
Syllogistic Knowledge Bases
with Description Logic Reasoners

Ersin Çine
Department of Computer Engineering

İzmir Institute of Technology
İzmir, Turkey

ersincine@gmail.com

Abstract—Reasoning is a core topic both for natural intelli-
gence and for artificial intelligence. While syllogistic logics (SLs)
are often studied by cognitive scientists for understanding human
reasoning, description logics (DLs) are usually studied by com-
puter scientists for performing automated reasoning. Although
the studies on both of these logics are extensive, their literatures
are interestingly isolated from each other. Firstly, we formally
define a practical family of SLs with different levels of expres-
sivity, including a logic which has recently been introduced for
automated reasoning. Then, we reveal their theoretical properties
either by defining direct algorithms for deductive reasoning or by
translation rules for them into relevant DLs. These algorithms
and rules prove that (i) two of our SLs (namely PolSyl and
NegSyl) are tractable fragments of DLs, and (ii) other two SLs
(namely ComSyl and ComSyl+) are categorical fragments of DL
ALC and DL ALCO with general TBoxes, respectively. These
findings bridge the gap between (ancient) SLs and (modern) DLs.
An immediate result is that it is possible to combine powerful
features of both logics, for example, intuitional user interface
of an SL and efficient reasoning algorithms for a DL. Finally,
we propose a framework for knowledge representation in SLs
and link it to sound and complete DL reasoners for automated
deduction.

—syllogistic logic, description logic, knowledge
representation, automated deduction, automated reasoning, syl-
logistic reasoning, syllogism

I. INTRODUCTION

Reasoning is the process of drawing conclusions from facts.

Types of reasoning usually fall into two categories:

• Inductive reasoning, or induction is the process of risky

generalizations of known facts. Scientific theories are

developed thanks to inductions. Statistics is the main tool

for this kind of reasoning. A strong induction means that

if the premises are true, the conclusion is true with a high

probability. An example of strong inductive arguments is:

a human DNA consists of 4 types of nucleotides, a worm
DNA consists of 4 types of nucleotides, (...), therefore all
animal DNAs consist of 4 types of nucleotides.

• Deductive reasoning, or deduction is making safe conclu-

sions out of known facts. Mathematical proofs are of this

type. Logic is the main tool for this kind of reasoning. A

valid deduction means that when the premises are true, it

is impossible that the conclusion is false. A well-known

example of valid deductive arguments is: all humans are
mortal, Socrates is human, therefore Socrates is mortal.

Automated reasoning is reasoning which is done by computers

without any human guidance. At this point, the inflexible

nature of computers bring the problem of knowledge repre-

sentation into the scene: a solution to automated reasoning

problem becomes practical only if the knowledge is stored

structurally with consistent semantics. However, in knowl-

edge representation, there is a trade-off between expressive

power and algorithmic complexity [1]: when a formalism is

equipped with new features in order to represent different

kinds of knowledge, the algorithms for reasoning becomes

more time-consuming. Because of this, there is a great variety

of formalisms for knowledge representation. These formalisms

include ontological approaches such as description logic and

rule-based approaches such as Datalog.
The family of description logics (DLs) [2], [3], [4] are

perhaps the most successful example of knowledge repre-

sentation formalisms. It includes many logics with different

expressivities, which vary from the lightweight DLs such as

DL-Lite [5] or EL++ [6] to the typical DLs such as ALC [7]

or ALCO [8] to the more expressive DLs such as SHOIQ
[9] or SROIQ [10] to other extensions such as fuzzy [11]

or temporal [12] DLs. Their theoretical properties are well-

studied. These logics have applications in a wide range of

domain from semantic web to medical informatics to software

engineering among others [13]. DL reasoners include Racer,

FaCT++, Pellet, JFact, HermiT, Konclude and many others.
On the other hand, there has been a long history of studies

on syllogistic logics (SLs). Aristotle’s SL, the first known

formal logic study in history, is sometimes considered as

the first formal study in artificial intelligence. It was state-

of-the-art until the 19th century [14]. In the 19th century,

modern logics superseded Aristotle’s syllogisms [15] [16].1

However, modern logics, first-order logic (FOL) and its ex-

tensions, suffer from semi-decidability (i.e. in finite time, no

algorithm can prove contradictions in FOL). Furthermore, FOL

is unnatural to the humans: its syntax bears no resemblance

to the syntax of the natural language sentences [17]. Thus,

homophonic theories should be preferred [18]. A candidate

for these homophonic theories is naturally, the chronologically

first logics, SLs. Today, we witness a revival of SLs. Extentions

1From the perspective of cognitive science, it has never been useless: its
importance in understanding human reasoning makes the syllogism an active
research topic.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 29,2022 at 11:30:12 UTC from IEEE Xplore. Restrictions apply.

such as fuzzy quantification [19], [20], [21], indefinite terms

[22], [23] and complex terms [24] are added to SLs in

order to acquire more expressive SLs. An extended logic for

categorical polysyllogisms (CPS) has recently been introduced

for automated deduction [24]. We name the presented logic

ComSyl+ and along with that, we define three less expressive

SLs including the logic with indefinite terms through syntactic

restrictions.2 ComSyl+ is decidable but an upper bound for

algorithmic complexity is unknown.

A proof system is sound if everything that the system

concludes is true given the premises, and is complete if

everything that is true given the premises can be concluded

by the system. The vast majority of studies on automated rea-

soning focuses on sound and complete deduction as opposed

to approximate reasoning. In this work, we study sound and

complete deduction.

Deduction services are in different forms such as consis-

tency detection, logical implication or query answering. An

algorithmic solution to one of them is usually sufficient: it is

trivial to develop other services based on one service. In this

paper, we focus on consistency detection.

A. Relevant Description Logics

In DLs, a knowledge base, or ontology, typically consists

of a terminological part (TBox) for representing relationships

between concepts and an assertional part (ABox) for represent-

ing membership of an individual to a concept or relationships

between two individuals. Types of TBoxes are the empty

TBox, acyclic TBox, cyclic TBox and general TBox.

We will only give definitions of the most relevant DLs, ALC
and ALCO with general TBoxes.

Let X be a concept name, r a role, and C and D concepts.

The production rule in ALC is:

C, D ::= ⊥ | � | X | ¬C | C � D | C � D | ∃r.C | ∀r.C
Let x be an individual. ALCO introduces nominals:

C, D ::= ⊥ | � | X | ¬C | C � D | C � D | ∃r.C | ∀r.C | {x}
An ABox contains concept assertions which involve a

concept and an individual (e.g. Aristotle is a human:

Human(Aristotle)) and role assertions which involve a role

and two individuals (e.g. Aristotle is a student of Plato:

studentOf(Aristotle, Plato)).
A general TBox contains general concept inclusions be-

tween two concepts (e.g. A game player is a human who plays

some games: GamePlayer � Human � ∃play.Game).

Semantics of ALC and ALCO are similar to those of SLs.

Thus, we will omit them for saving space.

Reasoning in ALC and ALCO with general TBoxes are

EXPTIME-complete.

2Here, we make small changes: existential imports and the surplus term
become syntactic sugars, and the symbol ‘S’ (singula / singular) replaces
‘IND’ (individual). We also omit Ss as queries for compatibility with DLs
and introduce non-empty domain assumption in order to follow the standard
semantics of first-order logic.

II. A FAMILY OF SYLLOGISTIC LOGICS

In increasing order of expressive power, our SLs are:

1) PolSyl (CPS with atomic terms),

2) NegSyl (CPS with possibly negated atomic terms),

3) ComSyl (CPS with complex terms),

4) ComSyl+ (ComSyl with individuals).

A. Syntax

Let X be an atomic term, P a proposition, and C and D

complex terms. The production rules for complex terms and

propositions are defined as:

C, D ::= X | � | ⊥ | ¬C | C � D | C � D

P ::= A(C, D) | E(C, D) | I(C, D) | O(C, D) | S(C)
For example, ¬smart � cat is a complex term,

and I(¬expensive � (car � motorcycle), red) and

S(Socrates) are propositions.

Note that an atomic term is usually a simple noun (e.g.

cat) or adjective (e.g. smart). A negated atomic term (or

an indefinite term) is a complement of an atomic term (e.g.

¬cat, or ¬smart). Complex terms inherently include both

atomic terms and negated atomic terms among others.

Our SLs are defined with syntactic restrictions applied on

this logic. Table I shows definitions of these logics.

TABLE I: Syntactic Restrictions

Logic
Allowed Terms3 Allowed Propositions4

X ¬X C A E I O S

PolSyl � � � � �
NegSyl � � � � � �
ComSyl � � � � � � �
ComSyl+ � � � � � � � �

B. Semantics

Let C and D be complex terms. An interpretation I =
(ΔI , ·I) consists of a non-empty set of individuals ΔI called

the domain and an interpretation function ·I that maps C to

a set CI ⊆ ΔI such that

1) �I = ΔI ,

2) (¬C)I = ΔI \ CI ,

3) (C �D)I = CI ∩DI .

⊥ and C � D can be seen as syntactic sugars which are

synonyms to ¬� and ¬(¬C � ¬D), respectively. Thus it is

the case that ⊥I = ∅ and (C �D)I = CI ∪DI .

Table II shows all possible types of propositions and their

corresponding conditions. A proposition holds if and only if

its corresponding condition is met.

3The symbols X, ¬X and C stand for atomic terms, negated atomic terms
and complex terms, respectively.

4Propositions of type S, or individuality propositions may be allowed only
as assertions, not as queries. The other types of propositions, or quantified
propositions may be assertions or queries.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 29,2022 at 11:30:12 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Semantics of Propositions

Proposition Condition English
I � A(C, D) CI \ DI = ∅ All C are D

I � E(C, D) CI ∩ DI = ∅ No C are D

I � I(C, D) CI ∩ DI �= ∅ Some C are D

I � O(C, D) CI \ DI �= ∅ Some C are not D

I � S(C) |CI | = 1 C is an individual

Syntax and semantics of syllogistic logics are intuitive. An

example of valid syllogisms I(Turkish � engineer, smart
� person), A(person, mammal) � I(mammal, engineer) cor-

responds to the following argument in English: Some Turkish
engineers are smart people. All people are mammals. There-
fore, some mammals are engineers.

III. SYLLOGISTIC KNOWLEDGE BASES

A knowledge base, or an ontology, or in this case a

syllogism, is a set of propositions. In this section, we define a

framework for representing a knowledge base and its parts:

terms and propositions. Figure 1 illustrates the high-level

components of the framework.

Representations

Factories Converters

Generators Iterators

Simplifiers

(for basic functionalities) (for solver compatibilities)

(for random experiments) (for systematic searches)

(for compactness & interpretability)

Random

Arbitrary

Sequential

Corresponding

Equivalent

Fig. 1: Factories, generators, iterators and converters create

arbitrary, random, sequential and equivalent representations of

terms, propositions and syllogisms.

A. Representation of Terms

As explained in [24], region sets of atomic terms are

calculating using the following formula:

Xi = {
∑

n∈N

2n−1 | N ⊆ {1, 2, ..., t}, i ∈ N }

Figure 2 illustrates the region set representation and an

alternative representation for terms.

Note that region sets require that t, the number of atomic

terms, is pre-determined and assume that it is fixed. An

advantage of region sets is that they are always in their

simplest form. Along with that, when t is small, visualization

of region sets is useful for research and education. On the other

�

�

¬X2 X3

X1

X1 X2

X3

·2·3·1

·5

·4

·6
·7

·0

Fig. 2: A term can be expressed as an expression tree or a

region set. (¬X2 � X3) � X1 corresponds to {1, 5, 7} when

t = 3.

hand, expression trees are more compact and they enable lazy

evaluation.

Conversion from expression trees to region sets is trivial:

atomic terms are replaced with the corresponding region sets

according to the formula and then the expression is evaluated.

Conversion from region sets to expression trees can be done

via Quine-McCluskey algorithm [26] or Petrick’s method [27].

B. Representation of Propositions

We have defined 5 types of propositions. These propositions

are called relational propositions, or relations. In essence,

those propositions express three types of cardinality proposi-
tions, or cardinalities: empty (�), non-empty (∃), or singleton

(∃!) sets. Table III shows correspondence of these proposition

types.

TABLE III: Correspondence Between Proposition Types

Relation Cardinality
A(C, D) �(C � ¬D)
E(C, D) �(C � D)

I(C, D) ∃(C � D)

O(C, D) ∃(C � ¬D)
S(C) ∃!(C)

Cardinality Relation
�(C) E(C, C)

∃(C) I(C, C)

∃!(C) S(C)

Note that negations of these propositions other than those

of type S (and ∃!) exist within these logics: their negations

can be used in need.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 29,2022 at 11:30:12 UTC from IEEE Xplore. Restrictions apply.

C. Representation of Syllogisms

The natural representation of a syllogism is a logical

argument: validity of ((a1 ∧ a2 ∧ · · · ∧ ap) ⇒ q) is the

question to answer. An alternative representation of a syllo-

gism is a set of propositions: the question is inconsistency of

{a1, a2, . . . , ap,¬q}. Figure 3 illustrates these representations.

Is it

valid?

assertion1

assertion2
...

assertionp

query

yes/no

Are they

inconsistent?

assertion1

assertion2
...

assertionp

¬query

yes/no

Fig. 3: A syllogism can be represented as validity of an

argument or inconsistency of propositions

Conversion between syllogism representations is trivial and

done via the following equivalence: ((a1∧a2∧· · ·∧ap) ⇒ q)
is valid ≡ {a1, a2, . . . , ap,¬q} is inconsistent.

IV. THEORETICAL PROPERTIES

Both DLs and SLs are extended by definitions. Thus,

their intrarelationships require no proof: ALC ⊂ ALCO and

PolSyl ⊂ NegSyl ⊂ ComSyl ⊂ ComSyl+.

It is also obvious that all of these logics are monotonic: once

a proposition is shown to be true, no further propositions can

change that truth.

In this section, we will reveal theoretical properties of SLs

and their relationships with the DLs.

A. Expressivity

Let X and Y be atomic terms. All 16 possible relations

between X and Y in NegSyl constitute 8 groups of semantically

equivalent propositions:

1) A(X, Y) ≡ E(X,¬Y) ≡ �(X � ¬Y)
2) E(X, Y) ≡ A(X,¬Y) ≡ �(X � Y)
3) A(¬X, Y) ≡ E(¬X,¬Y) ≡ �(¬X � ¬Y)
4) E(¬X, Y) ≡ A(¬X,¬Y) ≡ �(¬X � Y)
5) I(X, Y) ≡ O(X,¬Y) ≡ ∃(X � Y)
6) O(X, Y) ≡ I(X,¬Y) ≡ ∃(X � ¬Y)
7) I(¬X, Y) ≡ O(¬X,¬Y) ≡ ∃(¬X � Y)
8) O(¬X, Y) ≡ I(¬X,¬Y) ≡ ∃(¬X � ¬Y)
As a result of the correspondence above, using

cardinality propositions, a term is an element of

{X � Y, X � ¬Y, ¬X � Y, ¬X � ¬Y}. Special terms X,

¬X and ⊥ are derived when the atomic terms are equal (i.e.

X = Y). We will call these terms “regular” when the atomic

terms are unequal (i.e. X �= Y). Note that these regular terms

represent all 4 regions in the Venn diagram of two atomic

terms.
Commutative property of intersection, unequal atomic terms

in the term expressions, and 4 regions of 2 atomic terms

reveal the true expressivity of NegSyl: it allows for asserting

emptiness or non-emptiness of 2t2 + 1 pairwise unequal sets:

The bottom term ⊥, t different atomic terms, t different

negated atomic terms, and 4× t×(t−1)
2 regular terms.

Expressiveness of PolSyl is calculated very similarly. It

can express 3 regions out of 4 regions between two atomic

terms: {X � Y, X � ¬Y, ¬X � Y}. X and ⊥ can be derived when

X �= Y. In total, 3
2 t

2 − 1
2 t + 1 pairwise unequal sets can be

represented.
t atomic terms constitute 2t regions in a Venn diagram.

ComSyl and ComSyl+ are able to express all subsets of those

regions: there are 22
t

pairwise unequal sets to represent.

B. Complexity of PolSyl and NegSyl

Theorem 1. Consistency detection in NegSyl is tractable.

Proof. Algorithm 1 is a sound and complete algorithm for con-

sistency detection which will always terminate in polynomial

time (PTIME, or P in short).
Algorithm. This algorithm consists of three stages: first, it

searches for direct inconsistencies in the knowledge base. If

both of a proposition and its negation appear in the knowledge

base, then there is inconsistency. In the second stage, negations

of immediately inferable propositions are searched. In the third

stage, consistency with the non-empty domain assumption is

checked. The second and the third stages are repeated until

there is no change. The function immediatelyImplies checks

whether a given proposition is immediately inferable given a

knowledge base. The function implies checks the immediate

inferences ignoring most of the propositions: it adds p to a

copy of kb.knowns, then filters the propositions that contain

irrelevant atomic terms, and then runs the exhaustive search

in [24].
Soundness and completeness. Soundness of the algorithm

relies on the soundness of the exhaustive search in [24]. The

most important reason of the low time complexity is the

proposition elimination in the function implies: the algorithm

ignores many combinations of propositions. However, the

elimination of the propositions does not violate the complete-

ness. Because polysyllogisms can be expressed as a chain of

multiple syllogisms: when it is possible to construct a bridge

between two terms, it is possible to construct that bridge using

a single middle term.
Time complexity. In the algorithm design, we take ad-

vantage of the monotonicity. The algorithm is guaranteed to

converge in polynomial time: the number of all propositions

is Θ(t2) and in the worst-case, a single proposition will

be inferred in each iteration. Numbers of iterations in the

inner loops are also a polynomial. Algorithm 2 is a linear-

time algorithm: there are Θ(t) iterations in each call and the

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 29,2022 at 11:30:12 UTC from IEEE Xplore. Restrictions apply.

innermost function call takes a constant time as the upper

bound for the number of atomic terms is fixed to 3. These

facts make the whole algorithm polynomial.

Algorithm 1 Consistency detection in NegSyl

1: function ISCONSISTENT(kb) � kb is knowledge base

2: // Checking consistency of current knowledge:

3: for all p ∈ kb.knowns do
4: if p.negation() ∈ kb.knowns then
5: kb.fillKnownsClearUnknowns()
6: return False

7: repeat
8: // Checking consistency of inferable knowledge:

9: for all p ∈ kb.unknowns do
10: if immediatelyImplies(kb, p) then
11: kb.addToKnownsRemoveFromUnknowns(p)
12: if p.negation() ∈ kb.knowns then
13: kb.fillKnownsClearUnknowns()
14: return False

15: // Checking domain non-emptiness:

16: for all X ∈ kb.atomicTerms do
17: if {�(X), �(¬X)} ⊆ kb.knowns then
18: kb.fillKnownsClearUnknowns()
19: return False

20: until convergence
21: return True

Algorithm 2 Immediate inferences in NegSyl

1: function IMMEDIATELYIMPLIES(kb, p)

2: XY = p.relevantAtomicTerms � 0 ≤ |XY| ≤ 2

3: tautologies = {�(⊥), ∃(�)}
4: if p ∈ tautologies then
5: return True

6: for all Z ∈ kb.atomicTerms do
7: XYZ = XY ∪ {Z} � 1 ≤ |XYZ| ≤ 3

8: if implies(kb, p, XYZ) then
9: return True

10: return False

Corollary 1.1. Consistency detection in PolSyl is tractable.

Proof. As discussed before, PolSyl is a fragment of NegSyl.

As a result, consistency detection in PolSyl is tractable (i.e.

in PTIME).

C. Complexity of ComSyl and ComSyl+

Theorem 2. ComSyl is a fragment of ALC with general TBox.

Proof. Terms of both logics have the same syntax. We will

define translation rules for ComSyl propositions into ALC
axioms.

Let C and D be complex terms. Propositions of type A and

E correspond to general concept inclusions:

A(C, D) ≡ (C � D)

E(C, D) ≡ (C �D � ⊥)

Let rnd1 and rnd2 be random individuals such that no

further knowledge about them can be found in the ontology.

Propositions of type I and O correspond to assertions on

random individuals:

I(C, D) ≡ F (rnd1) such that F ≡ C �D

O(C, D) ≡ F (rnd2) such that F ≡ C � ¬D

Corollary 2.1. ComSyl is categorical fragment of ALC with
general TBox.

Proof. The only syntactic difference between ComSyl terms

and ALC concepts is that ALC allow us to define concepts

via non-categorical roles. When the only role is the categorical

role be (or, beSubsetOf) the semantics of ∃r.C and ∀r.C can

be represented via propositions of type ∃ and �, respectively.

Corollary 2.2. ComSyl+ is categorical fragment of ALCO
with general TBox.

Proof. The relationship between ComSyl+ and ALCO is very

similar to that of ComSyl and ALC. The only addition is the

propositions of type S which correspond to nominals in DLs.

Let rnd be a random individual such that no further

knowledge about it can be found in the ontology. Propositions

of type S corresponds to the following concept equivalence:

S(C) ≡ (C ≡ {rnd})
A concept equivalence can be defined using two general

concept inclusions (e.g. C ≡ {rnd} can be defined using C �
{rnd} and {rnd} � C).

Corollary 2.3. Consistency detection in ComSyl and ComSyl+

are in EXPTIME.

Proof. It is already stated that consistency detection in ALC
and ALCO with respect to general TBoxes is EXPTIME-

complete. We proved that ComSyl and ComSyl+ are fragments

of those logics. Thus, they are in EXPTIME.

In the software framework, the correspondence between SLs

and OWL API of DLs is as below:

• Terms correspond to OWLClassExpressions.

• Propositions of type A and E correspond to

OWLSubClassOfAxioms and OWLDisjointClassesAxioms,

respectively.

• Propositions of type I and O correspond to

OWLClassAssertionAxioms.

• Propositions of type S correspond to

OWLEquivalentClassesAxioms.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 29,2022 at 11:30:12 UTC from IEEE Xplore. Restrictions apply.

D. Relationships Between SLs and DLs

Figure 4 illustrates the relationsships of SLs and DLs. The

complexities of DLs in the figure are exact and with respect

to general TBoxes. (¬) indicates atomic negation.

ALCO

ALC
O

ComSyl+

ComSyl

NegSyl

PolSyl

NR
S

�,¬

(¬)

NR

Selected Description Logics

Selected Syllogistic Logics

P
T

IM
E

E
X

P
T

IM
E

Fig. 4: Arrows show extensions (Expressiveness increases in

the arrow directions). Vertical arrows show extensions by

definition while horizontal arrows show role generalizations.

V. CONCLUSION

We have defined a family of SLs: PolSyl ⊂ NegSyl ⊂
ComSyl ⊂ ComSyl+. We proved that PolSyl and NegSyl are

tractable (i.e. they are in PTIME). We also proved that ComSyl

and ComSyl+ are categorical fragments of ALC and ALCO,

respectively, and therefore, they are in EXPTIME. Note that

the lower bounds for algorithmic complexities have not yet

been proved.

These findings allow us to combine the best of both worlds:

syntax of SLs and reasoners for DLs. Both intuitiveness of

the natural syntax of SLs and time complexity of DLs in real

world ontologies are already proven. This bridge is a chance

to utilize the big data of natural language through an ontology

learner as well as to develop easy-to-use end-user programs

for manual knowledge management.

In this work, we developed a prototypical implementation

of the software framework in Java and linked it to a DL

reasoner, HermiT. As future work, we will develop the soft-

ware framework beyond the prototypical implementation and

perform experiments.

Furthermore, as future work, it is interesting to investigate

if other features such as non-categorical roles or extended

quantifiers can be added to ComSyl or ComSyl+ without

sacrificing intuitiveness and algorithmic properties much.

Most complex terms are unnecessarily complex for ex-

pressing everyday natural language sentences: a new logic

can be defined via restricting terms of ComSyl or ComSyl+

to including only a couple of operators rather than possibly

infinite number of them.

REFERENCES

[1] R. J. Brachman and H. J. Levesque, “The tractability of subsumption in
frame-based description languages,” in AAAI, vol. 84, 1984, pp. 34–37.

[2] M. Krötzsch, F. Simancik, and I. Horrocks, “A description logic primer,”
arXiv preprint arXiv:1201.4089, 2012.

[3] S. Rudolph, “Foundations of description logics,” in Reasoning Web.
Semantic Technologies for the Web of Data. Springer, 2011, pp. 76–136.

[4] F. Baader, I. Horrocks, C. Lutz, and U. Sattler, Introduction to Descrip-
tion Logic. Cambridge University Press, 2017.

[5] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati,
“Tractable reasoning and efficient query answering in description logics:
The dl-lite family,” Journal of Automated reasoning, vol. 39, no. 3, pp.
385–429, 2007.

[6] F. Baader, S. Brandt, and C. Lutz, “Pushing the el envelope further,”
2008.

[7] F. M. Donini and F. Massacci, “Exptime tableaux for alc,” Artificial
Intelligence, vol. 124, no. 1, pp. 87–138, 2000.

[8] S. Grimm and P. Hitzler, “A preferential tableaux calculus for circum-
scriptive alco,” in International Conference on Web Reasoning and Rule
Systems. Springer, 2009, pp. 40–54.

[9] Y. Kazakov and B. Motik, “A resolution-based decision procedure for
shoiq,” in International Joint Conference on Automated Reasoning.
Springer, 2006, pp. 662–677.

[10] I. Horrocks, O. Kutz, and U. Sattler, “The even more irresistible sroiq.”
Kr, vol. 6, pp. 57–67, 2006.

[11] S. Moral et al., “Fuzzy description logics–a survey,” in Scalable
Uncertainty Management: 11th International Conference, SUM 2017,
Granada, Spain, October 4-6, 2017, Proceedings, vol. 10564. Springer,
2017, p. 31.

[12] C. Lutz, F. Wolter, and M. Zakharyaschev, “Temporal description logics:
A survey,” in Temporal Representation and Reasoning, 2008. TIME’08.
15th International Symposium on. IEEE, 2008, pp. 3–14.

[13] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider, The Description Logic Handbook: Theory, Implementation
and Applications, 2nd ed. New York, NY, USA: Cambridge University
Press, 2010.

[14] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.

[15] G. Frege, Begriffsschrift, eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens. L. Nebert, 1879.

[16] E. M. Hammer, “Semantics for existential graphs,” Journal of Philo-
sophical Logic, vol. 27, no. 5, pp. 489–503, 1998.

[17] W. V. Quine, Philosophy of logic, 2nd ed. Harvard University Press,
1986.

[18] G. Evans, “Pronouns, quantifiers, and relative clauses (i),” Canadian
journal of philosophy, vol. 7, no. 3, pp. 467–536, 1977.

[19] D. G. Schwartz, “Qualified syllogisms with fuzzy predicates,” Interna-
tional Journal of Intelligent Systems, vol. 29, no. 10, pp. 926–945, 2014.

[20] M. Pereira-Fariña, J. C. Vidal, F. Dĺaz-Hermida, and A. Bugarĺn, “A
fuzzy syllogistic reasoning schema for generalized quantifiers,” Fuzzy
Sets and Systems, vol. 234, pp. 79–96, 2014.

[21] P. Murinová and V. Novák, “Intermediate syllogisms in fuzzy natural
logic,” Journal of Fuzzy Set Valued Analysis, vol. 2016, no. 2, pp. 99–
111, 2016.

[22] E. Alvarez and M. Correia, “Syllogistic with indefinite terms,” History
and Philosophy of Logic, vol. 33, no. 4, pp. 297–306, 2012.

[23] E. Alvarez-Fontecilla, “Canonical syllogistic moods in traditional aris-
totelian logic,” Logica Universalis, vol. 10, no. 4, pp. 517–531, 2016.

[24] E. Çine and B. İ. Kumova, “An extended syllogistic logic for automated
reasoning,” in Computer Science and Engineering (UBMK), 2017 Inter-
national Conference on. IEEE, 2017, pp. 759–763.

[25] L. A. Nguyen and J. Golińska-Pilarek, “Exptime tableaux with global
caching for the description logic shoq,” arXiv preprint arXiv:1405.7221,
2014.

[26] E. J. McCluskey, “Minimization of boolean functions,” Bell Labs Tech-
nical Journal, vol. 35, no. 6, pp. 1417–1444, 1956.

[27] S. R. Petrick, “A direct determination of the irredundant forms of a
boolean function from the set of prime implicants,” Air Force Cambridge
Res. Center Tech. Report, pp. 56–110, 1956.

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 29,2022 at 11:30:12 UTC from IEEE Xplore. Restrictions apply.

