruction for λ = g − 0.2i, μ = −iλ̄, μ̃ = iλ.

Fig. 5. Reconstruction for λ = g − 0.2i, μ = 0.

provides accurate reconstructions of the first impedance function λ and satisfactory identifications of μ under some restric-
tions on the surface impedance functions. In general, in the agreement with results [4,19] for two dimensional case, we 
note that the simultaneous reconstruction of both impedance function is sensitive to noise, especially the identification of 
the second impedance function.
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