
Open Access. © 2018 Büşra Güvenoğlu and Belgin Ergenç Bostanoğlu, published by De Gruyter. This work is licensed under the
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 License.

Open Comput. Sci. 2018; 8:194–209

Review Article Open Access

Büşra Güvenoğlu and Belgin Ergenç Bostanoğlu*

A qualitative survey on frequent subgraph mining
https://doi.org/10.1515/comp-2018-0018
Received July 9, 2018; accepted December 5, 2018

Abstract: Data mining is a popular research area that has
been studied by many researchers and focuses on �nding
unforeseen and important information in large databases.
One of the popular data structures used to represent large
heterogeneous data in the �eld of data mining is graphs.
So, graph mining is one of the most popular subdivisions
of data mining. Subgraphs that are more frequently en-
countered than the user-de�ned threshold in a database
are called frequent subgraphs. Frequent subgraphs in
a database can give important information about this
database. Using this information, data can be classi�ed,
clustered and indexed. The purpose of this survey is
to examine frequent subgraph mining algorithms (i) in
terms of frequent subgraph discovery process phases
such as candidate generation and frequency calculation,
(ii) categorize the algorithms according to their general
attributes such as input type, dynamicity of graphs, result
type, algorithmic approach they are based on, algorithmic
design and graph representation as well as (iii) to discuss
the performance of algorithms in comparison to each
other and the challenges faced by the algorithms recently.

Keywords: frequent subgraphmining, graphmining, data
mining

1 Introduction
Datamining is the process of automatically extracting pre-
viously unknown, meaningful and useful knowledge from
large databases [1]. In today’s world, the data grows day
by day and it is necessary to �nd accurate and interesting
information from this large volume of data. For this very

Büşra Güvenoğlu: Izmir Institute of Technology, Department of
Computer Engineering, Izmir/Turkey;
E-mail: busraguvenoglu@iyte.edu.tr
*Corresponding Author: Belgin Ergenç Bostanoğlu: Izmir In-
stitute of Technology, Department of Computer Engineering,
Izmir/Turkey; E-mail: belginergenc@iyte.edu.tr

reason, data mining has become an important area for re-
searchers.

The data processed in the datamining canbe obtained
frommany sourceswhere di�erent data types can be used.
Examples of these di�erent data types are text data, sound
data, image data, graph data, etc. Since graphs better rep-
resent the complex and arbitrary relations among data at-
tributes, they are used to represent data in a wide spec-
trum of areas, such as users (nodes) and their relation-
ship (edges) in social networks, atoms (nodes) and bonds
(edges) between them in chemical structures, proteins
(nodes) and protein interactions (edges) in biological net-
work, computer (nodes) and links between them in com-
puter networks [2]. Graph mining is a data mining subdi-
vision where the data is represented by a graph [3].

One of the important data mining tasks is the prob-
lem of �nding frequent subgraphs in a graph database.
The aim of frequent subgraph mining (FSM) is to �nd all
subgraphs whose number of occurrences is at least equal
to the number of user-de�ned threshold [4]. In many do-
mains it is necessary to �nd these common structures,
because these repetitive structures can provide a better
understanding of the data or give a di�erent perspective
about data. These frequent patterns are used in determin-
ing the similarities between the graphs [5], clustering [6],
graph indexing [7] and classi�cation [8].

Most FSM algorithms consist of two important phases:
candidate generation and frequency calculation. Candi-
dates are generated using breadth �rst strategy or depth
�rst strategy. One of the most important factors a�ecting
the performance of the algorithm when generating candi-
dates is the generation of the same candidate more than
once. Since the data grows, number of candidates gener-
ated grow. Duplicated and redundant candidates should
be avoided during candidate generation for an e�cient al-
gorithm. The next phase in the FSM algorithm is to calcu-
late the frequency of the candidates generated and to de-
termine which are the most frequent among them. To cal-
culate the frequency of a subgraph, it is necessary to �nd
the number of graphs that are isomorphic to this subgraph
in a database. The subgraph isomorphism testing is a fun-
damental problem of these algorithms since this problem
is NP-complete [9]. The cost of �nding isomorphic graphs

https://doi.org/10.1515/comp-2018-0018


A qualitative survey on frequent subgraph mining | 195

increases exponentially as the size of the graph database
increases.

The solutions proposed by di�erent FSM algorithms
can be divided into di�erent categories according to in-
put type, dynamicity of graphs, result type, algorithmic
approach, algorithmic design and graph representation.

In FSM algorithms, the �rst issue to be considered is
the type of input used. There are two di�erent problem
statements according to the input type. The dataset used
in the algorithm may also be a single large graph or small
graphs (set of graphs) called transactions. Frequency cal-
culation of a subgraph in the single large graph dataset is
di�erent from the transactional dataset. While calculating
the frequencies of candidates in a transactional dataset,
the number of transactions that contain this subgraph is
calculated. However, since there is no transaction in a sin-
gle large graph dataset, di�erent methods were proposed
[10–12]. Another issue to be considered in FSM algorithms
is the properties of the graphs. Graphs used in FSM algo-
rithms may have di�erent properties from each other, for
example, graphs may be directed or undirected, multiple
edges between nodes may or may not be allowed. Most
FSM algorithms work with connected graphs. Based upon
the properties exhibited by the graphs, the solutions sug-
gested for FSM algorithms are adapted.

Apart from these, graphs can be static (time invariant)
or dynamic (time varying). Static graphs do not change
over time. Most existing FSM algorithms are suitable for
static graphs and small datasets. These algorithms gen-
erally scan entire dataset for each candidate to calculate
its frequency. As dynamic graphs change over time, the
size of these graphs also changes. It is not an e�cient and
practical method to scan the entire dataset to calculate
the frequency of each candidate after change occurs. Be-
sides, with time information, dynamic graphs can repre-
sent the evolution of frequent subgraphs in a period. Fre-
quent subgraphs can provide better insight about the local
and structural changes of data over time. FSM algorithms
must be adapted for dynamic graphs.

The design of algorithms obviously depends on what
theusers expect from the results of these algorithms.While
most FSM algorithms �nd all frequent subgraphs in a
dataset, some algorithms �nd a more meaningful subset
(such as closed frequent subgraphs [13]) of these frequent
subgraphs to reduce search space and facilitate working
on big data.

The algorithms examined in this area generally use
two di�erent algorithmic approaches: apriori based and
pattern growth-based approaches. Apriori based algo-
rithms [14–16] generate candidates based on breadth �rst
strategy and apply subgraph isomorphism testing to cal-

culate frequencies of candidates. Especially, when the
dataset is large, these algorithms su�er from generating
too many candidates. Pattern growth-based algorithms
[13, 14, 17, 18] generate candidates based on depth �rst
strategy. The pattern growth approach generally avoids
the cost of generating candidates and subgraph isomor-
phism testing. These candidates are generated by extend-
ing frequent subgraphs starting from minimal frequent
subgraphs by adding one edge at every step until they are
still frequent. However, these algorithmsmight su�er from
the generation of the same candidates.

Many algorithms that solve the frequent pattern min-
ing problem give good results on small datasets but are
not suitable for working on big data. However, the real
datasets contain very large data and therefore the algo-
rithms should be able to work e�ectively on big data. As
the data size grows, the data cannot �t in the memory on
a single machine, or it may not be an e�cient and prac-
tical method to work on a single machine with this large
amount of data. For this reason, parallel algorithms have
beendeveloped to �nd frequent subgraphs in big data [19–
21].

The most popular methods used to represent graphs
are the adjacency matrix and adjacency list. Graphs
should be represented uniquely to facilitate subgraph iso-
morphism testing. Since there may bemore than one adja-
cency matrix representing the same graph, new methods
are proposed such as canonical adjacency matrix (CAM)
[14] and min DFS code [17].

In the context of this study, �rst the basic two steps of
the FSM process are analyzed. The methods used in these
two steps and the algorithms using these methods are ex-
amined. Then a categorization of FSM algorithms accord-
ing to the aforementioned properties is presented. There
are detailed surveys that compare FSM algorithms accord-
ing to their di�erent attributes [22–24]. However, they do
not capture recent algorithms focusing on new require-
ments as dynamicity or volume of data. In real systems,
data can change continuously over time. For example, in
a social or telecommunication network, data only goes
through once and it is very di�cult to keep such data in the
dataset. Such data is called stream data and existing FSM
algorithms are not suitable for working on stream data.
Since most FSM algorithms are also not suitable for big
data, the algorithms proposed in this area recently are par-
allel algorithms. Generally, the existing FSM algorithms
have been modi�ed to work in parallel. In this survey, dy-
namic and parallel algorithms are also examined. Another
novelty of this survey that it focuses primarily on FSM for
the sake of simplicity rather than analysing both subtree
and subgraph mining. If any two vertices of the graph are



196 | Büşra Güvenoğlu and Belgin Ergenç Bostanoğlu

connected by exactly one simple path, this graph is called
a tree. The subtree of a tree consists of a node in this tree
and all its descendants within it. The subgraph of a graph
consists of subset of the nodes and edges of this graph. On
the other hand, a discussion on the performance compar-
ison of the algorithms together with the challenges they
face currently is also presented in this survey.

This paper is organized as follows: in the second sec-
tion, the basic concepts that should be known about the
problem of FSM are explained. In the third section, the
process of FSM is addressed. In the fourth section, catego-
rization of algorithms that solve frequent subgraph min-
ing problems from di�erent perspectives according to the
properties of graphs are presented. In the �fth section we
present a discussion on popular FSM algorithms and chal-
lenges of the problem and �nally we conclude this paper
in sixth section.

2 Background
This section introduces thede�nitionsof key terms that are
related to the Frequent Subgraph Mining (FSM) problems.

2.1 Basic graph terminology

A graph consists of a �nite vertex (or node) set V and edge
set E that connects the vertices to each other. Vertices and
edges in a graph can have their own labels, and these la-
bels neednot tobeunique. Suchagraph is called a labeled
graph. Figure 1 is an example of a labeled graph.

qa

A

qbB

qc

C

qdD qe E

G

yx
x

z

xy z

Figure 1: A labeled graph (G) example.

If the edges of a graphhave direction, that is, the edges
of a graph cannot be traversed in either direction, such
graph is called a directed graph, otherwise it is called an

undirected graph. Figure 2 is an example of a directed
graph. Figure 1 is an example of an undirected graph.

qa

qb

qc

qd qe

H

Figure 2: A directed graph (H) example.

In a graph, edgesmay have a weight, for instance, this
weight may represent cost of traversing. In a graph, if any
node connects to itself with an edge, it is called a loop.
If a graph is undirected and unweighted and there is no
more than one edge between any distinct two vertices of
a graph and there is no loop, then this graph is called a
simple graph. Figure 3 is an example of a simple graph.

Gs

Figure 3: A simple graph (Gs) example.

If there is a path between every pair of vertices of an
undirected graph, this is called a connected graph. If this
graph is directed, it is called a strongly connected graph.
FSM algorithms generally work with labeled, connected,
simple graphs.

Graphs that change with the addition or deletion of
nodes or edges over time are called dynamic graphs.

If there is no edge between two nodes in a graph, these
nodes are independent. The set, which contains all the
nodes that are independent from each other in the graph,
is called themaximum independent set.

2.2 Support measure

Asupport for a graph is equal to thenumber of occurrences
of this graph in a graph dataset. A graph dataset can con-
sist of a single large graph or multiple small graphs called



A qualitative survey on frequent subgraph mining | 197

transactions. The support calculation varies according to
the graph dataset type.

In transactional dataset, the support σ (0 < σ <1 ) of a
graph is the ratio of the number of transactions to which
this graph occurs to the total number of transactions.

In a single large graph, the support of a graph is
the number of its occurrences in this dataset. However,
there are some variants and subtleties, as explained in fre-
quency calculation section 3.2.

2.3 Frequent subgraph

Given a graph G = (Vg , Eg), a graph H = (Vh , Eh) will be a
subgraph of G if and only if the vertices and edges of graph
H are a subset of the vertices (Vh ⊆ Vg) and edges (Eh ⊆
Eg) of graph G.

If the support of a subgraph is equal or greater than the
user-de�ned minimum support threshold, then this sub-
graph is a frequent subgraph. If a graph is frequent, all
its subset must be frequent. This is called downward clo-
sure property.

Let graph H be a subgraph of G, so the vertices of sub-
graph H are a subset of the vertices of graph G. If all edges
between these subset vertices in thegraphG are also found
in the subgraph H, this subgraph H is also induced sub-
graph. If a graph is closed graph, none of the proper su-
persets of that graph canhave the same support valuewith
this graph.

2.4 Subgraph isomorphism

Suppose G andH are two graphs. There is an isomorphism
between G and H, if there is a bijection f between the ver-
tices (f : V(G) → V(H)), that is, any two vertices (u and
v) are adjacent in graph G, if and only if f (u) and f (v) are
adjacent in H. These two graphs are called isomorphic.
They are topologically identical. An isomorphism from a
graph to itself is called automorphism. The problem of
subgraph isomorphism is trying to �nd out if a graph is
isomophic to some subgraph of the other graph. There are
many subgraph isomorphism detection techniques [25–
28]. Figure 4 is an example of isomorphic graphs.

To �nd a frequent subgraph in a single large graph,
the embeddings of this graph is examined. Isomorphic
graphs of a subgraph in a single large graph are called em-
beddings. If two embeddings have the same set of edges,
these two embeddings are identical to each other. If these
two embeddings have no common edge, these embed-
dings are edge-disjoint embeddings. An overlap graph

p q

s

r t
G

e

a d

b c
H

Figure 4: An example of isomorphic graphs.

is constructed based on these edge-disjoint embeddings
and non-identical embeddings. To construct an overlap
graph, a vertex is created for each non-identical embed-
ding of a subgraph and edges that represent pairs of non-
edge-disjoint embeddings are created [10]. This overlap
graph can be used to calculate the support of a subgraph.
The support calculation using overlap graph is presented
in the frequency calculation section 3.2.

2.5 Graph representation

FSM algorithms generally use 2 di�erent methods to rep-
resent graphs: adjacency matrix and adjacency list. In ad-
dition, some canonical labeling methods have been pro-
posed to facilitate the subgraph isomorphism. The pur-
pose of these methods is to represent each graph with a
unique code.

2.5.1 Adjacency matrix

The rows and columns of the adjacency matrix represent
the graph nodes. If there is an edge between two nodes (vi
and vj), these two nodes are adjacent and (i, j) position of
adjacency matrix is represented by 1 or the edge label be-
tween these two nodes, otherwise it is represented by 0.
Depending on the position of the vertices in the row and
column, there can bemore than one adjacencymatrix rep-
resenting the same graph. AGM [15] and Subdue [12] algo-
rithms use adjacency matrix to represent graphs. Figure 5
shows a graph G and its adjacency matrix.

2.5.2 Adjacency list

In an adjacency list, all nodes are kept in an array. Also,
each element(node) of this array points to a list where all
other nodes that are adjacent to this node are kept. FSG
[16], MOFA [18] and p-MOFA [20] algorithms use adjacency



198 | Büşra Güvenoğlu and Belgin Ergenç Bostanoğlu

q0

x

q1
x

q2
xG

a b

c

q0 q1 q2

q0 0 1 1

q1 1 0 1

q2 1 1 0

Figure 5: Adjacency matrix of a graph G.

list to represent graphs. Figure 6 shows a graph H and its
adjacency list.

X

Y

Z

W

H

X Y Z

Y X Z W

W Y

Z X Y

Figure 6: Adjacency list of a graph H.

2.5.3 Canonical labeling

The adjacency matrix and the adjacency list can not
uniquely identify a graph. Because a graph can be repre-
sented by more than one adjacency matrix and adjacency
list dependingon theorder inwhich thenodes are enumer-
ated. A canonical labeling strategy is proposed, which can
uniquely identify a graph. A label of a graph is obtained
by concatenating rows and columns of its adjacency ma-
trix. As there are multiple adjacency matrices to represent
the graph, there are also multiple possible labelings of a
graph. To reduce the number of possible labelings, the
invariant properties of the nodes, such as the label and
neighbors of a node, are used to divide to adjacencymatrix
into partitions [16]. Graphs are represented withminimum
or maximum labels according to the lexicographic order
to avoid this problem. This label is called canonical label
of graph. To solve the problem of subgraph isomorphism,
graphs must be represented uniquely. If canonical labels
of two subgraphs are identical, these subgraphs are iso-

morphic to each other [16]. To identify isomorphic graphs,
each graph must be represented only by one canonical
label. Several di�erent canonical labeling methods have
been proposed.

2.5.3.1 CAM-Canonical adjacency matrix
In an adjacency matrix, if there are labels of nodes on di-
agonal entries and label of edges on o� diagonal entries,
this matrix is called canonical adjacency matrix [14]. The
canonical code of a subgraph is obtained by concatenat-
ing the upper or lower triangular entries of the adjacency
matrix. Since there are multiple adjacency matrices of any
subgraph, there are multiple canonical codes. The mini-
mum or maximum canonical code with respect to lexico-
graphic order is used to represent the subgraph. FFSM [14],
HSIGRAM andVSIGRAM [10] algorithms use canonical ad-
jacency matrix to represent graphs. Figure 7 shows canon-
ical matrix and canonical code for a graph G.

q0

x

q1
y

q2
zG

a b

c

x

a y

b c z

code = xaybcz

Figure 7: Canonical adjacency matrix and code of a graph G.

2.5.3.2 Minimum DFS code
TheminimumDFS codemethod has been proposed to rep-
resent the graphs uniquely in the gSpan algorithm [17].
In this algorithm, the graph is traversed using depth �rst
search method. While traversing a graph, each edge is as-
signed a unique subscript called edge code according to
the discovery time of nodes.

Assume that qa and qb are identi�ers and a and b are
labels of two nodes, lab is label of edge between the nodes.
If thenode qa is discoveredbefore thenode qb according to
the depth �rst strategy, this edge is represented by 5-tuple
[17]: 〈 qa, qb, a, lab, b 〉.

The DFS code of the graph consists of all the edge
codes that represent its edges. Then a single DFS code tree
is constructed containing all graphs in the graph dataset.
Each node of this tree represents a graph’s DFS code. Since
a graph can be represented by more than one DFS code,
the graph is assigned to the �rst DFS code found by pre-



A qualitative survey on frequent subgraph mining | 199

order search in the DFS code tree. This code is called the
minimumDFS code and is used as a canonical label of this
graph. CloseGraph [13], GERM [29] and p-gSpan [20] algo-
rithms use minimum DFS code to represent graphs.

3 Process of frequent subgraph
mining

The aim of Frequent Subgraph Mining (FSM) is to �nd all
frequent subgraphs in a graphdataset. In general, the FSM
consists of two phases. The �rst step is the generation of
candidate subgraphs. The second step is the frequency cal-
culation of the generated subgraphs to determine whether
they are frequent or not.

The methods used by the algorithms examined in this
study to generate candidates and calculate the frequencies
are given in Table 1.

3.1 Candidate generation

The most important point to note during candidate gen-
eration is that each candidate should be generated only
once. FSM is an extension of frequent itemset mining from
itemsets to graph data [30]. The downward closure prop-
erty used in frequent itemset mining is also used in this
�eld tonarrow the search space andavoidduplicateswhile
generating candidates. In the frequent itemset mining, if
an itemset is frequent all its subset must be frequent, but
in the frequent subgraph mining if a graph is frequent all
its subgraphmust be frequent. The commonly used strate-
gies for candidate generation are as follows: level-wise join
strategy, extension strategy and join and extension strategy.

The aim of the Stream FSM algorithm [31] is to trans-
form the single large dynamic graphs with streaming
updates into streaming graph transactions. These graph
transactions are mined by other FSM algorithms that use
graph transactions as input to �nd frequent subgraphs.
For this reason, the candidate generation and frequency
calculation method of the Stream FSM algorithm is based
on the FSMalgorithmused. In this study, it is assumed that
the Stream FSM algorithm applies gSpan algorithm to ex-
tract frequent subgraphs [31].

3.1.1 Level-wise join strategy

In level-wise join, two k-size subgraphs are combined and
a new subgraph of (k + 1)-size is generated. To be able

to join two k-size subgraphs, both subgraphs must have
a common (k − 1)-size subgraph [16].

The level-wise join has some disadvantages. First,
more than one candidate can be obtained by a single join
operation. Second, the same candidates, can be generated
because of di�erent join operations. And the generated
candidates may not provide the downward closure prop-
erty.

In AGM algorithm [15], the graphs are represented by
an adjacencymatrix and two k-size adjacencymatrices are
joined to generate a new candidate. To be able to combine
two matrices, the elements of these two matrices must be
the same except for the last row and last column.

One of the algorithms that generate candidates using
the level-wise strategy is the FSG algorithm [16]. A k-size
subgraphhas k−1di�erent subgraphs of size k−1. Instead
of considering all these subgraphs when doing the join,
two subgraphs with the smallest �rst and second canon-
ical labels according to lexicographic order among these
(k − 1) di�erent subgraphs are joined.

SUBDUE [12], HSIGRAM [10], and SEuS algorithms [11]
generate candidates with level-wise join strategy.

3.1.2 Extension strategy

In the extension strategy, new connected (k + 1)-size sub-
graph is obtained by adding an edge to all possible k-size
embeddings.

VSIGRAM [10] and MOFA [18] algorithms use the ex-
tension strategy.

In the MOFA algorithm, the nodes and edges of em-
beddings are marked. The marked nodes are extended by
adding possible edges that have not been marked before.

Both algorithms preserve the connectivity of embed-
dings while performing the extension operation.

Rightmost path extension strategy is a special type of
extension strategy. In the extension strategy, every possi-
ble edge can be added to every possible node, whereas in
this method the new edge can only be added to nodes on
the rightmost path. In thismethod, a new subtreewith size
(k+1) is generated by adding an edge to the rightmost path
of a k-subtree. A new edge can be inserted between the
rightmost node and existing node on the rightmost path or
between the rightmost node and a newly introduced node.
In the extension strategy, new edge is added every possi-
ble way but, in this method, new edge is added only on
the rightmost path. However, this method has the follow-
ing disadvantage: there can be too many nodes to which
the new edge can be added. This method greatly increases
the complexity of this algorithm.



200 | Büşra Güvenoğlu and Belgin Ergenç Bostanoğlu

Table 1: Process of FSM algorithms.

Algorithms Candidate generation Frequency calculation
Level-wise

join
Extension Join

extension
Database
scan

Transaction
list

Embedding
list

Occurrence
list

MIS MNI MDL

AGM [15]
√ √

FSG [16]
√ √

FFSM [14]
√ √

MOFA [18]
√ √

gSpan [17]
√ √

CloseGraph [13]
√ √

GERM [29]
√ √

StreamFSM [31]
√ √

Time evolving
graph [32]

√ √

Subdue [12]
√ √

SEuS [11]
√ √

HSIGRAM [10]
√ √

VSIGRAM [10]
√ √

FSM-H [19]
√ √

gSpan-H [21]
√ √

p-MOFA [20]
√ √

p-gSpan [20]
√ √

CloseGraph [13], gSpan [17], GERM [29], Time evolving
graph [32] algorithms generate candidates with rightmost
extension strategy.

3.1.3 Join and extension strategy

The Fast Frequent Subgraph Mining (FFSM) [14] algorithm
presents two newmethods to overcome the de�ciencies of
level-wise and extensions strategies: FFSM-join and FFSM
extension and it uses CAM to represent the graphs.

In the FFSM-join method, up to two candidates are
generated instead of too many candidates. However, this
method may not always enumerate all the subgraphs.

In the extension method, there are many nodes in a
graph where an additional edge can be added. However,
this operation is costly. In the FFSM-extension strategy, a
single �xed node is determined in the CAMand a new edge
is added always between this �xed node and additional
node during the extension process.

3.2 Frequency calculation

To calculate the frequency of any subgraph, as we men-
tioned before, it is necessary to �nd the number of graphs
that are isomorphic to this subgraph in the graph dataset.

The subgraph isomorphism problem is NP complete [9]
and the computational cost increases exponentially as the
problem size grows. For this reason, the subgraph isomor-
phism testing can be performed in reasonable time only
on small graphs.While some FSMalgorithms perform sub-
graph isomorphism testing to calculate the frequency of a
graph, others have suggested di�erent methods to avoid
this test, or some intuition to speed up this test.

In addition, the frequency calculation varies accord-
ing to the input of the algorithm. If an input is a transac-
tional dataset, the number of di�erent transactions that
are encountered with subgraph is used as support. There
are di�erent methods used to calculate frequency in such
datasets. These methods are database scan, transaction
list, embedding list and occurrence list. However, if the
input is a single large graph, there are di�erent support
measures to calculate the frequencies. These measures
aremaximum independent set (MIS) [33], minimum image
based support (MNI) [34] andminimumdescription length
principle [35].

3.2.1 Database scan

To calculate the frequency of candidate subgraphs, for
each candidate, database is scanned from thebeginning to



A qualitative survey on frequent subgraph mining | 201

end to determine howmany di�erent transactions include
this candidate. For every candidate, re-scanning the entire
database is not a very e�cient method. Especially scan-
ning the large databases signi�cantly a�ects the runtime
of the algorithm. TheAGMalgorithm [15] uses the database
scan method to calculate the frequency of candidate sub-
graphs.

In Seus algorithm [11], a k-size subgraph is obtained
by extension from a (k − 1)- or (k − 2)-size subgraph that
is called parent. Pointers to all subgraphs that are isomor-
phic to a subgraph is stored on the disk. When calculating
the frequency of a k-size subgraph, all isomorphic graphs
of the parent of this subgraph can have accessed using
this pointer. Then, it is checked whether the k-size candi-
date subgraph can be reached by adding an edge to these
graphs. The number of subgraphs that a k-size graph can
obtain is the frequency of the k-size subgraph.

3.2.2 Transaction list

There is a transaction identi�er list for each frequent sub-
graph. To calculate the frequency of a k-size graph, the
intersection of the TID (transaction identi�er) lists of all
its (k − 1)-size subgraphs is checked. If the intersection
size is greater than the user-de�ned support value, the fre-
quency is calculated by performing a subgraph isomor-
phism test on the transactions at this intersection. How-
ever, this method has a disadvantage. These TID lists re-
quire a lot of memory to keep them in memory and these
lists may not �t in memory for big data.

The FSG algorithm [16] calculates the frequency of
candidates using the TID list.

The gSpan algorithm [17] and p-gSpan [20] algorithms
store the transaction list of every discovered subgraph,
and instead of looking at the intersection of transaction
lists while computing the frequency of a candidate, the
subgraphs that are isomorphic to this candidate subgraph
are searched in that transaction list.

CloseGraph [13] algorithm also uses transaction lists
while calculating the frequency of subgraphs.

3.2.3 Embedding list

While calculating the frequency of candidate subgraphs,
embedding lists of discovered subgraphs are stored to
avoid subgraph isomorphism testing. The frequency of a
candidate subgraph is determined from the number of dif-
ferent graphs in its embedding list. However, this method
also is not suitable for big data.

MOFA [18], p-MOFA [20] and FFSM [14] algorithm use
embedding lists when calculating the frequency of candi-
dates. While MOFA stores both nodes and edges, FFSM al-
gorithm stores only nodes.

3.2.4 Occurrence list

One of themethods used to calculate the frequency of can-
didate subgraphs is the occurrence list. An occurrence list
contains all the embeddings of a subgraph and informa-
tion about the subgraphs that correspond to these embed-
dings in the transactional graph dataset. While calculat-
ing the frequency of a k-size graph, instead of solving the
subgraph isomorphism problem, the intersection of oc-
currence lists of (k − 1)-size subgraphs of k-size graph is
checked.

The di�erences of occurrence list from the transaction
list and embedding list is that, in the transaction list, the
ids of the transactions encountered with subgraphs are
stored in the embedding list, all embeddings of a subgraph
are stored, but in the occurrence list both embeddings and
transaction ids are stored.

FSM-H [19] and gSpan-H [21] algorithms use occur-
rence list while calculating the frequency of a graph.

3.2.5 Maximum independent set (MIS)

One of the methods used to calculate the frequency of a
single large graph candidates is the maximum indepen-
dent set [33]. Since there are no transactions in a single
large graph that can be scanned to �nd the frequency of
a subgraph, �rstly all the embeddings of this subgraph
in the graph are found and their overlap graph is con-
structed. Then, on this overlap graph, an exact or some
maximal independent set is found.

The HSIGRAM [10] algorithm proposes two di�erent
frequency calculations. The �rst frequency calculation is
doneas follows: the frequencyof a subgraph is equal to the
size of themaximum independent set in the overlap graph.
The second frequency calculation is done as follows: the
frequency of a k-size subgraph is equal to the frequency of
the connected subgraph which has the lowest frequency
among all (k − 1)-size subgraphs of this k-size subgraph.

The minimum value of these two frequencies is deter-
mined as the frequency of the subgraph. All the embed-
dings of this subgraph are found in the single large graph.

In the VSIGRAM algorithm [10], while calculating the
frequency of a (k+1)-size subgraph thatwas obtained from



202 | Büşra Güvenoğlu and Belgin Ergenç Bostanoğlu

k-size subgraph by extension, the frequency of this k-size
parent subgraph is used.

3.2.6 Minimum image based support (MNI)

One of the methods used to calculate the frequency of sin-
gle large graph candidates is the minimum image based
measure [34]. In this method, the number of unique nodes
in the graph dataset that can be mapped to a node of can-
didate subgraph are found. This process is done for all the
nodes of candidate subgraph. Theminimumone is consid-
ered as the frequency of this candidate subgraph.

The GERM [29] algorithm uses a minimum image
based measurement. In the Time evolving graph [32], the
frequency of a candidate subgraph is the ratio of the calcu-
latedminimumvalue to number of total nodes of the graph
dataset.

3.2.7 Minimum description length principle (MDL)

The purpose of the MDL principle is to reduce the descrip-
tion length of the entire dataset [35].

Subdue algorithm [12] uses the MDL principle to �nd
frequent subgraphs instead of the frequency. The aim of
this algorithm is to compress the input graph to frequent
subgraphs by using the MDL principle.

TheSubdue startswith all theuniquevertices andgen-
erates candidate subgraphs by extending each of these
vertices with a new edge in all possible ways. The dis-
covered graphs are replaced by a single node in the in-
put graph. The total description length is used as the
frequency of a candidate. The total description length is
equal to the sum of the number of bits required to rep-
resent the candidate subgraph and the number of bits
required to represent the input graph after changing all
candidates with a single node. The candidate that mini-
mizes this value is considered as frequent. Discovered fre-
quent subgraph is replaced with a single vertex in the in-
put graph and for next iteration this graph is used as input
graph. This process repeats until all possible subgraphs
are represented in the compressed data.

4 Categorization of FSM algorithms
This section provides an overview of the Frequent Sub-
graph Mining (FSM) algorithms, which vary according to
input type, dynamicity of graphs, result type, algorithmic

approach, algorithmic design and graph representation.
In addition to the frequent subgraph �nding phases, FSM
algorithms have undergone various adaptations according
to the approaches used in these phases and to the charac-
teristics of the graphs.

In this section, the evolutionary process of FSM ac-
cording to the requirements and the challenges is exam-
ined and a comparison of the FSM algorithms is given in
Table 2.

4.1 Input type

There are two di�erent types of graph datasets used in
FSM: transactional dataset [13–18] and a single large
dataset [10–12, 29, 31, 32]. When calculating the frequency
of a graph in the transactional dataset, it is necessary
to calculate the number of transactions that contain this
graph.

Since there are no transactions in the single large
graph, how the frequency of a subgraph is calculated is an
important issue. While calculating the frequency of a sub-
graph in a single large graph, it is calculated by counting
di�erent embeddings of this subgraph in the single large
graph. One of the most important problems with single
large graphs is the overlap of embeddings of a subgraph.
Because the overlap graphs can cause the failure of down-
ward closure property. Another feature that separates sin-
gle large graphs from transactional graphs is the need for
more memory.

Graphs used in the problem of FSM can be undirected
or directed graphs and multiple edges can be allowed be-
tween the graph nodes. Because of the direction between
the nodes of a directed subgraph, there are more sub-
graphs than the same undirected graph. For this reason,
the subgraphs obtained from a directed graph are less fre-
quent and their computation time is shorter.

The AGM [15], Subdue [12] and CloseGraph [13] al-
gorithms are suitable for both undirected and directed
graphs. SEuS algorithm [11] works on directed graph. Time
evolving graph algorithm [32] allows multiple edges.

4.2 Dynamicity of graphs

There are two types of graphs used in the problems of FSM:
static graphs [10, 12–19] and dynamic graphs [29, 31, 32].
Static graphs do not change over time and can be stored in
a dataset. Algorithms that provide solutions for FSM prob-
lems are usually suitable for static graphs.



A qualitative survey on frequent subgraph mining | 203

Table 2: Categorization of FSM algorithms.

Algorithms Input
type

Dynamicity
of

Graphs

Result
type

Algorithmic
approach

Algorithmic
design

Graph
representation

AGM [15]
undirected
/directed
graph set

static

all
induced
frequent
subgraphs

apriori serial adjacency
matrix

FSG [16]
undirected
graph set

static
all

frequent
subgraphs

apriori serial adjacency
list

FFSM [14]
undirected
graph set

static
all

frequent
subgraphs

pattern
growth

serial CAM

MOFA [18]
undirected
/directed
graph set

static
all

frequent
subgraphs

pattern
growth

serial adjacency
list

gSpan [17]
undirected
graph set

static
all

frequent
subgraphs

pattern
growth

serial min DFS code

CloseGraph
[13]

undirected
graph set

static

all
closed
frequent
subgraphs

pattern
growth

serial min DFS code

GERM [29]
undirected
single graph

dynamic
all

frequent
subgraphs

pattern
growth

serial min DFS code

StreamFSM [31]
undirected
single graph

dynamic
all

frequent
subgraphs

pattern
growth

serial min DFS code

Time evolving
graph [32]

undirected
single graph

dynamic
all

frequent
subgraphs

pattern
growth

serial min DFS code

Subdue [12]
undirected
single graph

static approximate/
all

pattern
growth

serial adjacency
matrix

SEuS [11]
directed

single graph
static

all
frequent
subgraphs

pattern
growth

serial adjacency
matrix

HSIGRAM [10]
undirected
single graph

static
all

frequent
subgraphs

apriori serial CAM

VSIGRAM [10]
undirected
single graph

static
all

frequent
subgraphs

pattern
growth

serial CAM

FSM-H [19]
undirected
graph set

static
all

frequent
subgraphs

apriori parallel adjacency
list

gSpan-H [21]
directed
graph set

static
all

frequent
subgraphs

apriori parallel min DFS code

p-MOFA [20]
undirected
graph set

static
all

frequent
subgraphs

pattern
growth

parallel adjacency
list

p-gSpan [20]
undirected
graph set

static
all

frequent
subgraphs

pattern
growth

parallel min DFS code



204 | Büşra Güvenoğlu and Belgin Ergenç Bostanoğlu

Dynamic graphs are constantly changing graphs. In
these graphs, the changemaybe the additionof newnodes
or edges, deleting or changing existing nodes or edges.
In FSM algorithms, generally the database is scanned
from beginning to end for each candidate to calculate
the occurrences of candidates. As the dynamic graphs are
constantly changing, the size of the data is constantly
changing and the increasing volume of data leads to com-
puting and mining challenges. It is no longer possible
to e�ciently mine data with more than one pass. After
each stream, scanning entire database is not an e�cient
method. For this reason, frequent subgraph mining algo-
rithms should be designed for dynamic graphs by scan-
ning the database only once.

Dynamic graphics can evolve over a period rather
than streams. In these graphs, frequent subgraph mining
method can be used to �nd local and structural changes.
For example, if we think about a chemical dataset, the pro-
teinsmaybind to eachother at certain times, and this bond
may break at certain times. In such cases, it may be more
interesting to analyze the evolution of graph. So, frequent
subgraphmining algorithms need to be carefully designed
to reveal the evolution of the underlying data.

Another issue that needs attention in dynamic graphs
is that when the incoming changes are added to the
graphs, each edge andnode in this changemust be consid-
ered separately. Each change should be made as soon as
possible. One of the most important issues is that an infre-
quent subgraph may be frequent with updating later, or a
frequent subgraphmay not be frequent later. The obtained
frequent subgraphs should be found with as few errors as
possible.

4.3 Result type

FSM algorithms can be categorized according to the result
set. Some FSM algorithms gSpan [17], FFSM [14] �nd all
the subgraphs. However, in some cases it is not useful to
have all the frequent subgraphs. Instead of �nding all fre-
quent subgraphs, smaller and more meaningful frequent
sets like closed or approximate (subset of all frequent sub-
graph) are found.

gSpan [17] algorithm is not suitable for mining large
patterns. Therefore, the CloseGraph [13] algorithm, amod-
i�cation of the gSpan algorithm, has been proposed and
this algorithm �nds all closed subgraphs and well suited
for big data. However, CloseGraph [13] and Subdue algo-
rithm [12] can miss some subgraphs. The FSG algorithm
[16] �nds all frequent connected subgraphs instead of �nd-
ing all frequent subgraphs. SEuS algorithm [11] provides

approximate or complete set of frequent subgraphs. AGM
[15] algorithm �nds all induced frequent subgraphs.

4.4 Algorithmic approach

FSM algorithms can be divided into two di�erent cate-
gories according to their algorithmic approach: apriori
based approach and pattern growth-based approach.

4.4.1 Apriori based algorithms

Apriori based algorithms [14–16] �nd all the connected
frequent subgraphs. Apriori based algorithms generally
consist of two steps: candidate generation and subgraph
isomorphism test. Apriori based algorithms are an exten-
sion of the Apriori algorithm [30]. While Apriori algorithm
works on itemsets, FSM algorithms work on graphs with
the same logic.

In the �rst step, new candidates are generated from
frequent subgraphs and checked whether they are fre-
quent or not. These algorithms use the level-wise strategy
for candidate generation. Apriori based algorithms su�er
from toomany candidate generations for big data. For this
reason, these algorithms narrow the search space using
the downward closure property. According to this prop-
erty, if a subgraph is not frequent, an upper set contain-
ing it is not frequent. In the next step, it is no longer nec-
essary to check whether any candidate set containing this
subgraph is frequent or not. Especiallywhen long patterns
are present, the generation of the candidate set is still ex-
pensive. Apriori based algorithms reduce the number of
candidates signi�cantly but, these algorithms do not work
e�ciently in long patterns and when the minimum sup-
port threshold is small as too many candidates are gen-
erated, and this process requires a lot of database scan-
ning. Apriori based algorithms also su�er from subgraph
isomorphism testing.

4.4.2 Pattern growth-based algorithms

The second approach is pattern growth and this approach
is the extension of FP-growth algorithm [36]. The aim of
pattern growth-based algorithms [13, 14, 17, 18] is to �nd
all the frequent patterns without the candidate generation
and subgraph isomorphism test. This approach is based
on the divide and conquer method. Instead of generating
all the candidates, a new edge is added to every possible
position of the existing frequent subgraph.



A qualitative survey on frequent subgraph mining | 205

Apriori based algorithms su�er from too many
database scans. For this reason, pattern growth-based
algorithms use a more compact and smaller data struc-
ture instead of processing in database. The number
of generated candidates in this approach are reduced
considerably and the subgraph isomorphism test is better
than the apriori based algorithms. However, this approach
has a disadvantage. The same subgraph can be produced
many times while adding a new edge to every possible
position in the current frequent subgraph. This problem
has been tried to be avoided by using the rightmost path
extension strategy [13, 17].

4.5 Algorithmic design

Most of the algorithms that propose solutions to the FSM
problem are suitable for working on small datasets. The
existing algorithms assume that the generated candidates
are small enough to �t in the main memory of the com-
puter. When the data size gets larger, working on a single
centralized machine is not an e�cient method. Because
the size of the input data may not be suitable for mining
on a single machine, or generated candidates may not �t
into the main memory of single machine. However, these
algorithms are not scalable, so the main memory is bottle-
neck. For this reason, algorithms thatwork parallel [19–21]
onmore than one CPU have been proposed. In the parallel
algorithm, thework to be done is assigned to the processes
that will run parallel to each other.

In addition to FSM, there are three important issues
to consider when developing a parallel algorithm. First,
a parallel algorithm should be memory scalable. As the
number of processes to run in parallel increases, themem-
ory required to operate these processes should also be
enough. The second issue to consider is that the tasks
should be distributed equally in each process. A working
time of a process may not always be predictable, so a task
on a process may be completed before others. The last is-
sue that needs to be taken into consideration is the remain-
ing task in the other processes should be dynamically dis-
tributed to the idle processes. In this way, both the idle
timeof theprocesses is reduced, and thework is completed
in a shorter time.

There are two di�erent memory systems used when
developing a parallel algorithm: shared memory systems
and distributed memory systems.

4.5.1 Shared memory systems

Processes running on di�erent machines share a com-
mon memory address space in shared memory systems.
The most important advantage of these systems is that
processes can communicate with each other through this
memory address space. But there may be delays when the
common address is on di�erent machines with the run-
ning process.

In these methods, input data is partitioned. However,
the important point here should bedistributed to thework-
ers in a balanced manner. For example, the size of data
given to some workers may be small and work may be
much earlier than other employees, so CPU time can be
wasted. Another issue should be paid attention to the
granularity of the parallelism, that is communication load
of more than one processor. It should also be ensured that
the shared data is consistent.

Parmol software [37] provides parallel implementa-
tion of the MOFA [18], gSpan [17], FFSM [14] and Gaston
[38] algorithms. ParSeMiS tool [39] is a parallel implemen-
tation of the gSpan algorithm. p-MOFA and p-gSpan algo-
rithms [20] are thread-based parallel versions of theMOFA
[18] and gSpan [17] algorithms that use shared memory.

4.5.2 Distributed memory systems

In distributed memory systems, processes communicate
with each other by network transmission or writing to a
�le or reading a �le instead of sharing a memory space to
communicatewith each other. There are twoprogramming
models used in distributed memory systems.

The �rst is themessage passing.With thismethod, the
processes communicate with each other by sending mes-
sages over the network. For this reason, network band-
width is one of the important factors a�ecting the system
and network tra�c should be reduced as much as possi-
ble.

The other method is MapReduce [40]. Themap reduce
model consists of two phases: map and reduce. The input
of algorithm is assumed a (key, value) pair sets. Firstly, the
map function is implemented to each (key, value) pair and
emits the other (key, value) pairs then during the reduce
phase the pairs that have the same key value are aggre-
gated after themap function. Reduce function keeps these
values in a sorted list and implements the reduce function
to this list. In the message transfer model, the communi-
cation of process in the system is transparent to the user,
but in the MapReduce method the user does not need to



206 | Büşra Güvenoğlu and Belgin Ergenç Bostanoğlu

have detailed knowledge about the communication in an
address �eld.

There are two parallel processing frameworks that al-
low big data to be distributed among computer clusters us-
ing simple programmingmodels: Apache Hadoop [41] and
Apache Spark [42] frameworks. Hadoop is an open source
implementation of the MapReduce programming model
and uses the Hadoop Distributed File System [43]. The
Apache Spark Framework is an open-source cluster com-
puting framework built on and extending HadoopMapRe-
duce. MIRAGE algorithm [44] is an iterative MapReduce-
based frequent subgraph mining algorithm. FSM-H algo-
rithm [19] is an apriori based algorithm that depends on
MapReduce framework. gSpan-H algorithm [21] is a par-
allel implementation of gSpan algorithm [17] based on
MapReduce framework.

5 Discussion of algorithms and
challenges

Algorithms that work on the problem of Frequent Sub-
graph Mining (FSM) try to overcome some di�culties in
this area. One of the most important problems encoun-
tered in solving the problem of FSM is costly candidate
generation. If the size of the data is too large and the sup-
port threshold value is small, the number of candidates
generated become enormous. Another problem is calcu-
lating the frequency of these candidates. To be able to
calculate the frequency, it is necessary to �nd other sub-
graphs that are topologically identical (isomorphic) to the
subgraph. The detection of isomorphic subgraphs is a NP-
complete problem [9].

To �nd frequent subgraphs in a graph dataset, apri-
ori based algorithms generate candidate subgraphs and
apply subgraph isomorphism test to these candidates.
Since these processes are computationally expensive, al-
gorithms su�er from them.

To avoid the overhead of apriori based algorithms, pat-
tern growth-based algorithms construct aDFS code tree in-
stead of candidate generation and subgraph isomorphism
testing. Eachnode of this tree represents a graph and these
graphs are represented by minimum DFS codes. These
minimum DFS codes are used to facilitate the subgraph
isomorphism test. Because if the two subgraphs are iso-
morphic, these minimum DFS codes are the same. Pat-
tern growth-based algorithms can e�ciently generate can-
didates and facilitate subgraph isomorphism testing, but
most pattern growth-based algorithms are not suitable for
big data.

In this study, e�cient support calculation methods
and di�erent supportmeasures are examined according to
the input type. Depending on the type of input, support
measures vary. The aim is to provide e�ective and accu-
rate frequency calculation. If an input is a transactional
dataset, the number of di�erent transactions that encoun-
tered with subgraph is used as support. In this case, one
of the most ine�cient methods is a database scan, be-
cause the database is scanned from beginning to end for
each generated candidate. However, in othermethods, the
size of memory is an important challenge. Especially, as
the data size increases, it requires a signi�cant amount
of memory to keep transaction, embedding or occurrence
lists.

If the input is a single large graph, there are di�er-
ent support measures to calculate the frequencies. One of
these methods is MIS support[33]. MIS support is compu-
tationally e�cient but NP-hard [9] in number of graph ver-
tices. The other method is MNI support[34]. MNI support
is calculated in linear time but it may overestimate the fre-
quency of a candidate. In terms of calculation time, MNI
support is better than MIS support.

5.1 Performance comparison of FSM
algorithms

In this section, the limitations of the algorithms and their
performance comparison is summarized according to the
information obtained from the experiments in related pa-
pers.

For each candidate, the AGM [15] algorithm scans the
entire dataset from beginning to end to �nd out whether it
is frequent or not. The FSG algorithm [16] uses canonical
labels to facilitate the subgraph isomorphism problem. To
create the canonical label of a graph, this algorithm sug-
gests some heuristic methods. However, these heuristics
require a large number of di�erent edge labels to uniquely
identify a graphusing canonical labels. FSGalgorithmout-
performs the AGM algorithm [16].

The gSpan algorithm [17] contructs a DFS code tree in-
stead of the candidate generation and uses minimum DFS
code to facilitate the subgraph isomorphism. Therefore,
gSpan algorithm requires lessmemory utilization than the
FSG and outperforms it [17]. However, gSpan algorithm is
not suitable for large patterns [13]. FFSM algorithm pro-
poses two new methods for candidate generation: FFSM-
join and FFSM-extension and uses CAM to facilitate sub-
graph isomorphism. FFSM is faster than the gSpan algo-
rithm only on IC93 dataset [14].



A qualitative survey on frequent subgraph mining | 207

MOFA algorithm [18] generates many duplicates. So,
the generated frequent subgraphs may not be frequent ac-
tually. gSpan and FFSM algorithms outperform the MOFA
algorithm [45].

CloseGraph algorithm [13] is based on gSpan algo-
rithm. Since the gSpan algorithm is not suitable for large
patterns, this algorithm �nds only closed frequent sub-
graphs instead of �nding all frequent subgraphs. It sug-
gests two new concepts to narrow the search space: equiv-
alent occurrence and early termination. In some cases,
early termination may fail. Although this algorithm per-
forms better than gSpan on large patterns, it may miss
some important frequent subgraphs [13]. However, it can
be ensured that the completeness of the algorithm results
can be guaranteed by determining the cases where early
termination failed.

The SIGRAM [10] algorithm aims to �nd frequent sub-
graphs in a single large graph. Based on the two di�erent
approaches, it proposes two new algorithms: HSIGRAM
andVSIGRAMalgorithms.While HSIGRAMalgorithmuses
apriori based strategy to generate candidates, VSIGRAM
algorithm uses pattern growth-based strategy. According
to the experimental results, VSIGRAM algorithm is faster
than the HSIGRAM algorithm [10].

SUBDUE algorithm [12] is a heuristic algorithm and
it compresses the input data by using minimum descrip-
tion length principle. Since this algorithm is suitable for
�nding small frequent subgraphs, it tends to miss large
frequent subgraphs. Both VSIGRAM and HSIGRAM algo-
rithms perform better than the SUBDUE algorithm [10].

SEuS algorithm [11] summarizes the graph dataset and
the frequent subgraphs are searched in this summary. Due
to the loss of data in the summarization phase, the output
of algorithm is approximate frequent subgraphs which are
the superset of complete frequent subgraphs. VSIGRAMal-
gorithm outperforms the SEuS algorithm [10].

Stream FSM [31], GERM [29] and Time evolving graph
algorithms [32] are FSM algorithms applied to dynamic
graphics. Time-evolving graphs algorithm is the modi�ca-
tion of GERM algorithm. The di�erence is that this algo-
rithm allows the multiple edge between nodes and uses
di�erent con�dence measure. Stream FSM algorithm out-
performs GERM and SUBDUE algorithm on Twitter dataset
[31]. The limitation of GERM and Stream FSM algorithms
is the number of edges (degree of a node) that a node can
have, as the developing graph grows. Because, as the de-
gree of a node increases, the complexity of the algorithm
will increase.

FSM-H [19] and gSpan-H [21] algorithms �nd all fre-
quent subgraphs based on the Hadoop MapReduce soft-
ware framework [41]. FSM-H algorithm generates candi-

dates by using breadth �rst strategy and it applies sub-
graph isomorphism test. gSpan-H algorithm is a modi�ca-
tion of gSpan algorithm. gSpan-H algorithm discovers fre-
quent subgraphs without candidate generation and sub-
graph isomorphism testing. Since candidate generation
and isomorphism checking is costly process, the perfor-
mance of gSpan-H algorithm is better than the FSM-H al-
gorithm [21].

p-MOFA and p-gSpan algorithms [20] are thread-
based algorithms that run on a 12-processor shared mem-
ory system. p-MOFA is a modi�cation of the MOFA algo-
rithm and p-gSpan is a modi�cation of the gSpan algo-
rithm. The MOFA algorithm requires more memory usage
than the gSpan algorithm because it must store all the
embeddings for support evaluation. In addition, di�erent
load balancing techniques are used in these two di�erent
algorithms and these techniques signi�cantly a�ect the
performance of the algorithm. According to these factors,
the p-gSpan algorithm performs better than the p-MOFA
algorithm [20].

5.2 Current challenges of FSM

As mentioned before, an FSM algorithm has two ma-
jor phases: candidate generation and frequency evalua-
tion. Most of existing FSM algorithms are applied to small
and static datasets. However, the data in today’s world is
changing and growing.

One of themost important disadvantages of most FSM
algorithms is that they are not suitable for big data due
to the costly candidate generation and subgraph isomor-
phism test. For this reason, existing algorithms need to be
adapted towork on dynamic data. Fewmethods [29, 31, 32]
that can work on dynamic data have been proposed.

Another problem is that as the data size increases, the
number of generated candidates increases and the sub-
graph isomorphism testing becomes more di�cult. The
solution to both problems requires a lot of resources and
time. Generated candidates may not �t in memory on a
single machine or working with them on a single machine
may not be an e�ective method. For this reason, methods
that provide scalability and e�ciency are necessary. Re-
cent parallel algorithms have been proposed to workmore
e�ciently and to make FSM algorithms work with big data
and large patterns.



208 | Büşra Güvenoğlu and Belgin Ergenç Bostanoğlu

6 Conclusion
In this work, we focus on Frequent Subgraph Mining
(FSM) and try to cover both early and recent literature on
FSM from di�erent perspectives. This area has many al-
gorithms, research publications, development and appli-
cation activities. Within the scope of this survey, popular
FSM algorithms are investigated according to the di�erent
characteristics.

First, algorithms are examined according to the meth-
ods used in the main FSM processes, which are candidate
generation and frequency calculation. Then, these algo-
rithms are categorized by emphasizing various algorith-
mic features such as input type, dynamicity of graphs,
result type algorithmic approach, algorithmic design and
graph representation. In addition, the challenges of the
FSM algorithms, the advantages and disadvantages of the
methods used as well as the limitations of popular algo-
rithms are discussed.

Nowadays, in many applications, data is either con-
stantly changing or changing over a period. Therefore, in
addition to computationally expensive candidate genera-
tion and subgraph isomorphism test, one of the problems
facing FSM algorithms today is the change of data over
time. To �nd frequent subgraphs of such data, it is nec-
essary to adapt existing algorithms for dynamic data. An-
other problemof today is the size of thedata. Since existing
FSM algorithms are suitable for small data, there is a need
for designs andmethods that will enable these algorithms
to work on the big data.

References
[1] Han J., Pei J., Kamber M., Data mining: Concepts and Tech-

niques, Elsevier, 2011
[2] Chakrabarti D., Faloutsos C., Graph mining: Laws, generators,

and algorithms, ACM Computing Surveys (CSUR), 2006, 38(1), 2
[3] Rehman S. U., Khan A. U., Fong S., Graph mining: A survey of

graph mining techniques, Seventh International Conference on
Digital Information Management (ICDIM 2012), IEEE, 2012, 88-
92

[4] Aggarwal C. C., Wang H., Graph data management and mining:
A survey of algorithms and applications, Managing and Mining
Graph Data, Springer, 2010, 13-68

[5] Raymond J. W., Gardiner E. J., Willett P., Heuristics for similarity
searching of chemical graphs using a maximum common edge
subgraph algorithm, Journal of Chemical Information and Com-
puter Sciences, 2002, 42(2), 305-316

[6] Zimek A., Assent I., Vreeken J., Frequent pattern mining algo-
rithms for data clustering, Frequent Pattern Mining, Springer,
Cham, 2014, 403-423

[7] Yan X., Yu P. S., Han J., Graph indexing: a frequent structure-
based approach, Proceedings of the 2004 ACM SIGMOD Inter-
national Conference on Management of Data, ACM, 2004, 335-
346

[8] Acosta-Mendoza N., Gago-Alonso A., Medina-Pagola J. E., Fre-
quent approximate subgraphs as features for graph-based im-
age classi�cation, Knowledge-Based Systems, 2012, 27, 381-
392

[9] Garey M. R., Johnson D. S., Computers and Intractability, New
York: wh freeman, 2002, 29

[10] Kuramochi M., Karypis G., Finding frequent patterns in a large
sparse graph, Data Mining and Knowledge Discovery, 2005,
11(3), 243-271

[11] Ghazizadeh S., Chawathe S. S., Seus: Structure extraction us-
ing summaries, International Conference on Discovery Science,
Springer, 2002, 71-85

[12] Holder L. B., Cook D. J., Djoko S., Substucture discovery in the
SUBDUE system, KDD Workshop, 1994, 169-180

[13] Yan X., Han J., Closegraph: mining closed frequent graph pat-
terns, Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, ACM, 2003,
286-295

[14] Huan J.,WangW., Prins J., E�cientminingof frequent subgraphs
in the presence of isomorphism, Proceedings of the 2003 Inter-
national Conference on Data Mining, IEEE, 2003, 549-552

[15] Inokuchi A., Washio T., Motoda H., An apriori-based algorithm
for mining frequent substructures from graph data, European
Conference on Principles of DataMining and Knowledge Discov-
ery, Springer, 2000, 13-23

[16] Kuramochi M., Karypis G., An e�cient algorithm for discovering
frequent subgraphs, IEEE Transactions on Knowledge and Data
Engineering, 2004, 16(9), 1038-1051

[17] Yan X., Han J., gSpan: graph-based substructure patternmining,
Proceedings of International Conference on Data Mining, IEEE,
2002, 721-724

[18] Borgelt C., Berthold M. R., Mining molecular fragments: Find-
ing relevant substructures of molecules, Proceedings of Inter-
national Conference on Data Mining, IEEE, 2002, 211-218

[19] Bhuiyan M. A., Hasan M. Al, An iterative mapreduce based fre-
quent subgraph mining algorithm, IEEE Transactions on Knowl-
edge and Data Engineering, 2015, 27(3), 608-620

[20] Meinl T., WorleinM., Fischer I., PhilippsenM., Miningmolecular
datasets on symmetric multiprocessor systems, Proceedings of
the 2006 IEEE International Conference on Systems, Man and
Cybernetics (SMC’06), IEEE, 2006, 2, 1269-1274

[21] Sangle M. M. H., Bhavsar P. S. A., gSpan-H: An iterative mapre-
duce based frequent subgraph mining algorithm, International
Journal of Advance Research and Innovative Ideas in Education,
2016, 2(5), 169-177

[22] Jiang C., Coenen F., Zito M., A survey of frequent subgraph min-
ing algorithms, TheKnowledge Engineering Review, 2013, 28(1),
75-105

[23] Lakshmi K.,Meyyappan T., A comparative study of frequent sub-
graph mining algorithms, International Journal of Information
Technology Convergence and Services, 2012, 2(2), 23-29

[24] Muttipati A. S., Padmaja P., Analysis of large graph partition-
ing and frequent subgraph mining on graph data, International
Journal of Advanced Research in Computer Science, 2015, 6(7),
29-40



A qualitative survey on frequent subgraph mining | 209

[25] Schmidt D. C., Dru�el L. E., A fast backtracking algorithm to test
directed graphs for isomorphism using distance matrices, Jour-
nal of the ACM (JACM), 1976, 23(3), 433-445

[26] Ullmann J. R., An algorithm for subgraph isomorphism, Journal
of the ACM (JACM), 1976, 23(1), 31-42

[27] McKay B. D., Practical graph isomorphism, 1981
[28] Cordella L. P., Foggia P., Sansone C., Tortorella F., Vento M.,

Graph matching: a fast algorithm and its evaluation, Proceed-
ings of the Fourteenth International Conference on Pattern
Recognition, IEEE, 1998, 2, 1582-1584

[29] BerlingerioM., Bonchi F., BringmannB., Gionis A.,Mining graph
evolution rules, Joint EuropeanConference onMachine Learning
andKnowledgeDiscovery inDatabases, Springer, 2009, 115-130

[30] Agrawal R., Srikant R., Fast algorithms for mining association
rules, Proceedings of the 20th International Conference on Very
Large Data Bases (VLDB), 1994, 1215, 487-499

[31] Ray A., Holder L., Choudhury S., Frequent subgraph discovery in
large attributed streaming graphs, Proceedings of the 3rd Inter-
national Conference on Big Data, Streams and Heterogeneous
Source Mining: Algorithms, Systems, ProgrammingModels and
Applications, 2014, 36, 166-181

[32] Miyoshi Y., Ozaki T., Ohkawa T., Mining interesting patterns
and rules in a time-evolving graph, Proceedings of the Inter-
national MultiConference of Engineers and Computer Scientists
2011 (IMECS 2011), 2011, 1, 448-453

[33] Vanetik N., Gudes E., Shimony S. E., Computing frequent graph
patterns from semistructured data, In Data Mining, 2002. ICDM
2003. Proceedings. 2002 IEEE International Conference on,
IEEE, 2002, 458-465

[34] Bringmann B., Nijssen S., What is frequent in a single graph?,
Paci�c-Asia Conference on Knowledge Discovery and Data Min-
ing, Springer, 2008, 858-863

[35] Rissanen J., Minimum description length principle, Wiley Stat-
sRef: Statistics Reference Online, Wiley Online Library, 2014

[36] Han J., Pei J., Yin Y., Mining frequent patterns without candidate
generation, ACM Sigmod Record, 2000, 29(2), 1-12

[37] Meinl T., Wörlein M., Urzova O., Fischer I., Philippsen M., The
parmol package for frequent subgraph mining, Electronic Com-
munications of the EASST, 2007, 1

[38] Nijssen S., Kok J. N., A quickstart in frequent structure mining
canmake adi�erence, Proceedings of the TenthACMSIGKDD In-
ternational Conference on Knowledge Discovery and Data Min-
ing, ACM, 2004, 647-652

[39] Philippsen M., Worlein M., Dreweke A., Werth T., ParSeMiS -
the parallel and sequential mining suite, 2011, https://www2.
informatik.uni-erlangen.de/EN/research/zold/ParSeMiS

[40] Dean J., Ghemawat S., Mapreduce: simpli�ed data processing
on large clusters, Communications of the ACM, 2008, 51(1), 107-
113

[41] Hadoop A., Hadoop, 2009, http://hadoop.apache.org, 2009
[42] Spark A., Apache spark: Lightning-fast cluster computing, URL

http://spark.apache.org, 2016
[43] Shvachko K., Kuang H., Radia S., Chansler R., The Hadoop dis-

tributed �le system, 2010 IEEE 26th Symposium on Mass Stor-
age Systems and Technologies (MSST), IEEE, 2010

[44] Bhuiyan M. A., Hasan M. A., Mirage: An iterative mapre-
duce based frequent subgraph mining algorithm, arXiv preprint
arXiv:1307.5894, 2013

[45] Wörlein M., Meinl T., Fischer I., Philippsen M., A quantitative
comparison of the subgraph miners MoFa, gSpan, FFSM, and
Gaston, European Conference on Principles of Data Mining and
Knowledge Discovery, Springer, 2005, 392-403

https://www2.informatik.uni-erlangen.de/EN/research/zold/ParSeMiS
https://www2.informatik.uni-erlangen.de/EN/research/zold/ParSeMiS
http://hadoop.apache.org
http://spark.apache.org

	1 Introduction
	2 Background
	2.1 Basic graph terminology
	2.2 Support measure
	2.3 Frequent subgraph
	2.4 Subgraph isomorphism
	2.5 Graph representation
	2.5.1 Adjacency matrix
	2.5.2 Adjacency list
	2.5.3 Canonical labeling


	3 Process of frequent subgraph mining
	3.1 Candidate generation
	3.1.1 Level-wise join strategy
	3.1.2 Extension strategy
	3.1.3 Join and extension strategy

	3.2 Frequency calculation
	3.2.1 Database scan
	3.2.2 Transaction list
	3.2.3 Embedding list
	3.2.4 Occurrence list
	3.2.5 Maximum independent set (MIS)
	3.2.6 Minimum image based support (MNI)
	3.2.7 Minimum description length principle (MDL)


	4 Categorization of FSM algorithms
	4.1 Input type
	4.2 Dynamicity of graphs
	4.3 Result type
	4.4 Algorithmic approach
	4.4.1 Apriori based algorithms
	4.4.2 Pattern growth-based algorithms

	4.5 Algorithmic design
	4.5.1 Shared memory systems
	4.5.2 Distributed memory systems


	5 Discussion of algorithms and challenges
	5.1 Performance comparison of FSM algorithms
	5.2 Current challenges of FSM

	6 Conclusion

