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Abstract
With the advances in fabrication of materials with feature sizes at the order of nanometers, 
it has been possible to alter their thermal transport properties dramatically. Miniaturization 
of device size increases the power density in general, hence faster electronics require better 
thermal transport, whereas better thermoelectric applications require the opposite. Such 
diverse needs bring new challenges for material design. Shrinkage of length scales has also 
changed the experimental and theoretical methods to study thermal transport. Unsurprisingly, 
novel approaches have emerged to control phonon flow. Besides, ever increasing 
computational power is another driving force for developing new computational methods. In 
this review, we discuss three methods developed for computing vibrational thermal transport 
properties of nano-structured systems, namely Green function, quasi-classical Langevin, and 
Kubo–Green methods. The Green function methods are explained using both nonequilibrium 
expressions and the Landauer-type formula. The partitioning scheme, decimation techniques 
and surface Green functions are reviewed, and a simple model for reservoir Green functions 
is shown. The expressions for the Kubo–Greenwood method are derived, and Lanczos 
tridiagonalization, continued fraction and Chebyshev polynomial expansion methods 
are discussed. Additionally, the quasi-classical Langevin approach, which is useful for 
incorporating phonon–phonon and other scatterings is summarized.

Keywords: quantum thermal transport, Green function method, Kubo–Greenwood method, 
quasi-classical Langevin method
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List of symbols

Symbol	 Explanation

xiα	 Displacement of ith atom along α-direction
ẋiα	 Velocity of ith atom along α-direction
mi	 Mass of ith atom
M	 Diagonal matrix of atomic masses
Vij,αβ	 Harmonic force constants	 Vij,αβ =

(
∂2E/∂xiα∂xjβ

)
0

Vijk,αβγ 	 Third order force constants	 Vijk,αβγ =
(
∂3E/∂xiα∂xjβ∂xkγ

)
0

Vijkl 	 Fourth order force constants	 Vijkl,αβγθ =
(
∂4E/∂xiα∂xjβ∂xkγ∂xlθ

)
0

Hµν	 (µ, ν) part of the Hamiltonian	 µ, ν ∈ {L, C, R}
uiα	 Mass normalized displacement	 uiα =

√
mixiα

u̇iα	 Mass normalized velocity	 u̇iα =
√

miẋiα

Φij,αβ	 Mass normalized harmonic force constants	 Φij,αβ =
(
∂2E/∂uiα∂ujβ

)
0

Ψijk,αβγ	 Mass normalized third order force constants	 Ψijk,αβγ =
(
∂3E/∂uiα∂ujβ∂ukγ

)
0

Ψijkl,αβγθ	 Mass normalized fourth order force constants	 Ψijklαβγθ =
(
∂4E/∂uiα∂ujβ∂ukγ∂ulθ

)
0

Bij,αβ	 (ij,αβ) element of diagonalizing matrix	
∑

jβ B∗
ij,αβBjk,βγ = δikδαγ

uq	 Normal coordinate	 uq =
∑

iα Bq,iαuiα

Gr	 Retarded Green’s function

Ga	 Advanced Green’s function

Gt	 Time-ordered Green’s function

G<	 Lesser Green’s function

G>	 Greater Green’s function
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1.  Introduction

Thermal transport plays a central role in most of the state-of-
the-art technological applications. In electronics, one requires 
good thermal conduction in order to get rid of the excess heat 
because the device temperature limits the operation speed. 
On the other hand, there are also cases where a poor thermal 
conduction is preferred. Thermoelectrics is a typical example, 
where one uses temperature difference to drive an electric cur
rent with minimal exchange of heat between the reservoirs or 
vice versa. At the macroscopic scale, Fourier’s Law gives an 
accurate description of thermal transport, which states that the 
thermal current is opposite and proportional to the temperature 
gradient and the proportionality constant is thermal conductiv-
ity, i.e. J = −σ∇T . At the nano-scale, where the device lengths 
are less than or comparable to the phonon mean-free-path, bal-
listic transport regime becomes relevant and the diffusion pic-
ture fails. In fact, the entire phonon spectrum is involved in 
thermal transport, in general, therefore a wide range of length 
scales are relevant for phonon transport. This could be at the 
order of µm for acoustic modes, and as short as a few nm for 
high energy optical modes with small group velocities.

The relation between length scales and thermal transport is 
important not only for understanding the effects of nano-struc-
turing on phonon transport, but also because nano-structuring 
has the potential to bring novel concepts and applications 
involving phonons. One such concept of fundamental nature 
is the quantum of thermal conductance, which is observed in 
suspended insulating nano-structures at very low temperatures 
[1–4]. Moreover, there have been considerable efforts to build 
phononic analogs of electronic devices. The emerging field 
of phononics aims to use phonons to carry and process infor-
mation with thermal diodes, thermal transistors, thermal logic 
gates and thermal memories [5].

Parallel to these developments, theory and modeling of pho-
non transport has been an active field of research in the recent 
years [6–9]. Classical molecular dynamics (MD) simulations, 
Boltzmann formalism, equilibrium and nonequilibrium Green 
function (GF) methods, generalized quasi-classical Langevin 
(QCL) approach, master equation  formalism and the real-
space Kubo–Greenwood (KG) methodology are among the 
widely used methodologies to compute phonon transport at 
the nano-scale. MD methods are based on the Verlet algorithm, 

that is integrating Newton’s equations of motion. This is a dis-
advantage if combined with Boltzmann statistics neglecting 
quantum mechanics entirely. In graphene, for example, Debye 
temperature is 2300 K for in-plane, and 1300 K for out-of-
plane modes [10]. Methods which are based on quantum sta-
tistical mechanics, e.g. GF, QCL, and KG do not suffer from 
this problem. On the other hand, MD methods include anhar-
monicity intrinsically and to all orders, whereas for GF meth-
ods one has to include anharmonic interactions separately. At 
distances shorther than the anharmonic mean-free-path, GF is 
quite accurate in predicting scatterings due to defects, inter-
faces, grain boundaries, and nano-structuring schemes. A way 
of include phonon–phonon scatterings in those systems is to 
use generalized QCL approach. Apart from these, accurate 
treatments of anharmonic scatterings has been implemented 
based on density functional theory and Boltzmann formalism 
[11]. With this approach, one can obtain excellent agreement 
between the calculated and measured intrinsic lattice thermal 
conductivities of semiconductors. Yet, the method is more 
suited for periodic systems without disorder because of the 
computational cost.

Here, a review of the GF, QCL and KG methodologies is 
presented so as to introduce the reader with the fundamentals 
and applications of these approaches. It is neither our intention 
nor it is possible to cover these topics in full detail in a single 
review paper. There are excellent reviews on the very details 
of the GF methodology [12–15] and the QCL approach [16] 
in the literature. Our goal in this review is to guide the reader 
directly to the transport equations. Therefore some of the 
important details of the GF methodology, like the equation of 
motion on contour, Feynmann diagrammatic perturbation the-
ory are excluded. The refer the reader to the aforementioned 
reviews for further details.

The paper is organized as follows. In section  2, the GF 
methodology is reviewed, where thermal current expression 
is derived using nonequilibrium Green functions (NEGF) and 
the equilibrium expression is obtained, which is of Landauer 
type. Decimation algorithms and surface GFs for reservoirs 
are also discussed in detail. The examples of the use of GF 
formalism include defected carbon nanotubes, graphene with 
molecular antiresonances, a hybrid nanostructuring scheme 
for reducing thermal conductance, graphene grain boundaries, 
anistropy of thermal transport in puckered structures and strain 

Gt̃ 	 Anti-time-ordered Green’s function
gµ,r	 Free GF of the reservoir µ. µ ∈ {L, R}
ΣL/R	 Self energy due to coupling to the left/right reservoir	 ΣL/R = ΦCL/CRgL/RΦLC/RC

ΓL/R	 Broadening due to coupling to the left/right reservoir	 ΓL/R = i(ΣL/R − ΣL/R†)
ζ(ω)	 Transmission spectrum

fB(ω, T)	 Bose–Einstein distribution function
κ(T)	 Conductance
J	 Thermal current
σ	 Thermal conductivity
�elastic	 Elastic mean-free-path
ξ	 Driving force	 ξµ(t) = ΦCµgµ(t)u̇µ(0)
Sµ	 Gaussian noise	 Sµ =

∫
dt eiωt〈ξµ(t)ξµ(0)〉

J. Phys.: Condens. Matter 31 (2019) 273003
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engineering of thermal transport properties. A simple model 
for the reservoirs and a force constant model for obtaining 
the dynamical matrices for graphene based systems are also 
included, which enable an easier starting with the reviewed 
methods. In section 3 the QCL approach is discussed, which 
bridges GF and MD approaches. Section 4 is reserved for the 
real-space KG approach, which is a linearly scaling method 
for disordered systems. Disordered carbon nanotubes, edge 
disordered graphene nanoribbons and graphene/BN hetero-
structures are the examples reviewed using this method.

2.  Green function method

Green functions are being used in almost all branches of phys-
ics. It finds its roots in quantum field theory and has been used 
extensively in many-particle physics [17]. The NEGF formal-
ism was formulated in the pioneering works of Schwinger 
[18], Keldysh [19], Kadanoff and Baym [20]. NEGF was used 
by Meir and Wingreen [21] to study electronic transport, and 
later used to address phonon transport [22–24].

2.1. The Hamiltonian

The total energy of the system Etot can be expanded in terms 
of the displacements of the constituent atoms from their equi-
librium positions. Denoting mi and xiα as the mass of ith 
atom and its displacement along α-direction (α = x, y, z), one 
defines mass-normalized displacements as uiα =

√
mixiα and 

writes the Hamiltonian as

H =
1
2

∑
i,α

u̇2
iα +

1
2

∑
ij,αβ

Φij,αβuiαujβ + · · ·

+
1
3!

∑
ijk

αβγ

Ψijk,αβγuiαujβukγ +
1
4!

∑
ijkl

αβγθ

Ψijkl,αβγθuiαujβukγulθ,

� (1)
where Φij,αβ = ∂2Etot/∂uiα∂ujβ  are the elements of the dynam-
ical matrix. Ψijk,αβγ = ∂3Etot/∂uiα∂ujβ∂ukγ and Ψijkl,αβγθ = 
∂4Etot/∂uiα∂ujβ∂ukγ∂ulθ are the mass-normalized anhar-
monic force constants up to fourth order. The third and 
the higher order terms belong to the non-linear part of the 
Hamiltonain, Hint, whereas the harmonic part (Hharm) defines 
an eigenvalue problem.

One can define |u〉 as the normalized column vector of 
displacements uiα, 〈u| as its transpose such that 〈u|u〉 = 1, 
and denote the eigenvalue problem defined by the dynamical 
matrix, Φ, as

Φ|uq〉 = ω2
q |uq〉� (2)

with uq being the eigenvector and ω2
q is the corresponding 

eigenvalue with index q. The equivalent form without 
mass-normalization is a generalized eigenvalue problem, 
V(2)|xq〉 = ω2M|xq〉, where V(2)

ij,αβ = ∂2Etot/∂xiα∂xjβ are the 
harmonic force constants and M is the diagonal matrix of 
atomic masses.

The annihilation and creation operators are defined as as

aq =

√
ωq

2�

(
uq +

i
ωq

u̇q

)
,� (3)

a+
q =

√
ωq

2�

(
uq −

i
ωq

u̇q

)
,� (4)

which satisfy the commutation relation [aq, a+q′ ] = δqq′, and diago-
nalize the harmonic Hamiltonian, Hharm =

∑
q �ωq(a+q aq +

1
2 ). 

Also note that [uiα, u̇jβ ] = i�δijδαβ.

2.2.  Six phonon Green functions

In equilibrium, it is enough to define one Green function, 
which is generally chosen as the retarded GF. In nonequilib-
rium cases, it is common practice to define six Green func-
tions, which are not linearly independent. Their definitions are 
[17],

G>(u1, u2) = − i
�
〈u1(t1), u2(t2)〉,� (5)

G<(u1, u2) = − i
�
〈u2(t2), u1(t1)〉,� (6)

Gt(u1, u2) = θ(t1 − t2)G>(u1, u2) + θ(t2 − t1)G<(u1, u2)〉,
� (7)

Gt̃(u1, u2) = θ(t2 − t1)G>(u1, u2) + θ(t1 − t2)G<(u1, u2)〉,
� (8)

Gr(u1, u2) = Gt(u1, u2)− G<(u1, u2),� (9)

Ga(u1, u2) = Gt(u1, u2)− G>(u1, u2),� (10)

which will be referred to as the greater, lesser, time-ordered, 
anti-time-ordered, retarded, and advanced Green functions, 
respectively. The following relations can be derived from the 
above definitions [17].

Gr = θ(t1 − t2)(G> − G<),� (11)

Ga = −θ(t2 − t1)(G> − G<),� (12)

Gt − Gt̃ = (θ(t1 − t2)− θ(t2 − t1))(G> − G<),� (13)

Gt + Gt̃ = G> + G<,� (14)

Gr − Ga = G> − G<,� (15)

Figure 1.  Contour integration path.

Figure 2.  The contour C, on which t1 is before t2, is deformed as 
C → C1 + C2.

J. Phys.: Condens. Matter 31 (2019) 273003
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Gr + Ga = Gt − Gt̃.� (16)

2.2.1.  Contour ordering.  In a non-equilibrium situation, the 
system does not return to its initial state at asymptotically 
large times, in general. In such cases, contour ordering is the 
suitable method for calculating correlations. Contour ordered 
GFs are non-equilibrium analogs of time-ordered GFs. Gen-
erally, the initial correlations are neglected and the contour is 
chosen like in figure 1.

In GF calculations, one evaluates terms like

C(t1, t2) =
∫

C
dτ A(t1, τ)B(τ , t2).� (17)

In order to calculate C<, one chooses a contour C such that t1 
is before t2 (see figure 2(a)). Then the contour is deformed as 
C → C1 + C2 (see figure 2(b)), so that t1 is on C1 and t2 is on 
C2. Using these, one obtains the expression for C< as

C<(t1, t2) =
∫

C1

dτ A(t1, τ)B<(τ , t2) +
∫

C2

dτ A<(t1, τ)B(τ , t2).

� (18)
Here, one has B< in the first term because all τ  on C1 are 
before t2, which is on C2. Similarly, one has A< in the second 
term because t1 is always before τ , which is on C2. Now, we do 
the the first integral. On C1, τ  can be before or after t1, which 
is expressed as
∫

C1

dτ A(t1, τ)B<(τ , t2)

=

∫ t1

−∞
dt A>(t1, t)B<(t, t2) +

∫ −∞

t1
dt A<(t1, t)B<(t, t2).

� (19)
Likewise, the C2 integral takes the form

∫

C2

dτ A<(t1, τ)B(τ , t2)

=

∫ t2

−∞
dt A<(t1, t)B>(t, t2) +

∫ −∞

t2
dt A<(t1, t)B<(t, t2).

� (20)
Using the identities Ar(t1, t) = θ(t1 − t)(A> − A<) and 
Ba(t, t2) = −θ(t2, t)(B> − B<) (see equations (11) and (12)), 
one obtains

C<(t1, t2) =
∫ ∞

−∞
dt

(
Ar(t1, t)B<(t, t2) + A<(t1, t)Ba(t, t2)

)
.

� (21)
It is possible to use a matrix representation for the GFs and 

the self energies as [25]

G̃ =

(
Gt −G<

G> −Gt̃

)
, Σ̃ =

(
Σt −Σ<

Σ> −Σt̃

)
.� (22)

Using the matrix notation, Ã = B̃C̃, one can easily write 
−A< = −BtC< + B<Ct̃  making use of the definitions 
Bt = Br + B< and Ct̃ = C< − Ca (see equations  (9) and 
(10)), one again obtains A< = BrC< + B<Ca. It will be nec-
essary to calculate such correlations during the course of pho-
non transport and equation (21) will be used in deriving the 
expression for the heat current.

Adiabatic switching is employed to study the non-equilib-
rium and interacting systems. It is assumed that the subsys-
tems (reservoirs and the device region) are decoupled and the 
nonlinear interactions are turned off at t → −∞. The decou-
pled subsystems are at temperature Tα and the lesser and 
greater GFs satisfy

gα,<(ω, Tα) = fαB (ω, Tα)(gα,r(ω)− gα,a(ω)),� (23)

gα,>(ω, Tα) = (1 + fαB (ω, Tα))(gα,r(ω)− gα,a(ω)).� (24)

The couplings between the subsystems (ΦLC/CL and ΦRC/CR, 
see the next section) are turned on slowly so that steady state 
is established at t � 0. Later the nonlinear interactions are 
turned on at t  =  0.

Applying perturbation expansion, Dyson’s equation  with 
contour ordering can be obtained as

G(τ , τ ′) = g(τ , τ ′) +
∫

dτ1

∫
dτ2 g(τ , τ1)Σ(τ1, τ2)G(τ2, τ ′),

� (25)

and using the Langreth rules one obtains

G≶(ω) = Gr(ω)Σ≶(ω)Ga(ω)� (26)

with Σ≶ originating from couplings between subsystems.

2.3.  Partioning scheme

In the GF and QCL approaches the system is partitioned (fig-
ure 3). The most common case is to include two reservoirs, 
which are labeled as the left (L) and the right (R) reservoirs 
and assumed to be kept at different temperatures. In this 
review TL > TR, if the opposite is not stated. The reservoirs 
are assumed to be perfect, namely no scatterings take place 

Figure 3.  Partitioning scheme. The infinite system is partitioned 
into three as the semi-infinite reservoirs (left and right regions) and 
the central scattering region. Note that the semi-infinite regions 
consist of identical layers, and are taken as scattering free, perfect 
reservoirs.
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inside them. The central region (C) connects the reservoirs, 
which are disconnected otherwise. The boundaries of the cen-
tral region are chosen such that all scattering events, whether 
elastic or inelastic, are to be included inside the central region. 
In other words, convenient parts of the reservoirs are included 
in the central region so as to make the force constant matrices 
of the reservoirs perfectly periodic in one direction.

The partitioning scheme applies to the Hamiltonian as

H =




HLL HLC 0
HCL HCC HCR

0 HRC HRR


 ,

� (27)
where

Hµµ =
1
2

∑
i∈µ,α

u̇2
iα +

1
2

∑
ij∈µ,αβ

Φij,αβuiαujβ ,

� (28)

Hµν =
1
2

∑
i∈µ,j∈ν

αβ

Φij,αβuiαujβ .

� (29)
The retarded Green function, also referred to as the resol-

vent, can be written as

Gr(ω) =
[
(ω + iδ)2 − Φ

]−1
,

� (30)
where δ is an infinitesimal positive number and  is 
the unit matrix. The elements of the resolvent read 
Gr

qq′ = δqq′/(ω
2 − ω2

q + iδ) in the diagonal basis, δqq′ repre-
senting Kronecker-δ function.

Using the partitioning scheme, the dynamical matrix and 
the resolvent can be written as 3 × 3 matrices, and equa-
tion (30) reads


(ω + iδ)2 − ΦLL −ΦLC 0

−ΦCL (ω + iδ)2 − ΦCC −ΦCR

0 −ΦRC (ω + iδ)2 − ΦRR




×




GLL,r GLC,r GLR,r

GCL,r GCC,r GCR,r

GRL,r GRC,r GRR,r


 = .

� (31)
The second column of the product matrix consists of the fol-
lowing equalities.

(gL,r)−1GLC,r − ΦLCGCC,r = 0,� (32)

−ΦCLGLC,r + [(ω + iδ)2 − ΦCC,r]GCC,r − ΦCRGRC,r = ,
� (33)

(gR,r)−1GRR,r − ΦRCGRC,r = 0,� (34)

where gL/R,r = [(ω + iδ)2 − ΦLL/RR]−1 are the retarded 
Green functions for uncoupled reservoirs. Using equa-
tions  (32)–(34), Green function for the central region is 
obtained as

GCC,r =
[
(ω + iδ)2 − ΦCC − ΣL,r − ΣR,r]−1

,� (35)

with ΣL/R = ΦCL/CRgL/CΦLC/RC being the self energies due 
to coupling to the reservoirs. The broadening matrices are 
defined in terms of the self energies as

ΓL/R = Im
[
ΣL/R,a − ΣL/R,r

]
.� (36)

2.4.  Expression for the heat current and Landauer-type 
formula

At steady state, the heat current can be defined in terms of the 
rate of energy change at one of the reservoirs. That is,

JL→C(t) = − d
dt
〈HLL(t)〉,

=
i
�
〈
[
HLL(t), HLC(t) + HCL(t)

]
〉,

� (37)

where the Heisenberg equation  of motion is used and it is 
assumed that the degrees of freedom of the left and right 
reservoirs are not coupled to the degrees of freedom of the 
central region that are involved in the non-linear part of the 
Hamiltonian, namely [HLL/RR, Hint] = 0. This can always be 
assured with including a high enough number of principal lay-
ers of the reservoirs inside the central region. (see figure 3.)

Using the commutation relation [ul1 , u̇l2 ] = i�δl1,l2, one finds

JL→C(t) =
∑
l1c1

ΦLC
l1c1

〈u̇L
l1(t)u

C
c1
(t)〉,� (38)

= i�
∑
l1c1

ΦLC
l1c1

lim
t′→t

d
dt′

GCL,<
c1l1 (t, t′).� (39)

Here, the indices l1, c1 etc include both the atom index and the 
Cartesian components (see equation (6)). Performing contour 
ordering within the partition scheme, one has

GCL,< = GCC,rΦCLgLL,< + GCC,<ΦCLgLL,a,� (40)

which leads to the expression

JL→C(t) = i� lim
t′→t

d
dt′

∫
dt′′

∑
c1c2

(
GCC,r

c1c2
(t, t′′)ΣL,<

c2c1
(t′′, t′) + · · ·

� (41)

GCC,<
c1c2

(t, t′′)ΣL,a
c2c1

(t′′, t′)
)

.� (42)

Applying Fourier transformation and symmetrizing the real 
valued function as J  =  (J  +  J*)/2, one finds

JL→C =

∫ ∞

0

dω
2π

�ω Tr
[
ΣL,>(ω)GCC,<(ω)− ΣL,<(ω)GCC,>(ω)

]
.

� (43)
Using equation (23) for the uncoupled GFs, one can write

ΣL,< = ΦCLgL,<ΦLC,

= f L
BΦ

CL(gL,r − gL,a)ΦLC,

= f L
B (Σ

L,r − ΣL,a),

= if L
BΓ

L.

� (44)

Similarly, using equation (24), one gets

ΣL,> = i(1 + f L
B )Γ

L.� (45)

Employing Dyson’s equation  (see equation  (26)) for GCC,< 
and GCC,> as
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GCC,< = iGCC,r ( f L
BΓ

L + f R
BΓ

R)GCC,a,� (46)

GCC,> = iGCC,r ((1 + f L
B )Γ

L + (1 + f R
B )Γ

R)GCC,a,� (47)

one obtains

ΣL,>GCC,< − ΣL,<GCC,> = ( f L
B − f R

B ) Γ
LGCC,rΓRGCC,a.

� (48)
This equality reproduces the Landauer-type formula given 
Rego and Kirczenow [2].

J =

∫ ∞

0

dω
2π

�ω [ fB(ω, TL)− fB(ω, TR)] ζ(ω),� (49)

where TL > TR are reservoir temperatures and ζ(ω) is the 
transmission spectrum. The expression for the transmission 
function was obtained by Yamamoto and Watanabe [24] as

ζ(ω) = Tr[ΓL(ω)GCC,r(ω)ΓR(ω)GCC,r†(ω)].� (50)

Equivalent formulas for the transmission function were 
previously derived by Özpineci et  al [22] and Mingo et  al 
[23] In the limit of small temperature difference, namely 
TL−TR � T = (TL+TR)/2, thermal conductance is 
κ = J/(TL−TR), hence at given temperature

κ(T) =
k2

BT
h

∫ ∞

0
dx p(x) ζ(x),� (51)

with x = �ω/kBT , and p(x) = −x2∂fB/∂x = x2ex(ex−1)−2. 
The function p(x) is equal to unity at x  =  0, it decays rapidly 
for x>1 and 

∫∞
0 dx p(x) = π2/3. Therefore at the low temper

ature limit (T→0), the thermal conductance is quantized as 
κ = Mκ0, where

κ0 = π2k2
BT/3h� (52)

is the temperature dependent quantum of thermal conductance 
and M is the number of acoustic modes [1–3].

2.5.  Generalization to multiple reservoirs

The Landauer-type expression can be generalized to multi-
terminal configurations, in which case the central region is 
connected to more than two reservoirs. Each reservoir µ is 
assumed to be kept at temperature Tµ. Transmission between 
reservoirs µ and ν  is

ζµν(ω) = Tr
[
ΓµGCC,rΓνGCC,r†

]
,� (53)

where Γµ is the mode broadening due to coupling to res-
ervoir µ, Γµ = Im [Σµ,a − Σµ,r] (see equation  (36)). GCC 

collects self energy contributions from all reservoirs, 
GCC,r = [(ω + iδ)2 − ΦCC −

∑
µ Σ

µ,r]−1. Thermal current 
from µ to ν  is then

Jµν =

∫
dω
2π

�ω [ f µB (ω, Tµ)− f νB (ω, Tν)] ζ
µν(ω).� (54)

The multi-terminal systems are of particular interest for appli-
cations such as thermal rectification [26–31].

2.6.  Self-consistent reservoir approach

A method which is based on the multiple reservoirs is the self-
consistent reservoir (SCR) approach. The method is originally 
developed for a classical harmonic chain consisting of N atoms 
[32–34]. Each atom is coupled to an independent reservoir (see 
figure 4), which acts like a Büttiker probe [35, 36]. Temperatures 
at the end points are set to T1 and TN, which correspond to 
the temperatures of the left and right reservoirs, T1 = TL and 
TN = TR. The rest of the temperatures from T2 to TN−1 are to be 
determined in a self-consistent manner by setting the net heat cur
rent equal to zero for each reservoir at steady state. The classical 
model is able to reproduce diffusion dynamics and Fourier’s law 
[34]. The model is also extended to the quantum domain [37, 
38], which has been solved at the linear response regime [39–
41], approximately in an analytical way [42, 43], and numer
ically exactly [44, 45]. It was shown by Bandyopadhyay et al 
that, at high temperatures quantum mechanical self-consistent 
model reproduces the classical results, whereas at low temper
atures classical simulations overestimate the currents [45]. At 
large bias and for low temperatures, the quantum model can 
also reveal thermal rectification for asymmetric chains, which is 
absent in the classical model [45].

The SCR approach is also applied to realistic systems 
beyond toy model calculations. Sääskilahti et al computed the 
temperature profile in a grpahene nano-constriction using the 
SCR approach, where the temperatures of the left and right 
reservoirs are 300 K and 280 K [46]. The computed temper
ature profiles are found to be in agreement when quantum 
exact and classical approximate approaches are used, which is 
interpreted as transport being mainly due to the low frequency 
acoustic modes.

2.7.  Decimation algorithms for efficient computation of Green 
functions

Decimation is a numerically exact method for reducing the 
sizes of block tridiagonal matrices. Consider a tripartite 
dynamical dynamical matrix of the form

Figure 4.  Self-consistent reservoir approach. Each atom is coupled to a self-consistent reservoir. Temperatures of the end reservoirs are 
kept fixed while the others’ are determined self-consistently with the demand that no net current flows from them.
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Φ =



Φ1,1 Φ1,2 0
Φ1,2 Φ2,2 Φ2,3

0 Φ3,2 Φ3,3


 .� (55)

The retarded GF is defined as

G(ω) = ((ω + iδ)2 − Φ)−1� (56)

=




G1,1 G1,2 G1,3

G2,1 G2,2 G2,3

G3,1 G3,2 G3,3


 .� (57)

Let us obtain an effective dynamical matrix by decimating the 
middle layer. To do, we first need to define the free GF for the 
middle layer

G(0)
2,2 (ω) = ((ω + iδ)2 − Φ2,2)

−1� (58)

from which the self energy terms arise as

Σ =

(
Σ1,1 Σ1,3

Σ3,1 Σ3,3

)
=

(
Φ1,2

Φ3,2

)
G(0)

2,2

(
Φ2,1 Φ2,3

)
,� (59)

and the 2×2 effective dynamical matrix is obtained as

Φeff =

(
Φ1,1 +Σ1,1 Σ1,3

Σ3,1 Φ3,3 +Σ3,3

)
,� (60)

where Φeff  is a function of ω .

2.7.1.  Recursive algorithm.  It is straightforward to generalize 
the above scheme for an extended tridiagonal matrix,

Φ =




Φ1,1 Φ1,2 0 · · · 0 0
Φ2,1 Φ2,2 Φ2,3 · · · 0 0

0 Φ3,2 Φ3,3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ΦN−1,N−1 ΦN−1,N

0 0 0 · · · ΦN,N−1 ΦN,N




� (61)

where i, j of the submatirces Φij  are the layer indices and the 
layer thickness is to be chosen such that Φij = 0 if |i−j|>1. 
One can start decimating from the second layer, where the 
effective dynamical matrix parts and the corresponding G(n) 
of the (n+1)st recursion step are

G(n) = ((ω + iδ)2 − Φ
(n)
n+2,n+2)

−1,� (62)

Φ
(n+1)
1,1 = Φ

(n)
1,1 +Φ

(n)
1,n+2G(n)Φ

(n)
n+2,1,� (63)

Φ
(n+1)
1,n+2 = Φ

(n)
1,n+2G(n)Φ

(0)
n+1,n+2,� (64)

Φ
(n+1)
n+2,1 = Φ

(0)
n+2,n+1G(n)Φ

(n)
n+2,1,� (65)

Φ
(n+1)
n+2,n+2 = Φ

(0)
n+2,n+2 +Φ

(0)
n+2,n+1G(n)Φ

(0)
n+1,n+2,� (66)

with n = 0, . . . , N − 3. Repeating the decimation N−2 times, 
one arrives at the 2×2 effective GF for the central region con-
sisting of G1,1, G1,N, GN,1 and GN,N.

2.7.2.  Renormalization-decimation algorithm.  In GF computa-
tions, the reservoir regions are considered to be perfect, in the 

sense that they are free of scatterings. Therefore the reservoirs 
are made up of identical layers. That is, the dynamical matrix 
consists of identical blocks. For such periodic systems, one has

Φ =




. . . . . . . . .
0 Φ0,−1 Φ0,0 Φ0,1 0

0 Φ1,0 Φ1,1 Φ1,2 0
. . . . . . . . .




,� (67)

where Φi,i = Φ0,0, Φi,i+1 = Φ0,1, and Φi+1,i = Φ0,−1. Efficient 
algorithms have been devised to compute the bulk and surface 
Green functions of such systems [47, 48]. Decimating each 
second layer, the effective bulk dynamical matrix becomes

Φ(1) =




. . . . . . . . .

0 Φ
(1)
0,−2 Φ

(1)
0,0 Φ

(1)
0,2 0

0 Φ
(1)
2,0 Φ

(1)
2,2 Φ

(1)
2,4 0

. . . . . . . . .




,� (68)

with

Φ
(1)
0,0 = Φ0,0 +Φ0,−1G(0)Φ−1,0 +Φ0,1G(0)Φ1,0,� (69)

Φ
(1)
0,2 = Φ0,1G(0)Φ1,2,� (70)

Φ
(1)
2,0 = Φ2,1G(0)Φ1,0.� (71)

Repeating this procedure by using G(n) = ((ω + iδ)2 − Φ
(n)
0,0 )

−1, 

the submatrices are computed as

Φ
(n+1)
0,0 = Φ

(n)
0,0 +Φ

(n)
2n,0G(n)Φ

(n)
0,2n +Φ

(n)
0,2n G(n)Φ

(n)
2n,0,� (72)

Φ
(n+1)
0,2n+1 = Φ

(n)
0,2n G(n)Φ

(n)
0,2n ,� (73)

Φ
(n+1)
0,−2n+1 = Φ

(n)
2n,0G(n)Φ

(n)
2n,0,� (74)

which converge very fast compared to the standard decima-
tion method and incorporation of a thousands of layers is pos-
sible within a few steps.

2.8.  Surface Green functions (SGF)

For semi-infinite reservoirs, dynamical matrices have the fol-
lowing form.

ΦLL =




. . . . . . . . . . . .
...

. . . 0 ΦLL
10 ΦLL

00 ΦLL
01 0

. . . 0 0 ΦLL
10 ΦLL

00 ΦLL
01

. . . 0 0 0 ΦLL
10 ΦLL

00


 ,� (75)

ΦRR =




ΦRR
00 ΦRR

01 0 0 0 . . .

ΦRR
10 ΦRR

00 ΦRR
01 0 0 . . .

0 ΦRR
10 ΦRR

00 ΦRR
01 0 . . .

...
. . . . . . . . . . . .


 ,� (76)

and the surface terms are obtained as
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Φ
LL,(n+1)
0,0 = Φ

LL,(n)
0,0 +Φ

LL,(n)
2n,0 GLL,(n)Φ

LL,(n)
0,2n ,� (77)

Φ
RR,(n+1)
0,0 = Φ

RR,(n)
0,0 +Φ

RR,(n)
0,2n GRR,(n)Φ

RR,(n)
2n,0 .� (78)

The convergence of the iteration is checked by comparing the 
difference between dynamical matrices at two consecutive 
steps.

2.8.1.  Generic reservoir as a simple model for SGFs.  Atom-
istic quantum transport calculations are quite expensive 
computationally. One of the most time consuming parts is 
the computation of SGFs. A widely used approximation in 
calculating electronic transport across nano-junctions is the 
wide band limit. The wide band limit produces fairly good 
results, especially when the reservoir density of states (DOS) 
is approximately constant around the Fermi energy. (see e.g. 
[49]) Recalling that the DOS is proportional to the imaginary 
part of the Green function, and that the real part is its Hilbert 
transform, the wide band limit introduces ‘ structureless’ res-
ervoirs. Namely, during its injection into the central region, 
the information carried by an electron regarding the electronic 
structure of the reservoir is the Fermi velocity.

Such a wide band limit approximation is not as sensible for 
phonons as it is for electrons, because at ambient temperatures 
phonon transport involves a substantial range of the phonon 
spectrum. The phonon modes have wide range of group veloci-
ties. For acoustic modes, the modes at the zone center have the 
speed of sound while at the zone boundaries their velocities 
are zero. Still it is possible to define structureless reservoirs, 
which are physical in the sense that they sample the group 
velocities that are correctly matched with the wave vectors 
inside the Brillouin zone, and the acoustic phonons having the 
desired sound velocity. Keeping in mind that it is the acous-
tic phonons which carry most of the heat, such structureless 
reservoirs should result in fairly good agreement with more 
realistic SGF computations. Indeed, when phonon transport 
is computed across molecular junctions consisting of carbon 
nanotubes and azobenzene molecules, thermal conductance 
values have been found to be in fairly good agreement with 

those obtained from the ‘generic reservoir model’, which is 
explained below [50].

Consider a semi-infinite portion of a chain of identical 
atoms having mass m and harmonic spring constant s = mω2

0 . 
The dynamical matrix is

Φ =




. . . . . . . . .
...

. . . 2ω2
0 −ω2

0 0
. . . −ω2

0 2ω2
0 −ω2

0

. . . 0 −ω2
0 2ω2

0




.� (79)

It was shown by Müller et al [51] that the elements of the GF 
are given as

Gmn(ω) = − 1
ω2

0

eiθ(m+n) − eiθ|m−n|

2i sin θ
,� (80)

where θ = arccos(1 − ω2/2ω2
0), and {m, n} ∈ [1,∞ ) with 

m  =  n  =  1 corresponding to the on-site term for the end atom. 
Therefore the SGF is obtained as

G11(ω) = − 1
ω2

0

(
1 − η2

2
+ iη

√
1 − η2

4

)
,� (81)

with η = ω/ω0. The real and imaginary parts of the SGF are 
plotted in figure 5.

We emphasize that the dynamical matrix in equation (79) 
is not the DM of a semi-infinite system but a semi-infinite 
portion of a periodic system. The difference is in the Φ11 ele-
ment of the DM, which would be equal to ω2

0 for a semi-infi-
nite system. We take it equal to the remaining of the diagonal 
elements by implicitly assuming that a finite portion of the 
reservoir atoms is included in the central region to ensure 
that the diagonal elements of Φ are the same. If one end was 
free, i.e. if Φ11 = ω2

0, then Φeff
11 = ω2

0(η
2/2 − iη

√
1 − η2/4) 

and G11 = (ω2 − Φeff
11)

−1 and the surface density of states 

Figure 5.  Real and imaginary parts of the surface Green function as 
obtained from the generic reservoir model.

Figure 6.  Atom A is at the origin and B1 lies on the x-axis. The 
radial components (f r) are along the x-axis, while the in-plane 
transverse components (tti) and the out-of-plane transverse 
components (f to) are parallel to the y - and z-axis, respectively.

Table 1.  Fourth nearest neighbor force constant parameters for 
graphene based materials. The parameters are given in units of 104 
dyn cm−1  =  10 N m−1.

f (n)
r f (n)

ti f (n)
to

1 41.8 15.2 10.2
2 7.6 −4.35 −1.08
3 −0.15 3.39 1.0
4 −0.69 −0.19 −0.55
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ρ11 =
√

4 − η2/πω0. That is, the density of states is finite at 
ω = 0 and decreases monotonically with increasing frequency.

2.9.  A minimal force constant model for graphene based 
materials

DFT based methods yield reliable force constant matrices which 
predict phonon dispersions in quite good agreement with avail-
able experimental data. On the other hand, for complex systems 
of considerable sizes, one requires computationally feasible and 
reasonably accurate methods for determining the force constant 
matrices. The force constant model originally proposed by Saito 
et al for graphene based structures suits this purpose very well 
[52]. The model was implemented to various cases including 
carbon nanotubes, graphene nanoribbons, defected graphene 
structures, etc [26, 53–64]. Also, a reoptimized version of the 
force constant parametrization is available [65].

The method relies on parametrization of interatomic force 
constants up to fourth nearest neighbors (4NNFC approach). 
For each neighboring distance (n = 1, . . . , 4) three force con-

stant parameters f (n)
r , f (n)

ti  and f (n)
to  are defined, which stand 

for the radial (bond stretching), in-plane and out-of-plane tan-
gential (bond bending) directions. The diagonal form of the 
force constant matrix, when both atoms lie on the x-axis (see 
figure 6), reads

F(A,B1) =




f (n)
r 0 0

0 f (n)
ti 0

0 0 f (n)
to


 .� (82)

When the direction from a given atom to its neighbor is 
rotated around the z-axis by θp to account for atom Bp, the 
force constant tensor is rotated as

F(A,Bp) = R−1
z (θp) · F(A,B1) · Rz(θp),� (83)

where

Rz(θp) =




cos θp sin θp 0
− sin θp cos θp 0

0 0 1


 .� (84)

For carbon nanotubes, that is when the atoms do not lie on the 
xy-plane, the tensor should be rotated around the axis of the 
tube (y -axis). For A type atoms, the rotation angle ϕi is the 
polar angle between A1 and Ai around the circumference and

F(Ai,Bp) = R−1
y (ϕi) · F(A1,Bp−i+1) · Ry(ϕi).� (85)

If ( p − i + 1) � 0 then it is replaced with (na/2  +  p   −  i  +  1), 
na being the number of atoms per unit cell. For B type atoms, 
the tensors shuld be rotated around z by π,

F(Bi,Ap) = R−1
y (ϕi) · R−1

z (π) · F(A1,Bp−i+1) · Rz(π) · Ry(ϕi).
� (86)

The parameters, as optimized by Zimmermann et  al are 
given in table  1. The phonon dispersions for graphene with 
these parameters is compared against DFT results in figure 7, 
which display excellent agreement for the low energy acoustic 
modes and a fairly good agreement for the optical modes. The 
quadratic out-of-plane acoustic ZA mode is of particular impor-
tance, and its dispersion is reproduced perfectly with 4NNFC.

2.10.Applications of the Green function method

The advantage of GF methods over others is that, having 
obtained the GF for the region of interest, one has access to 
all physical quantities decomposed to their frequency comp
onents. This is of particular importance for phonons, where 
for a given device length different transport regimes take place 
at different parts of the spectrum, all of which contribute to 
heat current. GF method has been used for a range of systems, 
some of which are atomic chains [22], molecular junctions 
[66–69] carbon nanotubes and graphene based materials [63, 
70–78], silicon nanowires [79–81], novel 2D crystals [82, 83]. 
Below we review some of these works, where the advanta-
geous sides of the GF methodology has been useful. In sec-
tion 2.10.1, a complementation of MD and GF methods for 
defected carbon nanotubes is reviewed. Section  2.10.2 con-
siders a controlling scheme which incoporates antiresonances 
in the transmission spectrum and section 2.10.3 examplifies 
the use of GFs to analyse the combined effects in hybrid 
nano-structuring, section  2.10.4 investigates the effects of 
molecular functionalization of grain boundaries on phonon 
scattering. Sections 2.10.5 and 2.10.6 are reserved for anis-
tropic transport and strian engineering of phonons.

2.10.1. Defected carbon nanotubes.  Carbon nanotubes (CNTs)  
have been the subject of keen interest since the earliest days 
of nanotechnology research. Not only because it is an ideal 
example for a quasi 1D material, but also due to its unprec-
edented physical properties like extreme mechanical strength 
[84], ballistic electron transmission over long distances [85], 
and record thermal conductivity values [86]. Despite the fact 
that thermal conductivities of CNTs are loosely dependent on 
their diameter and chirality, a large range of values have been 
reported, displaying a large variance [87–92]. The effects of 
different defect types on armchair and zigzag CNTs of various 
lengths were studied using nonequilibrium molecular dynam-
ics and it was found that small changes in the defect concentra-
tion give rise to large changes in thermal conductivities, when 

Figure 7.  Phonon dispersion of 2D graphene as obtained from 
density functional theory (dotted red) and 4NNFC parametrization 
(solid blue). The figure has been adapted from [65], Copyright 2008 
by the American Physical Society.
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the defect concentration is low (figure 8). On the other hand, 
at higher concentrations, thermal conductivity becomes insen-
sitive to changes in concentration [71]. Another interesting 
issue regards divergence of conductivity with length. Thermal 
conductivity values as obtained from NEMD simulations keep 
increasing with length and no convergent value was observed 
even for systems as long as 1 µm. (see figure 9) This rather odd 
property was attributed to very long acoustic mean-free-paths.

Both properties, namely the peculiar dependence on defect 
concentration and seemingly divergent behavior of conductiv-
ity with length were possible to explain through an analysis 
using the GF formalism within the 4NNFC approach. Relying 
on the fact that the thermal conductivities weakly depend on 
defect type, randomly distributed monovacancy defects were 
used. Defect concentrations (d = Ndefect/Natom×100) ranging 
between 0.1% to 1.5% were considered for CNTs as long as 

4 µm. Transmission spectrum for d = 1% is shown as a func-
tion of frequency for various lengths in figure 10 (left). The 
zeroth of the length axis stands for ballistic transport, where 
the transmission changes take place stepwise. Transmission 
decays rapidly with length for ω>600 cm−1. This is also evi-
dent from the mean-free-paths as shown in the right panel. 
At lower frequencies (ω < 300 cm−1) transmission is con-
siderably larger at longer distances. For low energy acoustic 
modes (ω < 150 cm−1) transmission stays almost intact at 4 
µm of length. This is in agreement with the finding that �elastic 
is much longer than a µm for the first transmission plateau of 
acoustic phonons.

The transmission and �elastic data in figure 10 sheds light 
on the NEMD results. Conductivity drops rapidly with defect 
concentration because �elastic is reduced by almost an order of 
magnitude with concentration. More importantly, the drop is 

Figure 8.  Thermal conductivity for (a) zigzag (10,0) and (b) armchair (10,10) CNTs for various defect types and concentrations. 
NEMD simulations were performed for different lengths, 200, 400 and 600 nm. The inset in (a) shows thermal conductivity for different 
distributions of defects, and the inset in (b) is a comparison of conductivity values for armchair and zigzag CNTs at 200, 300 and 400 K. 
The figure is reproduced from [71]. Copyright 2011 American Chemical Society.

Figure 9.  Lattice thermal conductivities of defect free zigzag (10,0) and armchair (10,10) nanotubes at different temperatures as functions 
of length for T  =  200, 300 and 400 K as obtained from NEMD simulations. The figure is reproduced from [71]. Copyright 2011 American 
Chemical Society.
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more dramatic at lower concentrations. (see the right panel in 
figure 10) This is in agreement with the NEMD results in fig-
ure 8. The ballistic transmission values of low energy modes 
over long distances verifies the results in figure 9 that larger 
conductivity values should be expected for longer tubes.

The discrepancy in the experimental data for the ther-
mal conductivity of CNTs could stem from the fact that the 
deviations are large at low defect concentrations. For a fixed 
value of variance in defect concentration, if the mean is 
shifted from 0.05 to 0.5 deviation in conductivity is lowered 
from 92 W m−1 K−1 to 4 W m−1 K−1. Therefore, increased 
d is expected to enable a standardized value for the con-
ductivity, which is still higher than 100 W m−1 K−1. The 
GF calculations for CNTs with vacancies have shown that 
the low frequency acoustic modes have mean-free-paths 

much longer than sizes which can fit to any MD simulation. 
The phonon–phonon scatterings do not affect this behavior 
because of ω−2  dependence of the anharmonic mean-free-
path [93].

2.10.2.Graphene with molecular antiresonances.  The large 
surface to volume ratio of 2D materials enable very effective 
engineering schemes for physical properties by surface func-
tinalizations [94–96]. One possible route is to adsorbe mol-
ecules covalently. Each adsorbed molecule acts as a scatterer 
for phonons by creating tranmission antiresonances [97, 98], 
therefore is a source of thermal resistance. A fundamental dif-
ference of phonon transport from electron transport is that, it 
takes place at the entire spectrum unlike electronic transport, 
which involves a small energy window around the Fermi level. 
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Figure 10.  Phonon transmission spectrum for CNT(10,0) with randomly distributed single vacancies (d = 1%) is given in the left panel as 
functions of length and frequency. Phonons display a contrasting behavior at high and low frequency regions. When the CNT is longer than 
1 µm, high frequency phonons are suppressed almost completely. However, low frequency phonons remain quasi-ballistic for several µm. 
In the right panel, elastic mean free path, �elastic, is plotted as a function of frequency for different defect concentrations, d. �elastic scales as 
ω−2, and includes details of phonon density of states. Approximately three orders of magnitude difference between the �elastic of high and 
low frequency modes is observed. Van Hove singularities in the DOS mark the frequencies at which the scattering rates are maximized and 
sharp dips in the �elastic are obtained. The figure is reproduced from [71]. Copyright 2011 American Chemical Society.

Figure 11.  Width normalized transmission spectra for pristine and functionalized graphene (a). Details of DOS and transmission are shown 
in the inset. The figure is reproduced from [78], Copyright 2018, with permission from Elsevier.
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This gives rise to a striking difference in resistance summation 
rule, as it was shown in [78].

First, phonon transmission spectra of graphene with sin-
gle molecular scatterers of different species were computed, 
where the force constants were obtained using the density 
functional tight binding (DFTB) approach [99]. CH3, C2H, 
C3H3, C4H, C5H3, benzene, biphenyl and para-terphenyl were 
used as adsorbates. It was shown that antiresonances in the 
transmission occur, which are due to vibrational modes that 
are localized on the molecules. These localized modes are also 
observed in the DOS as isolated peaks (see figure 11(a)-inset.) 
Besides the differences in their detailed structure, the phonon 
transmission spectra follow the same trend in the whole spec-
trum, independent of the molecular species (figure 11(a)). 
Consequently, thermal conductance with a single adsorbant 
is also similar for all species (figure 11(b)). Transmission due 
to multiple scatterers was calculated at the cascade scattering 
approximation [100, 101] using

1
ζ
=

1
ζo

+
∑

i

ni

(
1
ζi

− 1
ζo

)
,

�
(87)

where ζo is the transmission of the pristine system, ζi is trans-
mission due to adsorbant species i, and ni is the number of 
those molecules. Keeping the total number of molecules con-
stant and equal to 100, the change in ni is made in multiples 
of 10. While changing the number of species Nsp from 1 to 
8, transmission and conductance values were computed for 
every possible combination of ni. It was found that the aver-
age conductance values decrease as the number of species is 
increased at all temperatures (see figure 12). This result proves 
that thermal resistances are not additive, in general.

It was further concluded that it is possible to obtain desired 
thermal transport properties by using appropriate combina-
tions of molecular species. The key ingredient of this scheme 

is to obtain antiresonances in the transmission spectrum. 
Having distinct antiresonaces suppresses conduction more 
effectively. Antiresonances at lower frequencies are more 
effective to suppress conductivity, whereas strong bonding 
results in wider antiresonances.

2.10.3.A hybrid nano-structuring scheme using geometri-
cal structuring and isotopical disorder.  Thermoelectric 
efficiency is a challenging topic because it requires diverse 
physical properties. Specifically, one needs not only a good 
electrical conductance and high Seebeck coefficient, but also a 
low phonon thermal conduction. Meeting those requirements 
in a single system could be achieved by using hybrid nano-
structuring strategies. One of the proposals is using geomet-
rical structuring and random distribution of clustered heavy 
isotopes, which suppress thermal conduction and increase 
thermoelectric figure of merit when combined [74].

Two types of graphene nanoribbons (GNRs) were consid-
ered, one having a straight geometry (s-GNR), whereas the 
other is chevron-type (c-GNR), both of which were synthe-
sized via bottom-up methods (figure 13) [102]. Using the 
GF method with the DFTB approach, it was found that the 
pristine conductance values of s-GNR and c-CNR are quite 
different (5.0 and 2.3 nW K−1 nm−2 at 300 K, respectively), 
which is only due to difference in geometrical structure. 
Computing phonon transport using GF technique for ensem-
bles of isotopically disordered structures, the authors reported 
that conductance of s-GNR at room temperature was reduced 
from 0.566 nW K−1 nm−2 to 0.460 nW K−1 nm−2 when the 
isotope density was the same (50%) but the distribution of 
isotopes was changed from atomic to precursor (clustered). 
The reduction is even more dramatic for c-GNR, it drops from 
0.131 nW K−1 nm−2 to 0.060 nW K−1 nm−2.

The physical mechanism of the effect is explained as fol-
lows. The distribution type effects the mean-free-paths of low 

Figure 12.  Width normaized thermal conductance values for ensembles containing 100 adsorbants distributed over different numbers of 
species Nsp. The figure is reproduced from [78], Copyright 2018, with permission from Elsevier.
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and high frequency phonons differently. The precursor distri-
bution scatters low-frequency phonons more effectively and 
the high-frequency phonons less effectively than the atomic 
distribution, a manifestation of Rayleigh scattering. The 

chevron geometry, on the other hand, divides the phonon dis-
persions into mini-bands with many singularities in the DOS. 
According to Fermi golden rule, scattering is proportional to 
the DOS. That is, the high frequency part of the spectrum is 
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suppressed due to flattened phonon bands. When combined, 
chevron geometry with precursor distribution of isotopes has 
an one order of magnitude less coductance than its straight 
counterpart with atomic distribution (see figure 14).

2.10.4.Functionalized graphene grain boundaries.  Tailor-
ing the properties of a material primarily requires an under-
standing of how the material can be modified in a controlled 
manner. One possible strategy to influence the properties of 
graphene grain boundaries (GBs) can be their functionaliza-
tion with molecules or ad-atoms [104, 105], which can act 
as electronically active dopants controlling their electronic 
and phonon transport properties and, hence, its thermoelectric 
behavior. Using GF techniques combined with DFTB theory 
[106], Medrano-Sandonas et al [103] explored the influence 
of ad-atoms (Hydrogen and Oxygen) and chemisorbed mole-
cules (Hydroxyl-OH, Methyl-CH3, and nitrophenyl-NO2C6H4 
(NPD)) on the thermal transport properties of two possible 
graphene GBs, symmetric (model I) and asymmetric (model 
II). Model I consists of two graphene sheets with the same 
orientation (8◦) but in opposite directions, clockwise and 
counterclockwise, whereas model II has been built with a 

graphene sheet oriented in the armchair direction and another 
in the zigzag (10◦ in the clockwise) direction (see figure 15). 
Both GBs are composed by pentagons and heptagons, and 
model II also presents a nonagon [107, 108].

As shown in figure 15, the phonon thermal conductance, 
κph, for both graphene GBs is lower than the corresponding 
one to pristine graphene for the whole range of temperatures 
explored in this study (up to 800 K) because of local structural 
defects which induce additional phonon scattering. Moreover, 
when comparing κph for the two GBs, we see that model II 
has the smallest phonon thermal conductance. This is related 
to the more disordered structure of the GB region in model 
II. It has also been found that H atoms prefer to be located 
on top of carbon sites (C–H bond length is 1.14 Å), while O 
atoms are attached to bridge (B) sites (the C–O bond length is 
1.49 ̊A) for both GBs, in good agreement with results reported 
by Mu et  al [107]. The phonon transmission of these grain 
boundaries is reduced over the whole spectrum of frequen-
cies by the inclusion of ad-atoms (not shown). H and O ad-
atoms strongly affect out-of-plane modes which correspond to 
ω < 750 cm−1. The analysis of the projected vibrational den-
sity of states reveals that the lighter H atoms have a stronger 

(a) (b)

Figure 15.  Temperature dependence of the phonon thermal conductance for graphene grain boundary (a) model I and (b) model II upon 
functionalization with ad-atoms (O and H atoms) and single molecules (OH, CH3, and NPD). The results are divided respect the values 
corresponding to pristine graphene. The data has been taken from [103].

Figure 16.  (a) Atomistic view of the 2D puckered structures. We highlighted the zigzag (ZZ) and armchair (AC) transport direction. (b) 
PAZ = κph−ZZ/κph−AC values as a function of the temperature for phosphorene, arsenene, and SnS monolayer. The data has been taken 
from [111].
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influence at high frequencies (ω ∈ [1000–1500] cm−1) and O 
atoms at lower frequencies (ω < cm−1). The major contrib
ution to the phonon transmission comes from a spectral region 
between 250 cm−1 and 750 cm−1. Since this is also the range 
where oxygen functionalization shows up in phonon trans-
port, we see that attaching oxygen atoms has a stronger influ-
ence on the thermal conductance of both GBs (see figure 15).

Furthermore, OH, CH3, and NPD molecules are covalently 
bonded to carbon atoms on the grain boundaries on T sites. 
For both GB models, the largest influence of the functionali-
zation is seen in the low frequency domain (ω � 400 cm−1) 
as well as at higher frequencies ω > 1100 cm−1 (not shown). 
Besides of this reduction on the phonon transmission, ther-
mal conductance of GB model II turns out to be less sensi-
tive to changes in the type of molecule for T  >  200 K (see 
figure 15(b)). The variations at low temperatures come from 
the strong suppression of out-of-planes modes produced by 
the functionalization group. For GB model I, CH3 and NPD 
molecules affect in a very similar magnitude its phonon trans-
mission which is reflected in the thermal conductance values 
(see figure  15(a)). Whereas OH groups show a higher dec-
rement of the thermal conductance due to the fact that high 
frequency in-plane modes were suppressed after bonding. 
Deviations from the conductance of non-functionalized GB 
clearly increase with temperature as molecular higher fre-
quency modes become thermally activated.

2.10.5.Thermal anisotropy in planar puckered struc-
tures.  Motivated by the intrinsic anisotropic physical prop-
erties found in the successfully synthesized phosphorene 
monolayers [109, 110], Medrano Sandonas et al. analyzed 
how the structural anisotropy affects phonon transport prop-
erties of homo-and heteroatomic 2D materials with puckered 
structures: arsenene and SnS monolayers (see figure 16(a)) 
and how do they compare with those in phosphorene [111]. 
Based on the DFTB phonon dispersion analysis (not shown), 

all studied systems were mechanically stable and did not 
show imaginary modes. Acoustic branches display the typi-
cal dispersion of 2D materials: the longitudinal (LA) and 
transverse acoustic branches have linear dispersion as the 
wave vector approaches the Γ point, while out-of-plane ZA 
branches exhibit quadratic dispersion due to the rapid decay 
of transversal forces. It should be noted that phonon branches 
for homo-atomic puckered materials are almost identi-
cal with the exception of their maximum frequency value, 
which is a consequence of the mass difference between As 
(∼75 uma) and P (∼31 uma). It has been also found that 
the LA branch in phosphorene shows a group velocity of 
8.35 km s−1 and 4.74 km s−1 along the Γ-X (ZZ) and Γ-Y 
(AC) directions, respectively, which are very close to previ-
ous DFT results [110, 112– 113]. The values for arsenene, 
ZZ-5.01 km s−1 and AC-2.71 km s−1, are also in agreement 
with those reported by Zeraati et  al [114] SnS monolayer 
gives group velocities of ZZ-6.48 km s−1 and AC-2.14 km 
s−1. GF based transport calculations were carried out using 
periodic boundary conditions in the perpendicular direc-
tion to transport and with the same number of unit cells. 
The reservoirs consist of the same material as the scattering 
region. With this, intrinsic transport features of the different 
systems can be revealed. As it is expected from the phonon 
dispersion analysis, phosphorene and arsenene have rela-
tively similar phonon transmission functions (not shown). 
The only differences are the phonon bandgaps (∼67 cm−1 
and  ∼45 cm−1, respectively) and the maximum frequency 
mode. Likewise, phonon transmission in the ZZ direction 
is larger than in the AC direction for almost the whole fre-
quency range. In particular, SnS monolayer turns out to dis-
play the strongest thermal anisotropy. As a consequence of 
this, the preferred direction for phonon thermal conductance 
of these puckered 2D materials was found to be along the ZZ 
direction (see figure 16(b)),  [110, 113–117]. Moreover, at 
low temperatures the anisotropic effect on κph (measured by 

Figure 17.  (a) Schematic representation of the partition scheme for transport calculation using Green’s function technique. The transport 
setups under consideration are also shown. (b) Variation of the thermal conductance as a function of the applied strain for hexagonal boron-
nitride (left panel), phosphorene (center panel), and MoS2 monolayer (right panel). For comparison, the results for the standard uniaxial 
strain (dashed lines) are also shown. Reproduced from [119] with permission of the PCCP Owner Societies.
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PAZ = κph−ZZ/κph−AC) rapidly enhances and, after T ∼ 200 
K, it keeps the same magnitude since the whole phonon spec-
trum has been already covered by the frequency integration. 
As a result of strong anisotropy in its phonon transmission 
function and group velocities, SnS monolayer displays the 
highest thermal anisotropy at 300 K, PAZ ∼ 2.5, followed 
by phosphorene (PAZ ∼ 1.6), which is slightly more ther-
mal anisotropic than arsenene (PAZ ∼ 1.35). The PAZ value 
for phosphorene is slightly different from that obtained by 
employing DFT calculations [113, 118], while for arsenene 
there is more discrepancy from that reported by Zeraati et al 
[114], which is mainly due to the methodology used. In the 
latter work self-consistent calculations were used to solve 
Boltzmann’s transport equation.

2.10.6.Strain engineered 2D materials.  Novel two-dimen-
sional (2D) materials show unusual physical properties, which 
combined with strain engineering open up the possibility of 
new potential device applications in nanoelectronics. In par
ticular, transport properties have been found to be very sen-
sitive to applied strains. Thus, in [119] the GF method was 
applied to address the influence of strain engineering of the 
transport setup on the electron and phonon transport properties 
of 2D materials, focusing on hexagonal boron-nitride (hBN), 
phosphorene, and MoS2 monolayers. Based on the partition-
ing scheme shown in figure  17(a), two possible theoretical 
setups were considered, which may mimic different exper
imental ones: (I) the device region is uniaxially strained (along 
ZZ direction) while the contact regions are not and (II) both 
the device and contact regions have the same strain level (i.e. 
homogeneously strained system). The same box length along 
the y -direction for all strain levels in x-direction (ZZ) was con-
sidered, which produces an extra force in the periodic direc-
tion after increasing the strain. The results have shown that 
among these three 2D materials, hBN monolayers display the 
highest thermal conductance κph at 300 K (∼310 W mK−1), 
followed by phosphorene (∼90 W mK−1). These values are 
close to those reported in other experimental and theoretical 
works [112, 115, 118, 120, 121]. It was also found that phos-
phorene shows the weakest bonds and hBN the strongest ones. 
Moreover, based on the strain dependence of bond lengths in 
the hBN monolayer (not shown), it is expected that with the 
exception of the B-N bond perpendicular to the transport direc-
tion, the strength of the first and second neighbor bonds will 
decrease after increasing the strain. Hence, the components of 
the dynamical matrix associated to these bonds (the strongest 
ones) become smaller and, then, κph continuously decreases 
with increased applied strain, as it can be seen in figure 17(b) 
(left panel). This reduction of κph is higher for setup I because of 
the presence of an additional interface resistance between con-
tact and device regions, which strongly blocks phonon trans-
fer at higher in-plane modes, >800 cm−1. It is worth noting 
that by considering setup II, κph at room temperature (300 K) 
shows a slight increment. Similar results were reported by Zhu 
and Ertekin [120] using non-equilibrium molecular dynamics 
and Boltzmann transport equation methods.

In the case of phosphorene and MoS2 monolayer the 
influence of the strain is qualitatively different due to the 
presence of additional transport channels related to high fre-
quency out-of-plane modes, which have their origin in the 
additional atomic layers. κph in phosphorene monotonously 
decreases (setup I) and increases (setup II) with the strain, 
see figure  17(b) (center panel). The increment in strain 
reduces the interlayer distance and, hence, the strength of the 
out-of-plane bonds increases, becoming higher than the in-
plane ones. As a result of this, the transmission probability 
increases at low frequencies (in-plane modes) and so does the 
thermal transport, as it was also observed by Ong et al [118]. 
For MoS2 monolayer, despite the relatively small change of 
first neighbor bonds (∼10−2 Å), their strength was found to 
increase considerably with the strain (not shown). This sensi-
tivity to the strain level is more pronounced for out-of-plane 
bonds which increase 8 times their initial strength at 13.8% 
of strain. Thus, the range of transmitting frequencies and the 
vibrational band gap increase and, after  ∼7.3% of strain, 
new transmission peaks emerge at the edge of the acoustic 
branch. Consequently, κph decreases for low strain levels and 
then it increases reaching values close to the initial ones at 
zero strain independently of the temperature (see right panel 
in figure  17(b)). In the case of unstrained contact regions, 
κph only decreases with increasing strain level because of 
the continuous suppression of high frequency in-and out-of-
plane modes. Note that the strain dependence of κph, consid-
ering setup II, for hexagonal boron-nitride and phosphorene 
is similar to that obtained by employing the standard model 
for unixial strain (see dashed lines in figure 17(b)). However, 
for MoS2 monolayer an increase of the transmission prob-
ability at low frequencies was obtained and, hence, κph only 
increases. In fact, by imposing the extra force in the periodic 
direction (y -direction), transport channels corresponding to 
low frequencies were blocked, which strongly influences the 
conduction through out-of-plane modes.

2.10.7.Substrate and curvature effects on phonon transmis-
sion across graphene.  Graphene is generally supported by 
a substrate, which affects its vibrational properties in more 
than one ways. Van der Waals interaction couples the vibra-
tional modes of the substrate to those of graphene, which 
is a source for scatterings. Also, graphene adheres well to 
the substrate and significant curvature is induced due to 
irregularities of the substrate. Sometimes steps or holes are 
introduced intentionally to control the electronic properties. 
These give rise to formation of bends, ripples, wrinkles, 
and bubbles [122–126], which not only affect the elec-
tronic properties but vibrational properties are also altered 
significantly.

These effects were investigated by using GF techniques 
and a structureless substrate model. Graphene was modeled 
within the DFTB approach, whereas the coupling to the sub-
strate was included with a Lennard-Jones potential as [75]

VLJ = 4εLJ

((σ
r

)12
−
(σ

r

)6
)

,� (88)
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where r stands for the distance between a carbon atom to the 
substrate, and σ determines the equilibrium distance between 
the layer and the substrate. The atomic positions are optimized 
using force contributions from the LJ and carbon–carbon 
interactions. For a flat substrate, the coupling affects the trans-
mission of low frequency portion of the out-of-plane phonons 
only. This is because VLJ is weak compared to the inter-atomic 
interactions, and in-plane and out-of-plane vibrational modes 
are decoupled in flat graphene. There appears a gap for out-of-
plane acousitc modes around zero energy. The size of the gap 
is proportional to εLJ

1/2 (see figure 18(a)).
Imposing a step at the substrate, graphene is bent. The local 

curvature depends on the step height hs and the interaction 

strength εLJ. Namely, the radius of curvature decreases with 
increasing hs and stronger εLJ. Smaller radius of curvature 
couples in-plane and out-of-plane modes stronger and a sig-
nificant reduction of conductance takes place (figures 18(b) 
and (c)). Transmission across kinked graphene is also shown 
in figure  18(c), where the kink is induced by adsorption of 
lines of hydrogen atoms [12, 126, 127]. For hs  =  10 Å , and 
εLJ = 40 meV, κ is reduced by 44%, 11%, 8%, and 7% at 50 
K, 300 K, 500 K, and 1000 K, respectively. The smaller hs, the 
less is the reduction of conductance. Increasing the interac-
tion strength, increases the reduction. Reductions of 5%, 11%, 
and 47% are reported for room temperature conductivity for 
εLJ = 20 meV, 40 meV, and 160 meV, respectively.

Figure 18.  Transmission per cross section area for graphene over a substrate step. Transmission with varying the step height, hs, for fixed 
coupling strength εLJ = 40 meV (b), and for various coupling strength with a fixed step height hs  =  10 Å . The figure is reprinted from [75], 
with the permission of AIP Publishing.
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One observes that, for a given εLJ conduction reduction 
is more pronounced at lower temperatures for all hs values 
(figure 19(a)). This indicates that low frequency phonons are 
scattered more effectively at substrate steps. Reductions as 
large as 45% are possible when εLJ is 160 meV (figure 19(b)). 
Assuming that resistances due to distant steps are additive, it 
should be possible to reduce thermal conductance by at least 
an order of magnitude using stepped substrates.

3.  Generalized quasi-classical Langevin (QCL) 
approach

Next we briefly discuss the quasi-classical generalized 
Langevin equation (GLE) which can connect the non-equilib-
rium Green function and the MD approaches to thermal trans-
port and give a rather intuitive view on the NEGF quantities. 
The quasi-classical GLE provide an alternative path to inter-
actions in the phonon system which is not limited to anhar-
monicity/phonon–phonon scattering, but can also be extended 
to include for example electron–phonon interaction effects 
such as Joule heating.

Molecular dynamics based on either a force-field model 
or DFT calculations can provide an ‘unbiased’ approach to 
anharmonic couplings in thermal transport in the sense that 
one does not have to pick the most important anharmonic 
terms ‘by hand’. With standard non-equilibrium molecular 
dynamics (NEMD) the atomic motion is described using the 
classical Newtons equations while the two (finite) ‘lead’ res-
ervoirs are treated as heat-baths in contact with a thermostat 
[128, 129]. This approach has for example been used to exam-
ine non-linear thermal effects such as thermal rectification in 
nano-junctions [130, 131]. For similar and many other impor-
tant problems in nanodevices, one may assume the anharmo-
nicity is restricted to a central ‘device’ region defined by a 
general non-linear force, Fc, while the leads are harmonic each 
with a linear coupling to the central region. For a semi-infinite 
harmonic crystal one may obtain the Green function for the 
classical equation of motion (EOM) and include the effect on 
the equation of motion restricted to the central region, much 

in the same spirit as the one-particle quantum transport with 
NEGF. The retarded Green function for the harmonic crystal 
(α ∈ L, R) is the same for classical and quantum harmonic 
oscillators,

gα(ω) = [(ω + iδ)2 − Φαα]−1.� (89)

In both the classical case one may eliminate the harmonic 
degrees of freedom of the lead reservoirs, uα (used for both 
left and right), following Adelman and Doll and others 
[12, 37, 132]. This is accomplished by solving their equa-
tions  of motion using the retarded Green function (matrix), 
gα, together with the initial conditions, uα(0) and u̇α(0), and 
‘driving force’ given by the motion of the central region, uC, 
coupled into the lead by the spring, ΦαC , and propagated,

uα(t) = gα(t)u̇α(0) + ġα(t)uα(0) +
∫ t

0
gα(t − t′)ΦαC uC(t′)dt′.

� (90)
This may be inserted into the EOM for uC. The resulting equa-
tion is the GLE for the central coordinates uC (mass-scaled),

üC(t) = Fc(x)−
∫ t

0
Σ(t − t′)uC(t′)dt′ + ξ(t),� (91)

where we have used the retarded self-energy,

Σ(t) =
∑
α=L,R

ΦCα gα(t) ΦαC = ΣL(t) + ΣR(t),� (92)

and introduced the propagated initial conditions of the reser-
voir as a driving force, ξ, in the central region,

ξ(t) =
∑
α=L,R

ΦCα gα(t)u̇α(0) + ΦCα ġα(t)uα(0) = ξL(t) + ξR(t).

� (93)

The central point is to treat the initial conditions of the res-
ervoirs as stochastic variables determined from the thermal 
equilibrium assumption of the reservoirs with temperatures 
Tα. In this way the GLE is a stochastic differential equation. 
The stochastic forces are for the classical GLE described by 
zero-mean Gaussian noise with a correlation function based 
on Boltzmann statistics,

Figure 19.  Reduction of thermal conductance due to step height (a) and interaction strength (b) are given as the ratio of conductance of 
deformed graphene to that of flat graphene. The figure is reprinted from [75], with the permission of AIP Publishing.
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Sα(ω) =

∫
eiωt 〈ξα(t)ξα(0)〉 dt = kBTα

(
Γα(ω)

ω

)
,� (94)

where Γα = i[Σα(ω)− Σα∗(ω)]. This also establishes the 
fluctuation-dissipation theorem relating the deterministic and 
stochastic forces due to the reservoir coupling, namely the 
friction and fluctuating forces. In the limit of a fast relaxing 
reservoir (compared to the time-scale of the motion in the cen-
tral region) we get Γ(ω) ≈ ∂ωΓ(0)ω, the usual white noise 
and time-local (frequency independent) friction. However, for 
a realistic description of the reservoirs one should use ‘col-
ored noise’, that is, time-correlated noise representing the cor-
rect motion in the reservoirs. This has been used for classical 
simulations of inter-atomic interactions at surfaces and heat 
transport [46, 133, 134]. To obtain the heat flux to a reservoir 
one calculates the (time averaged) power between the central 
region and a reservoir as the work done by the force originat-
ing from central region,

Jα = Ėα = 〈u̇α · ΦαC uC〉t.� (95)

This can also be written as the work done by the forces, Fα, 
from the α reservoir on the central system so one only con-
sider variables in the central region,

Jα = −〈Fα · u̇α〉t� (96)

with,

Fα(t) = −
∫ t

0
Σα(t − t′)uC(t′)dt′ + ξα(t).� (97)

However at low temperatures compared to the phonon 
energies, which could be room temperature for e.g. carbon 

nanosystems or molecular junctions, the occupation of modes 
should be described quantum mechanically using the Bose–
Einstein distribution. Due to the identical equation of motion 
for classical and quantum harmonic variables one may derive 
the GLE in the quantum regime following the same algebra 
as for the classical variables and obtain the Landauer/Caroli 
formula (see equation (50)) for harmonic, steady-state trans-
port [37]. However, the non-commutative nature of the oper-
ators result in a non-classical noise, ξ̂, not compatible with 
molecular dynamics simulation. On the other hand, follow-
ing Wang [12, 135] one may adopt a quasi-classical [136] 
approach where the noise is treated by a symmetrized expres-
sion which allows for GLE molecular dynamics simulations 
with a colored noise including quantum fluctuations given by,

Sα(ω) =
1
2

∫
eiωt 〈ξ̂α(t)ξ̂α(0) + ξ̂α(0)ξ̂α(t)〉 dt

= �
(

nB(�ω/kBTα) +
1
2

)
Γα(ω).

� (98)

This approach yields the ballistic Landauer regime for low 
temperatures and the classical, diffusive regime at high 
temperatures. However, the treatment of the anharmonic 
force in the quantum regime is approximative, but it seems 
to require an artificially strong anharmonicity for it to break 
down which is probably not often important for realistic sys-
tems and potentials [137–139].

In practice one can use the velocity Verlet propagation 
using a noise history generated brute-force from random num-
bers in frequency space which is Fourier transformed to time 
domain [135]. A damping may be applied to limit the length of 
the correlation in time [140, 141] Alternatively the noise can 

Figure 20.  Local temperatures in an atomic carbon chain between graphene electrodes (initially at room temperature) with a heat source 
due to Joule heating by an electronic current calculated using MD simulations with the GLE and the Brenner potential [146]. ((a) and (b)) 
Calculated using the harmonic approximation, while ((c) and (d)) including anharmonicity. In (b) and (c) we show the local heating as a 
function of the applied voltage giving rise to the current evaluated in the regions shown in the inset. Reproduced from [147]. CC BY 4.0.
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be generated ‘on the fly’ [142], or the noise and friction can be 
represented using auxilary degrees of freedom [143, 144]. The 
motion at zero temperature reproduce the zero-point motion 
of the atoms in the harmonic limit.

The quasi-classical GLE can thus handle both low temper
ature quantum freeze out of phonons as well as the anharmonic 
interaction approximately beyond perturbation theory. Both of 
these effects need to be included for carbon systems where the 
Debye temperature is above 2000 K. It has been employed 
for graphene [140], nanotubes, ribbons with edge roughness 
[145], and constrictions [46]. For example for a 5-dimer wide 
graphene constriction it was found that although the local 
temperature profile agreed well for classical (equation (94)) 
and quasi-classical MD (equation (98)) around room temper
ature, the heat current was overestimated by more than 100% 
in the classical MD.

One may include the coupling to electrons in the GLE as 
friction and fluctuating forces relevant for thermoelectrics. In 
this case the additional deterministic and fluctuating forces are 
evaluated for electron reservoirs out of equilibrium e.g. in the 
presence of an electronic current. In the presence of current 
the fluctuating force contains an additional component which 
can be associated to Joule heating, while additional determin-
istic ‘electron-wind’ forces are due to momentum transfer 
[148, 149]. Using the GLE one may study the heat distribution 
and heat flow, not due to a temperature difference between 
two reservoirs, but instead generated by the local Joule heat-
ing where the electron–phonon scattering is active. This is 
illustrated in figure 20 where the GLE is used to calculate the 
local heating of a carbon atomic chain between graphene in 
the presence of an strong electrical current. The scattering 
of electrons will ‘pump’ certain high-energy phonons in the 
chain region which is lost by coupling to the phonons in the 
leads. The inclusion of anharmonicity is especially important 
as seen by comparing harmonic and anharmonic simulations 
in figures 20(a)–(d), respectively. It is seen here how the cou-
pling to low-energy phonons enable more efficient cooling.

We refer the reader to a recent review on QCL method where 
further examples on thermal transport as well as applications to 
fields other than thermal transport are addressed [16].

4.  Kubo–Greenwood method

The Kubo–Greenwood method is devised for investigat-
ing bulk transport properties of disordered materials. It is a 
real-space implementation of the Kubo formula for phonon 
propagation, by which phonon dynamics and thermal trans-
port are interconnected. Dynamical information is extracted 
from the time evolution of an initial wavepacket, where the 
time evolution operator is expanded in terms of Chebyshev 
polynomials. A substantial increase in computational effi-
ciency is achieved by employing the Lanczos technique, 
which avoids matrix inversions. The method has been origi-
nally developed for and tested on carbon based materials 
[59, 60, 62].

In the Kubo–Greenwood approach only the harmonic part 
of the Hamiltonian (see equation  (1)) is taken into account. 

Following Allen and Feldman [150], conductivity σ along 
x-direction is defined as

σ =
Ω

T
lim

ω̃,δ→0

∫ β

0
dλ

∫ ∞

0
dt ei(ω̃+iδ)t〈Jx(−i�λ)Jx(t)〉,� (99)

where Ω is system volume, ω̃  stands for the frequency of the 
applied ac temperature gradient, and Jx is the x-component of 
the flux operator,

Jx =
1

2Ω

∑
i,j

(Xi − Xj)Φijxiẋj.� (100)

Here, Xi is the equilibrium position of the atom, which the 
ith degree of freedom belongs, xi is the displacement opera-
tor, and ẋj is the velocity operator. Jx can be written in terms 
of annihilation and creation operators as Jx =

∑
m,n Jx

mna†
man, 

where

Jx
mn = − i�

4Ω

(√
ωm

ωn
+

√
ωn

ωm

)
〈m|[X,Φ]|n〉� (101)

with X being the diagonal matrix of equilibrium positions and 
|n〉 is the nth egenstate of Φ. It was also shown by Allen and 
Feldman [150] that the conductivity can be written as

σ =
πΩ

�T

∑
m,n

∂fB
∂ωm

Jx
mnJx

nmδ(ωm − ωn).� (102)

The above relation can also be expressed as

σ = − π

4Ω

∫ ∞

0
dω

�
ω

∂fB
∂T

Tr
{
[X,Φ]δ(ω −

√
Φ)[X,Φ]δ(ω −

√
Φ)

}
,

� (103)

where 
√
Φ =

∑
n ωn|n〉〈n| is used. Since the dynamical matrix 

is positive definite, it has precisely one positive-definite 
square root. We also make use of the fact that Φ|n〉 = ω2

n |n〉, 
and the matrices Φ and 

√
Φ have simultaneous eigenstates. 

Defining Vx = −i[X,
√
Φ], thermal conductance of a 1D sys-

tem is obtained as

κ =
π

L2

∫ ∞

0
dω �ω

∂fB
∂T

Tr
{

Vxδ(ω −
√
Φ)Vxδ(ω −

√
Φ)

}
.

� (104)
Recalling the definition of conductance in terms of Green 
functions (see equation  (51)), one obtains the transmission 
function as

ζ(ω) =
2π2

L2 Tr
{

Vxδ(ω −
√
Φ)Vxδ(ω −

√
Φ)

}
,� (105)

which is of the same form with the electronic transmission 
function as derived from the Kubo–Greenwood formula [151, 
152]

ζel(E) =
2π2�2

L2 Tr {Vxδ(E − Hel)Vxδ(E − Hel)} ,
� (106)
E being energy and Hel the electronic Hamiltoian.

In the diffusion regime, transmission function is expressed 
as

ζ(ω) =
2ωπ
L2 Tr

{
δ(ω2 − Φ)

}
Dmax(ω),� (107)
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where Dmax(ω) is the maximum value of time-dependent dif-
fusion coefficient D(ω, t). It is defined in terms of the mean-
square displacement as

D(ω, t) =
χ2(ω, t)

t
,� (108)

where χ2(ω, t) = 〈(X(t)− X(0))2〉ω.
Computation of D(ω, t) makes it possible to deduce the 

transport coefficients such as Dmax(ω), the mean-free-path and 
the transmission coefficient ζ(ω). Therefore computation of 
mean-square displacement lies at the heart of Kubo–Greenwood 
approach. It can be expressed as

χ2(ω, t) =
Tr

{
(X(t)− X(0))2δ(ω2 − Φ)

}
Tr {δ(ω2 − Φ)}

,� (109)

=
Tr

{
[X, U(t)]†δ(ω2 − Φ)[X, U(t)]

}
Tr {δ(ω2 − Φ)}

,� (110)

where U(t) is the time evolution operator. The numera-
tor can be computed through the average of random phase 
states as N〈ψ|[X, U(t)]†δ(ω2 − Φ)[X, U(t)]|ψ〉, N being the 
number of degrees of freedom. One should notice that the 
bra-ket is nothing but a projected DOS associated with the 
vector [X, U(t)]|ψ〉. The bra-kets are to be computed using the 
Lanczos method and the time development is calculated using 
Chebyshev expansion of U(t). These methods are explained 
below.

4.1.  Lanczos tridiagonalization and the continued fraction 
methods

Computationally efficient algorithms are required in order to 
be able to simulate large systems. The Lanczos method [153] 
is a powerful method which is originally developed and widely 
used in electronic structure calculations and it is equivalently 
useful in phonon calculations. The first step of the method is 
tridiagonalization of the dynamical matrix, or the Hamiltonian 
in the case of electrons. Starting with a seed vector |ψ1〉, a 
basis set {|ψn〉} is built recursively as

an = 〈ψn|Φ|ψn〉� (111)

|ψ′
n+1〉 = Φ|ψn〉 − an|ψn〉 − bn−1|ψn−1〉,� (112)

bn =
√

〈ψ′
n+1|ψ′

n+1〉,� (113)

|ψn+1〉 =
1
bn

|ψ′
n+1〉,� (114)

where n  >  1 and b0  =  0. The recursion coefficients an and bn 
are the diagonal and the off-diagonal elements of the dynami-
cal matrix in this basis, respectively.

Φ =




a1 b1 0 0 · · ·
b1 a2 b2 0
0 b2 a3 b3

0 0 b3 a4
...

. . .




.� (115)

One chooses the seed vector as a random phase state

|ψ1〉 =
1√
N

N∑
j=1

eiϕj |uj〉,� (116)

j  representing the degree of freedom, and ϕj is a random num-
ber within [0, 2π]. With a few number of such random phase 
states, the desired accuracy for the DOS is obtained. Using

〈ψ1|δ(ω2 − Φ)|ψ1〉 = − 1
π
lim
δ→0

Im〈ψ1|
1

(ω + iδ)2 − Φ
|ψ1〉,

� (117)
one can show that

〈ψ1|
1

(ω + iδ)2 − Φ
|ψ1〉 =

1

(ω + iδ)2 − a1 −
b2

1

(ω+iδ)2−a2−
b2

2

(ω+iδ)2−a3−
b2

3

. . .

.

� (118)
The continued fraction in equation  (118) is terminated after 
the coefficients an, bn converge at step N. One names the con-
tinued fraction as G1 and defines G2 with

G1 =
1

(ω + iδ)2 − a1 − b2
1G2

,� (119)

and similarly

Gn =
1

(ω + iδ)2 − an − b2
nGn+1

.� (120)

For the converged recursion coefficients aN and bN, the below 
equality should be satisfied

GN+1 =
1

(ω + iδ)2 − aN − b2
NGN+2

=
1

(ω + iδ)2 − aN − b2
NGN+1

.

� (121)
Consequently one finds

GN+1 =
(ω + iδ)2 − aN − i

√
(2bN)2 − ((ω + iδ)2 − aN)2

2b2
N

.

� (122)
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Figure 21.  Phonon DOS of 2D graphene as obtained using the 
Lanczos continued fraction method. Converge of the recursion 
coefficients are shown in the inset. Reprinted figure with permission 
from [60], Copyright 2011 by the American Physical Society.
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As an example, the recursion coefficients and the DOS of 2D 
graphene are shown in figure 21.

4.2.  Wavepacket propagation and Chebyshev expansion

In the Kubo–Greenwood approach, the quantity of central 
importance is the mean-square displacement, χ2(ω, t). Similar 
to DOS, χ2(ω, t) can also be computed using the Lanczos 
technique outlined above, provided that the time development 
is evaluated first.

For the time evolution operator to be computed efficiently, 
Chebyshev polynomials of type I are employed. Since the 
domain of Chebyshev polynomials is [−1, 1], one needs to 
shift and scale the vibrational spectrum as Φ′ = (Φ− a)/2b, a 
being the mid-frequency of the spectrum and spectral range is 
4b. Owing to the fact that dynamical matrix and Hamiltonian 
have the same spectrum, time evolution operator is defined in 
terms of Φ and can be expanded as

U(t) = ei
√
Φt =

∞∑
n=0

cn(t)Qn(Φ
′)� (123)

with

cn(t) =
2

π(1 + δn,0)

∫ 1

−1
dx′

1√
1 − x′2

e−it
√

a+2bx′ Qn(x′).

� (124)

Hence the commutator takes the form [X, U(t)]|ψ〉 =  ∑
n cn(t)[X, Qn(Φ)]|ψ〉. Chebyshev polynomials fulfill the 

recurrence relation

Qn+1(Φ
′) = 2Φ′Qn(Φ

′)− Qn−1(Φ
′),� (125)

where Q0(Φ
′) = 1 and Q1(Φ

′) = Φ′ [154]. Consequently, the 
commutator takes the following form,

[X, Qn+1(Φ
′)] = 2[X,Φ′Qn(Φ

′)]− [X, Qn−1(Φ
′)].� (126)

Denoting

|αn〉 = Qn(Φ
′)|ψ〉,� (127)

|βn〉 = [X, Qn(Φ
′)]|ψ〉,� (128)

one writes

|βn+1〉 = 2Φ′|βn〉+ 2[X,Φ′]|αn〉 − |βn−1〉,� (129)

with |β0〉 = 0 and |β1〉 = [X,Φ′]|ψ〉 by definition. For obtain-
ing |βn〉, one needs |αn〉, which satisfies

|αn+1〉 = Qn+1(Φ
′)|ψ〉,� (130)

= 2Φ′|αn〉 − |αn−1〉,� (131)

with |α0〉 = |ψ〉 and |α1〉 = Φ′|ψ〉. As a result, the computa-
tion of time evolution for a finite ∆t  is equivalent to obtaining 
the following,

U(∆t)|ψ〉 =
Npoly∑
n=0

cn(∆t)|αn〉,� (132)

[X, U(∆t)]|ψ〉 =
Npoly∑
n=0

cn(∆t)|βn〉.� (133)

The upper limit Npoly is to be chosen depending on the 
evolution step and the band width. Once U(m∆t)|ψ〉 and 
[X, U(m∆t)]|ψ〉 are obtained, one proceeds as

U((m + 1)∆t)|ψ〉 = [X, U(∆t)]U(m∆t)|ψ〉,� (134)

and

[X, U((m + 1)∆t)] |ψ〉 =[X, U(∆t)]U(m∆t) |ψ〉
+ U(∆t) [X, U(m∆t)] |ψ〉.�

(135)

That is, the time evolution is computed step by step using 
the expansion coefficient cn defined in equation  (129). 
The expansion coefficients are computed numerically on a 
Chebyshev–Gauss grid of N points

x′k = cos

(
π(k + 1

2 )

N

)
, k = 0, . . . , N − 1� (136)

using the quadrature formula

Figure 22.  Right panel: frequency-dependent MFP in CNT with isotopic disorder (10%) with the GF method, the KG method and the 
analytical formula (inset). Left panel: sketch of a disordered carbon nanotube with isotopic disorder. Reprinted figure with permission from 
[60], Copyright 2011 by the American Physical Society.
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∫ 1

−1
dx′

f (x′)√
1 − x′2

=
π

N

N−1∑
k=0

f (x′k).� (137)

4.3.  Applications of the Kubo–Greenwood method

Carbon nanostructures and gaphene-based materials have 
extremely high mechanical strength and stiffness, which gives 
usually rise to high thermal conductivities [155–157]. In view 
of thermoelectric applications, lower thermal conductivity is 
sought, while preserving electronic transport, which remains 
a very challenging quest. Here we explore several applica-
tions of the methods developed in prior sections  and show 
to which extent, it is possible to tune the phonon transport 
properties in the adiabatic approximation for low-dimensional 
materials. Although this remains a restricted quantitative view 
of the problem, since elastic phonon scattering processes also 
contribute to the overall thermal conductance, the obtained 
scaling properties of the phonon mean free path with the dis
order nature and its strength provide guidelines to optimize 
the material structure for desired thermal/thermoelectrical 
response.

In this part, we discuss the phonon mean free path fre-
quency-dependent profiles in low-dimensional materials 
such as CNTs [60, 158], graphene-based materials [159], 
and graphene-boron nitride hybrid 2D membranes (includ-
ing polycrystalline structures) [59, 160], obtained with Kubo-
type and Green function methods. It is known that isotopic 
or Anderson-type disorder can reduce thermal conductivity in 
quasi-one-dimensional structures of sp2 hybridized carbon, 
and actually tuning the thermal conductivity of disordered 
CNT with isotope disorder has been proposed to reach the 
insulating regime of thermal glass [161]. One key characteris-
tic of thermal transport is the phonon mean free path, of which 
frequency dependence brings essential information concern-
ing the impact of disorder on vibrational properties. Similarly 
to carbon nanotubes, GNRs, which look like unfolded CNTs, 
are possible to synthesize either from top-down or bottom-up 
approaches, but ribbon edge irregularities should suppress the 
thermal conductance for small width GNRs [63]. Finally 2D 
heterostructures made from mixing graphene with disordered 
(isotope impurities) GNRs [162], or graphene-boron nitride 

membranes and polycrystalline mixture [163] offer more 
freedom for trying monitoring vibrational properties. We note 
that the force constant matrices were built using the 4NNFC 
method in all examples of the KG scheme in this review.

We first consider a CNT(7,0) with 10.7% of 14C impurities, 
investigated by Savic and coworkers with the GF method [161]. 
Figure 22 (left panel) illustrates the disordered nanotube while 
figure 22 (right panel) shows the phonon wavepacket mean free 
path (MFP) versus mode frequency. Note that MFP is extracted 
from the saturation of the diffusion coefficient, D(ω, t), that 
is computed using the KG scheme (not shown here). Indeed 
such saturation of D(ω, t) to a maximum value characterizes 
diffusive transport. The results compare very well with those 
obtained with the GF approach, as well as with the analytical 

result �(ω) = (12aNucNch(ω))/(π
2f |∆M

M |2ρ2
uc(ω)ω

2) where a 
is the length of the lattice vector in the translational direction, 
Nuc is the number of atoms in each unit cell, ρuc is the density 
of states per unit cell, and f  is the percentage of isotopic impu-
rities having mass difference ∆M  [60].

We note that at the singularities of the phonon spectrum, 
the disorder induces a broadening of states which impact on 
the numerical MFP, and it remains slightly larger than the 

Figure 23.  Left panel: ball-and-stick representations of GNRs. Right panel: elastic MFP for ZGNR with Nz  =  80 and for the Na  =  138 (widths 
in order of 15 nm) with disorder density of 10%. Reprinted figure with permission from [60], Copyright 2011 by the American Physical Society.
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Figure 24.  Thermal conductance for the ZGNR (Nz  =  80, solid 
lines) and the AGNR (Na  =  138, dashed lines) with edge disorder of 
10% and various ribbon lengths. Reprinted figure with permission 
from [60], Copyright 2011 by the American Physical Society.

J. Phys.: Condens. Matter 31 (2019) 273003



Topical Review

25

one obtained with the analytical expression, but such differ-
ence remains minnor compared to the overall agreement of 
the results. As a general observation, one also remarks that 
�(ω) generally increases for lowering frequency and for a fre-
quency range between [250–2500] cm−1, its variation is about 
three orders of magnitudes. The low-energy acoustic modes 
display much longer MFP, which is out of reach from our sim-
ulations and finite size effects. Optic modes with frequency 
above 1500 cm−1 have MFP in the order of few nanometers, 
corresponding to elastic scattering times of few femtoseconds. 
It is clear that optic modes are strongly affected by isotope 
impurity scattering but also that the thermal conductance will 
be dominated by low-energy modes, weakly sensitive to iso-
topic disorder.

Interestingly, a power law behavior of phonon lifetimes 
due to 13C isotopic doping in graphene was found theor
etically, with 1/τph–imp ∼ ω3 (resp. ω2) for in-plane (out-of-
plane) acoustic modes, whereas phonon lifetimes of optical 
phonon modes were also found to be considerably smaller 
[169] (close to the Γ-point). At the Γ-point for the in-plane 
optical modes, the estimated value of the phonon lifetime 
due to 13C impurities was τph–imp � 0.83 ps for an isotopic 
atomic density of 0.5, while τph–imp � 16.7 ps for naturally 
occurring carbon [164]. Besides the electron–phonon impact 
on phonon lifetime is τph–imp � 0.6 ps so for high concen-
trations of isotope impurities, the scattering rates for the 
isotopic impurity is as large as that for the electron–phonon 
interaction.

We next contrast the case of disordered nanotubes with zig-
zag (ZGNR) and armchair (AGNR) graphene nanoribbons of 
different widths and with edge disorder. Figure 23 shows the 
comparison of �(ω) in AGNR and ZGNR of approximately 
equal widths (�17 nm) and both with similar amount of edge 
disorder. The ribbon widths are defined with the number of 
zigzag chains Nz, whereas the edge disorder is dictated by the 
density of edge defects (removed carbon atoms at the edges) 
and is chosen to be 10% of edge C-atoms (figure 23). One 

observes large differences in the MFPs between ZGNR and 
AGNR. Indeed if MFP remains well below 200 nm for fre-
quencies below 800 cm−1, substantial fluctuations of MFP are 
seen for ZGNR, with peaked values above 500 nm at much 
lower frequencies. Additionally, differently to the case of 
ZGNR, AGNR exhibit MFPs as large as several micrometers 
around 850–1100 cm−1 when MFP for ZGNR is minimum for 
such frequency range. Overall the variations of �(ω) are strik-
ingly opposite for AGNR and ZGNR, but the interpretation of 
such feature remains elusive.

At a fixed disorder strength �(ω) decays with decreas-
ing the ribbon width (not shown here). This behavior can be 
rationalized with the fact that the scattering rate decreases 
with increasing width, a behavior generic for electron trans-
port in both disordered CNTs and GNRs. One notes that, 
for low frequency modes, the MFP are several hundreds of 
nanometers, and due to large values of the transport channels 
the possibility to observe Anderson localization and exponen-
tially damped thermal conductance is out of reach, as previ-
ously discussed [161]. The thermal conductances for AGNR 
and ZGNR are shown in figure 24. The difference between the 
pristine thermal conductances of AGNRs (dashed lines) and 
ZGNRs (solid lines) stem from the anisotropy observed in the 
phonon dispersion. Actually, the phonon MFPs of AGNRs are 
smaller than those of ZGNRs for the frequencies dominating 
the thermal conductance at low temperatures (see figure 23). 
These two factors explain why the AGNR thermal conduct-
ance is smaller than that of ZGNRs for a given edge disorder 
and ribbon geometry. Although the difference is found to be 
reduced as the ribbon width increases (not shown), coherent 
phonon propagation is clearly sensitive to the ribbon edge 
shape.

Large width ZGNR are explored in figure  25. We first 
report evolution of the wave packet dynamics for different fre-
quencies for ZGNR with 10% edge disorder, through the time-
dependent diffusion coefficient (D(ω, t)) at selected phonon 
modes (inset). At short times, the linear increase in D(ω, t) 

Figure 25.  Left panel: short portion of an edge-disordered ZGNR (width 17 nm, length L  =  50 nm) with 10% edge disorder. Right panel: 
MFP for ZGNR of widths 4.26 nm, 8.52 nm, and 17 nm (the length of ZGNR is 985 nm), respectively with disorder density of 10%, and also 
for the 17 nm wide ZGNR with 15% disorder. Inset: time-dependent diffusion coefficients for three chosen frequencies. Reprinted figure 
with permission from [62], Copyright 2010 by the American Physical Society.
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indicates ballistic transport, which is followed by a satur
ation and further a decay of D(ω, t) owing to scattering and 
interference effects. The low decay observed for D(ω, t) how-
ever suggest very long localization lengths. The saturation of 
D(ω, t) to a maximum value dictates the value of the elastic 
MFP. In figure 25 (main frame), one also sees a decay of �(ω) 
with decreasing the ribbon width for a fixed edge disorder. 
This behavior is explained by the reduction of the scattering 
rate with increasing width, an effect previously derived for 
electron transport in both disordered CNTs and GNRs [159].

We note that the conductivity of edge disordered GNRs 
ican be roughly estimated using σ = κ L/A, where A denotes 
the cross section area of the ribbons (taken as the interplane 
distance of graphite layers). At room tempetaure, σ = 1006 
W m−1 K−1 and σ = 671 W m−1 K−1 with edge disorder 10% 
and 15%, respectively for L  =  2 µm.

We next investigate the phonon propagation and thermal 
conductivity in hybrid boron nitride (BN) and graphene sheets 
(with a particular geometry depicted in figure  26(inset)). 
By inserting BN islands inside a graphene membrane, one 
expects to tune the heat transfer properties with less damage 
to electron transport. We here show the possible variation that 
can be obtained for such hypothetical morphologies, whereas 
the case of hybrid polycrystalline hBN-graphene (more real-
istic for large-scale 2D material growth) will be analyzed 
afterwards.

The calculated transport MFPs are plotted in figure  26 
(bottom panels). The DOS is very low around 537 cm−1 for 
graphene, corresponding to the intersection of the dispersions 
of the ZA and ZO modes at the K point of the Brillouin zone. 
For pristine BN, these modes repel each other owing to the 
underlying broken-sublattice symmetry, which results in a 
lower DOS compared to pristine graphene [165]. Accordingly, 
the out-of-plane modes are significantly scattered at these fre-
quencies with increasing the BN density. The additional source 
of disorder under consideration is an isotopic distribution on a 
graphene host with a 50% BN concentration with domain size 
d  =  2 nm. Boron has two stable isotopes, 11B and 10B with 
natural abundances of 80.1% and 19.9%, respectively.

Figure 26 (bottom-panel right) show that, in the low fre-
quency regime, the MFPs for the pure 10B case are longer 
than those for the pure 11B case. Though the mass difference 
between 10B and 12C is larger than the difference between 11B 
and 12C, the negative mass difference is suppressed by the pos-
itive mass difference between 14N and 12C, leading to larger 
scattering by 11B than by 10B. Hence, low-frequency modes 
are strongly affected to the average mass of the BN clusters 
while at high frequencies, the deviation of atomic masses 
from the average are more effective. One also finds that the 
curves for the mixture case do not simply fall in between the 
curves of the isotopically pure cases. At low frequencies, they 

Figure 26.  Top panel: sketch of a graphene-BN heterostructures (BN clusters with 2 nm diameters are inserted inside graphene). Bottom-
left panel: mean free paths for different BN island concentrations for (a) out-of-plane and (b) in-plane modes. Bottom-right panel: same for 
MFPs for different B-isotopic compositions at a 50% density. Reprinted figure with permission from [59], Copyright 2010 by the American 
Physical Society.
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follow the 11B curve, which is more abundant, but at higher 
frequencies, this tendency is lost.

Large-scale coplanar G-hBN heterostructures were suc-
cessfully fabricated using chemical vapor deposition (CVD), 
with varying domains of sizes ranging from tens of nanom-
eters to millimeters [166, 167]. Fast CVD growth results in 
polycrystalline materials with varying grain sizes and struc-
ture morphologies, which demand to characterize how elec-
tronic and thermal properties are affected by grain boundaries, 
and if any scaling transport behavior actually takes place in 
such structures [156, 168, 169]. Non-equilibrium MD simu-
lations were carried out to compute the thermal conductivity 
for 16 grain sizes between 1–1000 nm while changing the 
concentration of hBN [160]. For small average grain size, 
the minimum value of thermal conductivity occurs near 70% 
hBN agreeing with prior KG results [59]. This is explained 
by the fact that the thermal conductance for the G-hBN inter-
face is lower than that of the hBN–hBN and G–G interfaces. 
For larger grain sizes, where the GBs no longer dominate the 
thermal transport, a monotonic scaling of κ with hBN grain 
density is found, consistent with the fact that the thermal 
conductivity of pristine hBN is lower than that of pristine 
graphene.

5.  Summary and outlook

In summary, computational methods on quantum thermal 
transport have proven to be suitable for investigating all trans-
port regimes, from ballistic to diffusion and localization. The 
reviewed methods have their own advantages, depending on 
the size and dimensionality of the system. For molecular 
junctions, the GF approach is extremely useful because the 
dominant scatterings are elastic, which are fully accounted 
for within the GF methodology. For quasi-one dimensional 
systems, the GF approaches can be implemented very effi-
ciently using the recursion decimation algorithms outlined in 
section 2.7. These algorithms are also useful for 2D systems, 
when periodic boundary conditions are applicable. With the 
use of recursion algorithms, low dimensional systems with 
more than 106 atoms can be treated numerically and exactly 
with GF methods. Elastic mean-free-paths can be obtained 
quite accurately by employing GF and KG methods. The KG 
scheme is capable of handling even larger systems, and with-
out any dimensional restrictions. It has been applied success-
fully to transport problems in disordered systems. The sources 
of disorder can be grain boundaries, point defects or even the 
glass-like structure. The main motivation to use this method is 
the fact that this KG method scales linearly, whereas most of 
the methods including GF scale with N3, N being the number 
of degrees of freedom in the system.

On the other hand, the reviewed methods cannot address 
inelastic processes on the same footing with the elastic scatter-
ing mechanisms. But since inelastic mean-free-paths are gen-
erally at the order of micrometers, GF and KG methods should 
be good approximations at the nano-scale. QCL approach, on 
the other hand, offers a powerful way to incorporate inelastic 
processes for relatively small systems. For extended systems, 

multi-phonon processes should be accounted for either by 
extending the reviewed methodology or externally, e.g. by 
applying Mathissen’s rule.
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