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Abstract—The quantitative and qualitative ascertainment of
cell culture is integral to the robust determination of the cell
structure analysis. Microscopy cell analysis and the epithet
structures of cells in cell cultures are momentous in the fields of
the biological research process. In this paper, we addressed the
problem of phase-contrast microscopy under cell segmentation
application. In our proposed method, we utilized the state-of-the-
art deep learning models trained on our proposed dataset. Due
to the low number of annotated images, we propose a multi-
resolution network which is based on the U-Net architecture.
Moreover, we applied multi-combination augmentation to our
dataset which has increased the performance of segmentation
accuracy significantly. Experimental results suggest that the
proposed model provides superior performance in comparison
to traditional state-of-the-art segmentation algorithms.

Keywords—Deep learning, phase-contrast microscopy, cell seg-
mentation.

I. INTRODUCTION

Phase-contrast microscopy is particularly important in bi-
ology. It reveals many of cells structure that are not visible
with a simpler microscope. Hence, this microscopy structure
is one of the challenging microscopy imaging which has been
encountered scientists in segmentation and tracking tasks. The
main reason for this is the region of interests(ROIs) color
can not be realized and extracted from background efficiently.
Therefore, most of the segmentation and tracking tasks does
not have enough qualification for satisfying the robustness,
completeness and accuracy factors. Therefore, we need to
apply different technical pre-processing for increasing the
visibility of the ROI. One of this method which can increase
the brightness of ROI is histogram quantization which can help
in the motility of the cells besides of applied methods.

Live-cell microscopy imaging together with appropriate im-
age analysis tools have the potential to aid biologists in quanti-
fying biological phenomena. For instance, without proper tools

for segmentation tasks of cells, scrutinizing the properties of
the cells in time-lapse microscopy could be a time consuming
and tedious task for biologists. Automatic segmentation tools
vary and include: automatic gray-level thresholding[1], the
watershed algorithm[2] and Active Contours[3].

Jaccard, Nicolas, et al.[4] presented a method based on
image-processing approach by local contrast thresholding,
which has robust results on their presented PCM dataset but
it can not satisfy the completeness and robustness factors on
the adjacent or touching cells. In contrast to other convenient
methods such as Convolutional Neural Networks which out-
perform the traditional cell segmentation solutions[5], Arbelle,
et al.[6] proposed the concept of Generative Adversarial
Networks for microscopy cell segmentation. Moreover, in[8],
an integration of Convolutional Long Short Term Memory
(C-LSTM) into a U-Net[7] is presented and they evaluate
the combination of the presented model. HF. Tsai, et al.[9]
proposed the architecture based on a Mask R-CNN model
on phase-contrast microscopy images for cell segmentation
application, but the trained model is not transferable to domain
of dataset which is different from that in the train set and it
needs a very high computation to reach acceptable results.

Our contribution has three folds: 1) We extended the concept
of multi-resolution network which is based on U-Net for
segmentation of cells in two-photon microscopy images. 2)
We proposed a novel data augmentation which utilizing the
sequential transformation for our input dataset which increases
the accuracy of segmentation in comparison to the conven-
tional U-Net[7] and Empirical Gradient Threshold (EGT)[10]
which we represent them in evaluation section. 3) We achieve
the high accuracy of segmentation with a low number of train-
ing examples, Therefore, our propose approach dramatically
reduce the amount of manual workload.

The rest of the paper is organized as follows. In SectionII,
we present the details of sample preparation and imaging.
In sectionIII, we define the problem and elaborates on the978-1-7281-2420-9/19/$31.00 ©2019 IEEE
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proposed solution. SectionIV presents the results for both
common and our proposed approach. SectionV, concludes the
paper and suggests possible extensions for future work.

Fig. 1: Schematic structure of our proposed architecture.

II. DATASET PREPARATION

Three breast cell lines with different morphology and mo-
bility were used in this workspace, invasive breast cancer cell
line MDA-MB-231 in mesenchymal morphology; non-invasive
breast cancer cell line MCF7 in epithelial morphology and
normal breast cell line MCF10A in epithelial morphology.
MDA MB 231 and MCF7 cells were grown in DMEM medium
containing 10% fetal bovine serum while MCF10A cells were
in DMEM:F12 (1:1) containing 5% horse serum, 20 ng/ml
epidermal growth factor, 500 ng/ml hydrocortisone, 100 ng/ml
cholera toxin, and 10 µg/ml insulin. The cells were grown in
incubators containing 5% CO2 and humidity at 37◦C. In terms
of viability, proliferation, and infection, they were monitored
daily by inverted light microscopy and multiplied with trypsin,
paying attention to the doubling times of each cell culture.
Periodic stocking was applied to ensure the continuity of the
cells. Cells were frozen in a solution containing FBS and
DMSO. Storage was carried out at -80◦C and then -196◦C in
a liquid nitrogen tank. Then, by utilizing the Fiji distribution
of ImageJ[12,13] individual cell boundaries are marked for
images taken for single-cell analysis and cell layer boundaries
are be manually marked for images analysis.

About the data records, our presented dataset consists of
the following: 600 phase-contrast microscope images (TIFF
format, 2568 × 1912 pixels, 16 Bit depth) where 25 of
them are annotated by an expert, 18 of annotated images are
utilized in training set and rest of them are used in test at
evaluation process. Due to the low-quality conditions of the
cell images in the level of contrast, we increase the signal-to-
noise ratio(SNR) by adjusting the contrast of the image and
normalize the images that changes the range of pixel intensity
values.

III. METHOD

A. Multi-Resolution Network

U-Net is an encoder-decoder architecture which is very
efficient in training and generalizing with small types of

Fig. 2: The Schematic architecture of proposed augmentation
method on presented deep learning network.

dataset. However, modifying the U-Net according to the type
of dataset is an interesting field of study on phase-contrast
microscopy images. This architecture has high capacity of
extension in different aspects. In Fig1, the schematic of the
proposed architecture is presented.

The proposed network was trained with 18 annotated images
for training sets. This network is composed of a CNN with
3 × 3 convolution filters and applied leaky ReLU as an
activation function in our application. To keep the spatial size
of the input image unchanged, we utilized padding layer in
this architecture and each layer of this are proceeded by batch
normalization. Due to the structure of our presented dataset,
the lowest resolution segment of the network size is 128×128
pixels which is downscaled from original size. This fold con-
sists 15 convolution layers with 256 channels where applying
consecutive convolution layer makes the model effective in
congregating of outputs based on the extracted features[11].
To reach the resolution of 256 × 256 pixels from the lowest
resolution, a transposed convolution with stride of 2 is applied
to increase the resolution of the input. The last section contains
full resolution fold with 512×512 pixels which have 2 layers
with 64 channels and the final layer for output image.

B. Data Augmentation

Data Augmentation is very common in classification ap-
plication and it can increase the accuracy of classification.
Most of Deep Neural Networks(DNN) are structured to be
invariant on specific geometrical transformation, which can not
extract new information from generated images. We propose
a novel type of augmentation which is based on combining
the sequential augmentation in the dataset during the training
process. Schematic structure of our presented workflow is
shown in Fig2. As an input image T(K,n) which K represents
the number of augmentation and n indicates the number
of transformation in augmentation process. In augmentation
procedure, input image receives the specific transformation
and after applying the sequence of transformations, the output
images are merged to create new output from the previous
transformed images. In this paper, we utilized n=3 for the

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on November 23,2021 at 09:43:21 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: Results of the segmentation for three frames of breast cancer MDA-MB-231 dataset. The first and second columns
are the input images and ground truth in determined frames, the third and fourth column is the results of the EGT and
PHANTAST respectively. Fifth column represents the results of U-Net and last two columns depict our proposed approach
without post-processing and after applying the Distance Transform Watershed; moreover, Connected Component Labeling on
the last column shows the level of separation on adjacent or touching cells.

number of transformation in each augmentation and k=4 for
the number of augmentation with different configuration for
each input image.

The main utilized Transformations contain elastic transform,
rotation and translation with different configuration. Due to
the low number of annotated images for segmentation task,
we used both of the combined and single augmentation in our
work to enlarging the number of the training set. The proposed
augmentation can efficiently simulate the shape of the cells on
unseen images and it increase the accuracy of segmentation
significantly.

IV. RESULTS

To scrutinize the accuracy of the proposed method, it should
be analyzed with quantitative and qualitative perspectives. The
method was evaluated using the Dice Coefficient, F-score
and Intersection over Union (IoU) scheme which quantitative
results of the cell segmentation are shown in Table I. The
qualitative results of segmentation is also shown in Fig3.

A. Implementation Details

We utilize PyTorch framework[14] in the implementations
and all of the experiments were done on a single NVIDIA
TitanX with 12 GB memory. As a training regime, our
model was trained with Adam optimizer with learning rate of
2×10−4. To schedule the learning rate, we followed the step-
wise decay for which the amount of learning rate is reduced
with the multiplicative factor of 0.8 when our training loss
does not decrease in every 20 epochs; The batch size was

applied 8 in our training regime. The loss is defined using
the distance weighted cross-entropy loss which was proposed
in the U-Net article[7]. The presented loss function is the
thrust cell separation with a specific type of penalty factor
which has exponential behavior. Additionally, the pixels which
are located between the touching and adjacent have a higher
impact on loss rather than the far pixels which is not located
between the boundary of the cells.

B. Evaluation Metrics

Comparison between the algorithm output and the ground
truth was realized using the following well-known evaluation
metrics. IoU is indicated in (1) and F-score is the harmonic
mean of precision and recall which is shown in (2) as follows:

IoU(X,Y ) =
|X

⋂
Y |

|X
⋃
Y |

(1)

F − Score = 2 · precision · recall
precision+ recall

(2)

The third evaluating metric is Dice Coefficient which mea-
sures the accuracy of spatial overlap between the ground truth
and predicted image which is indicated in (3) as follows:

Dice(X,Y ) =
2|X · Y |
|X|+ |Y |

(3)
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TABLE I: Quantitative results of cell segmentation

Methods IoU Dice Coeffıcient F-Score

Emperical Gradient Threshold 0.381 0.578 0.547

PHANTAST 0.597 0.651 0.673

U-Net 0.825 0.854 0.837

Proposed Method 0.871 0.899 0.881

C. Experimental Results

We present experimental results of our approach compared
to different baselines. Our proposed model achieves state-of-
the-art performance in our presented dataset. In what follows,
we compare the results of our dataset with different baseline.
The results of the utilized methods are shown in Fig3. We
achieve a mean Intersection over Union (mIoU) of 0.87, which
is noticeably better in compare of baseline. Additionally, our
proposed approach is successful in predicting of the shapes of
the cells in comparison to the U-Net and other baselines. In
the case of baseline, often fail to be segmented and contribute
to higher mIoU and the level of segmentation in EGT and
PHANTAST is mediocre(mIoU 0.38 and 0.59). Moreover,
EGT and PHANTAST are not precise in the estimation of the
cell boundaries. Obtained results in Table I are applied on the
test-set using the F-score, IoU and Dice Coefficient for com-
parison purposes. The same approach was applied to a previ-
ously described PCM image segmentation algorithms such as
PHANTAST, EGT, and U-Net in comparison of our proposed
approach. The results are shown as the average scores over
the test set. Additionally, we applied the Distance Transform
Watershed[15] as a post-processing method to separate the
touching cells. As method configuration, after normalizing
the weight, for diagonal and orthogonal neighbors, we set 2
and 1 consecutively. To have better visualization, Connected
Component Labeling is applied after utilizing the determined
post-processing to show the separation of the cells in the
output image. Applying determined approach achieves IoU
to 0.891 in accuracy. The last column of the Fig3 represents
the visualization of Distance Transform Watershed as post-
processing on our method.

V. CONCLUSION AND FUTURE WORK

We presented a deep learning approach for cell segmentation
in 2D phase contrast microscopy images with specific type of
data augmentation. Given the significant variability in cell ap-
pearance that resulted from using different stains and different
cell types, achieving robust cell segmentation with the simple
Empirical Gradient Threshold is difficult. The results show
that our proposed deep learning based approach outperforms
the state-of-the-art algorithms (EGT, PHANTAST, and U-Net)
in robustness, completeness and accuracy. As future work, we
plan to extend the dataset by increasing manual annotations
for not only segmentation but also tracking of cells. Then
onwards we will fortify our analysis by constructing lineage
relationships to provide information about cell behavior.

VI. SUPPLEMENTARY INFORMATION

Datasets generated and analyzed in this
paper are provided as an additional file in
https://doi.org/10.6084/m9.figshare.8965820, You can cite our
dataset by writting below content in your work.

Ayanzadeh, Aydin; Yağar, Hüseyin Onur; Özuysal, Özden
Yalçın; Okvur, Devrim Pesen; Töreyin, Behçet Uğur; Ünay,
Devrim; et al. (2019): Phase Contrast Microscopy of cells
with annotation. figshare. Dataset.
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