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Abstract. Time-evolution of squeezed coherent states of a generalized Caldirola-Kanai type
quantum parametric oscillator is found explicitly using the exact evolution operator obtained
by the Wei-Norman algebraic approach. Properties of these states are investigated according
to the parameters of the unitary squeeze operator and the time-variable parameters of the
generalized quadratic Hamiltonian. As an application, we consider exactly solvable quantum
models with specific frequency modification for which the corresponding classical oscillator is
in underdamping case and driving forces are of sinusoidal type. For each model we explicitly
provide the evolution of the squeezed coherent states and discuss their behavior.

1. Introduction
Squeezed states of quantum harmonic oscillator have applications in different areas such as
nonlinear optical processes, optical communications, the detection of gravitational waves,
electromagnetism, etc. [1, 2, 3, 4].

Squeezed coherent states are mostly known as generalization of coherent states, which obey
the minimum uncertainty principle, but have less uncertainty in one quadrature at the expense
of increased uncertainty in the other. Their main properties were derived by Stoler [5] and
Yuen [1], and then studied by many other authors. As known, squeezed states can be defined
in different ways, such as certain linear superposition of the number states, as eigenstates of
an operator being a linear combination of the raising and lowering operators, or as a result of
applying the squeezing operator, [6].

On the other side, it was shown that one can generate squeezed states of harmonic oscillator
by adding to standard Hamiltonian a mixed term with squeezing (two-photon) parameter [1],
or simply by adding at some moment of time a quadratic term in position. However, when the
oscillator has time-dependent mass or/and frequency squeezing effects appear naturally due to
the time-variable parameters and the evolution operator behaves like some kind of generalized
squeezing operator.

In our recent work [7], we considered time-evolved coherent states of the generalized Caldirola-
Kanai oscillator, and investigated their squeezing properties according to the time-dependent
parameters of the Hamiltonian. In the present work, using the evolution operator Û(t, t0)

obtained by Wei-Norman Lie algebraic approach and the squeeze operator Ŝ(z), we obtain
the exact time-evolution of squeezed coherent states in coordinate representation. Then, we
investigate their dependence on the complex parameter z = reiθ of the squeeze operator and on
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the time-dependent parameters of the Hamiltonian Ĥ(t). As an application, we consider exactly
solvable quantum models with specific frequency modification for which the corresponding
classical oscillator is in underdamping case and driving forces are of sinusoidal type. For each
model we explicitly provide the evolution of the squeezed coherent states and discuss their
squeezing and displacement properties. We see that, parameter r > 0 of the squeeze operator
Ŝ(r, θ) can be used to control only the amplitude of the oscillating widths of the wave packets,
while squeezing parameter B(t) can be used to control not only their amplitude and phase, but
also their frequency.

2. Time evolution of squeezed coherent states of a Generalized Caldirola-Kanai
Oscillator
We consider the evolution problem for a generalized Caldirola-Kanai oscillator

ih̄
∂

∂t
Ψ(q, t) = Ĥ(t)Ψ(q, t), t > 0, (1)

Ψ(q, t0) = Ψ0(q), −∞ < q < ∞, (2)

with Hamiltonian

Ĥ(t) =
−h̄2

2
e−γt ∂

2

∂q2
+

ω2
0

2
eγtq2 − ih̄

B(t)

2

(
q
∂

∂q
+

∂

∂q
q

)
−D0e

γt cos(ωt)q, (3)

where ω0 is a constant frequency, µ(t) = eγt, γ > 0, is the exponentially increasing mass, B(t)
is a real-valued parameter depending on time, and driving forces are taken to be of sinusoidal
kind. Since the Hamiltonian is a linear combination of Heisenberg-Weyl and su(1, 1) Lie algebra
generators,

Ê1 = iq, Ê2 =
∂

∂q
, Ê3 = iÎ (4)

K̂− = − i

2

∂2

∂q2
, K̂+ =

i

2
q2, K̂0 =

1

2
(q

∂

∂q
+

1

2
), (5)

the evolution operator of the problem can be found using Wei-Norman algebraic approach, see
[14]. Explicitly we have

Û(t, t0) = exp

(
i

h̄

∫ t

t0

[
−e−γs

2
p2p(s) +

ω2

2
eγsx2p(s)

]
ds

)
exp (ipp(t)q) exp

(
−xp(t)

∂

∂q

)

exp

(
i

2h̄
eγt
(
ẋ1(t)

x1(t)
−B(t)

)
q2
)
exp

(
ln

∣∣∣∣x1(t0)x1(t)

∣∣∣∣ (q ∂

∂q
+

1

2

))
exp

(
i

2
h̄x21(t0)

(
x2(t)

x1(t)

)
∂2

∂q2

)
, (6)

where x1(t), x2(t) are linearly independent homogeneous solutions of the classical equation of
motion

ẍ+ γẋ+
(
ω2
0 −

(
Ḃ +B2 + γB

))
x = D0 cos(ωt), (7)

satisfying the initial conditions x1(0) = x0 ̸= 0, ẋ1(0) = x0B(0); x2(0) = 0, ẋ2(0) = 1/x0, and
xp(t) is a particular solution of (7) satisfying xp(0) = 0, ẋp(0) = 0. The corresponding equation
of motion for classical momentum is

p̈− γṗ+ (ω2
0 + (Ḃ −B2 − γB))p = −D0e

γt(ω sin(ωt) +B(t) cos(ωt)), (8)

with homogeneous solutions p1(t) = eγt
(
ẋ1(t) − B(t)x1(t)

)
, p2(t) = eγt

(
ẋ2(t) − B(t)x2(t)

)
,

and particular solution pp(t) = eγt
(
ẋp(t)−B(t)xp(t)

)
.



Group32

IOP Conf. Series: Journal of Physics: Conf. Series 1194 (2019) 012018

IOP Publishing

doi:10.1088/1742-6596/1194/1/012018

3

As well-known, coherent states of standard harmonic oscillator can be defined by the action
of the displacement operator

D̂(α) = exp(αâ† − α∗â), α = α1 + iα2, α1, α2 ∈ R, (9)

on the ground state. Here, â and â† are the usual annihilation and creation operators, which in
coordinate representation take form

â =

√
ω0

2h̄
q +

√
h̄

2ω0

∂

∂q
, â† =

√
ω0

2h̄
q −

√
h̄

2ω0

∂

∂q
, (10)

and using the ground state φ0(q) = (ω0/πh̄)
1/4e−

ω0
2h̄

q2 , one gets the standard time-independent
coherent states

ϕ0
α(q) = D̂(α)φ0(q) =

(
ω0

πh̄

)1/4

e−
i
2h̄

⟨q̂⟩α⟨p̂⟩αe
i
h̄
⟨p̂⟩αqe−

ω0
2h̄

(q−⟨q̂⟩α)2 , (11)

where ⟨q̂⟩α =
√
2h̄/(ω0)α1, ⟨p̂⟩α =

√
2ω0h̄ α2, α = α1 + iα2, α1, α2− real constants.

On the other side, squeezed states can be found by applying the unitary squeeze operator

Ŝ(z) = exp

[
1

2
(zâ†2 − z∗â2)

]
, z = z1 + iz2, z1, z2 ∈ R, (12)

as introduced in [11] and discussed for example in [12]. Using polar coordinate representation
z = reiθ, with r ≥ 0, θ ∈ [0, 2π), squeeze operator becomes

Ŝ(r, θ) = exp

[
r

(
i
ω0

2h̄
(sin θ)q2 − (cos θ)(q

∂

∂q
+

1

2
) + i

h̄

2ω0
sin θ

∂2

∂q2

)]
, (13)

and it can be disentangled as product of exponential operators in the form

Ŝ(r, θ) =
1√

cosh r + cos θ sinh r
× exp

[
iω0

2h̄

(
sin θ sinh r

cosh r + cos θ sinh r

)
q2
]

× exp

[
− ln(cosh r + cos θ sinh r)q

∂

∂q

]
× exp

[
ih̄

2ω0

(
sin θ sinh r

cosh r + cos θ sinh r

)
∂2

∂q2

]
. (14)

Therefore, time-independent squeezed coherent states of standard harmonic oscillator, which we
denote by χ0

α,r,θ(q) are obtained using

χ0
α,r,θ(q) = D̂(α)Ŝ(r, θ)φ0(q),

and explicitly we get

χ0
α,r,θ(q) =

√
ω0

πh̄
× 1√

S0
r,θ

× exp [− iα1α2]× exp

[
− i

2

∫ r

0

sin θ

(S0
r,θ)

2
dr

]
× exp

[
iα2

√
2ω0

h̄
q

]

× exp

[
iω0

2h̄
sin θ sinh(2r)

(
q − α1

√
2h̄/ω0

S0
r,θ

)2]
× exp

[
− ω0

2h̄

(
q − α1

√
2h̄/ω0

S0
r,θ

)2]
, (15)

where

S0
r,θ =

√
cosh2 r + cos θ sinh 2r + sinh2 r, (16)
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denotes the initial squeezing, that is S0
r,θ is the squeezing coefficient due to the action of the

squeeze operator Ŝ(r, θ) on the ground state. In this work, we shall consider the cases when
θ = 0 and θ = π, which lead to squeezing of the form S0

r,θ = e±r.
Then, time-evolution of squeezed coherent states is found according to

χα,r,θ(q, t) = Û(t, t0)χ
0
α,r,θ(q), (17)

and explicitly we get

χα,r,θ(q, t) =

(
ω0

πh̄

) 1
4 1√

Qr,θ(t)
× exp

[
− i

2

∫ t

t0

ω0e
−γsds

Q2
r,θ(s)

]

× exp

[
i

h̄

∫ t

t0

(
− eγs

2
(ẋp(s)−B(s)xp(s))

2 +
ω2
0e

γs

2
x2p(s)

)
ds

]
× exp

[
i

h̄
(ẋp(t)−B(t)xp(t))q

]
× exp

[
ieγt

2h̄

(
ẋ1(t)

x1(t)
−B(t)

)
(q − xp(t))

2
]

× exp

{
i

2h̄

(
ω0x0
e±r

)2x2(t)

x1(t)

(
(q − xp(t))−

√
2h̄/ω0x

−1
0 x1(t)α1 + ie±rα2

Qr,θ(t)

)2}
× exp

[
− ω0

2h̄

(
(q − xp(t))−

√
2h̄/ω0x

−1
0 x1(t)α1 + ie±rα2

Qr,θ(t)

)2]
, (18)

where

Qr,θ(t) =

√(
e±rx1(t)

x0

)2

+

(
x0ω0e∓rx2(t)

)2

. (19)

is the generalized squeezing coefficient for θ = 0 and θ = π. The corresponding probability
density ρα,r,θ(q, t) = |χα,r,θ(q, t)|2 becomes

ρα,r,θ(q, t) =

√
ω0

πh̄
× 1

Qr,θ(t)
× exp

{
−
[√

ω0

h̄

(
q − ⟨q̂⟩α(t)
Qr,θ(t)

)]2}
, (20)

where expectation values of position and momentum are

⟨q̂⟩α(t) =
√

2h̄

ω0

(
α1

x0
x1(t) + α2(ω0x0)x2(t)

)
+ xp(t), (21)

⟨p̂⟩α(t) =
√

2h̄

ω0

(
α1

x0
p1(t) + α2(ω0x0)p2(t)

)
+ pp(t), (22)

and uncertainties and uncertainty product become

(∆q̂)r,θ(t) =

√
h̄

2ω0
Qr,θ(t),

(∆p̂)r,θ(t) =

√
ω0h̄

2

1

Qr,θ(t)

√√√√1 +
(eγtQ2

r,θ(t))
2

ω2
0

(
Q̇r,θ(t)

Qr,θ(t)
−B(t)

)2

, (23)

(∆q̂∆p̂)r,θ(t) =
h̄

2

√√√√1 +
(eγtQ2

r,θ(t))
2

ω2
0

(
Q̇r,θ(t)

Qr,θ(t)
−B(t)

)2

. (24)

We note that for r = 0, above results reduce to that for the time-evolved coherent states.
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3. Exactly solvable models

Squeezing coefficient Qr,θ(t) given by (19), clearly depends not only on the parameters r and θ
of the squeezing operator, but also on the homogeneous solutions x1(t) and x2(t) of the classical
equation of motion, which in turn depend on the time-variable parameter B(t). In this section,
we find and discuss the influence of these parameters on the squeezing properties of the wave
packets.

From the classical equation of motion given by Eq.(7), one can see that, in general parameter
B(t) can essentially modify the original frequency. In this work, we choose B(t) such that the
Caldirola-Kanai type oscillator structure is preserved. Precisely, we take −(Ḃ+B2+γB) = Λ2

0,
where Λ2

0 > ω2
0. Therefore, the classical equation becomes

ẍ+ γẋ+ (ω2
0 + Λ2

0)x = D0 cos(ωt), (25)

with constant frequency ω2
0 + Λ2

0 > 0, Λ2
0− being the frequency modification in position space,

and
Ω2
d = ω2

0 + Λ2
0 − γ2/4

gives the frequency Ωd of the modified damped oscillator. Depending on the sign of Ω2
B =

Λ2
0 − γ2/4, time-dependent functions B(t) satisfying these conditions are:

(i) B(t) = −(γ/2) + Ω′
B tanh(Ω′

Bt− β), Ω′
B =

√
(γ2/4)− Λ2

0, when −ω2
0 < Λ2

0 < γ2/4,

(ii) B(t) = −(γ/2) + b/(1 + bt), when Λ2
0 = γ2/4,

(iii) B(t) = −(γ/2)− ΩB tan(ΩBt− β), ΩB =
√
Λ2
0 − (γ2/4), when Λ2

0 > γ2/4.

According to this, we investigate the following three models.

3.1. Model 1
First, we consider a generalized Caldirola-Kanai oscillator with Hamiltonian (3) and squeezing

parameter B(t) = −(γ/2) + Ω′
B tanh(Ω′

Bt), where Ω′
B =

√
γ2/4− Λ2

0 and −ω2
0 < Λ2

0 < γ2/4.

Then, Ω2
d = ω2

0+Λ2
0−γ2/4 and we have the cases: (i) Ω2

d < 0 (overdamping), (ii) Ω2
d = 0 (critical

damping), and (iii) Ω2
d > 0 (underdamping). We give the results only for the underdamping

case. That is, let Ω2
d > 0, which means −ω2

0 + γ2/4 < Λ2
0 < γ2/4. Then, homogenous solutions

of the classical equation in position space are

x1(t) = x0e
−γt/2 cos(Ωdt), x2(t) =

1

x0Ωd
e−γt/2 sin(Ωdt),

and particular solution is

xp(t) = Ahe
−γt/2 cos(Ωdt− βh) +Ap cos(ωt− δp),

where Ah and θh are constants such that xp(t) satisfies the initial conditions xp(0) = 0, ẋp(0) = 0.
The amplitude and phase shift of the steady-state part are

Ap =
D0√

((ω2
0 + Λ2

0)− ω2)2 + γ2ω2
, δp = tan−1

(
γω

(ω2
0 + Λ2

0)− ω2

)
,

and resonance frequency and maximum amplitude are found as

ωres =
√
(ω2

0 + Λ2
0)− γ2/2, Ap(ωres) =

D0√
(ω2

0 + Λ2
0)γ

2 − γ4

4

, Λ2
0 > γ2/4.
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For the special choices θ = 0 and θ = π(z = ±r), squeezing coefficient is

Qr,θ(t) = e−γt/2

√
e±2r cos2(Ωdt) +

ω2
0

Ω2
d

e∓2r sin2(Ωdt), (26)

and uncertainties become (∆q̂)r,θ(t) =
√
h̄/2ω0Qr,θ(t),

(∆p̂)r,θ(t) =

√
ω0h̄

2

1

Qr,θ(t)

√√√√1 +
e2γtQ4

r,θ

ω2
0

(
Q̇r,θ(t)

Qr,θ(t)
+

γ

2
− Ω′

B tanh(Ω′
Bt)

)2

,

(∆q̂∆p̂)r,θ(t) =
h̄

2

{
1 +

1

ω2
0

[
Ω′
B tanh(Ω′

Bt)(e
±2r cos2(Ωdt) +

ω2
0

Ω2
d

e∓2r sin2(Ωdt))

+
1

2

(
Ωde

±2r − ω2
0

Ωd
e∓2r

)
sin(2Ωdt)

]2}1/2

.

1 2 3 4 5 6
t

0.5

1.0

1.5

q

1 2 3 4 5 6
t

20

40

60

p

1 2 3 4 5 6
t

2

4

6

8

q p

(a) (b) (c)

Figure 1. Model 1:For ω0 =
√
12, γ = 1, Λ2

0 = −31/4,Ωd = 2,Ω′
B = 2

√
2, r = 0, 1, 3/2, θ = 0.

(a)Uncertainty (∆q̂)r,θ(t), (b)Uncertainty (∆p̂)r,θ(t), (c) Uncertainty product (∆q̂∆p̂)r,θ.

In Fig.1(a), we show that for given values γ, ω0 and Λ2
0, when r increases, the amplitude

of oscillations of (∆q̂)r,θ(t) increases. As an example, in Fig.2(a), we plot the probability
density ρα,r,θ(q, t) of the ground state (α = 0) without displacement (xp(t) = 0) and observe
oscillatory squeezing of the width. In Fig.2(b), we show ρα,r,θ(q, t) under periodic displacement

xp(t) = cos(
√
23/2t− tan−1(

√
46)) at resonance frequency ω =

√
23/2.

3.2. Model 2
Next, we consider the quantum Hamiltonian given by (3) with squeezing parameter B(t) =
−(γ/2) + b/(1 + bt), where b is an arbitrary constant. Here, since Λ2

0 = γ2/4 for any real
constant b, we have Ωd = ω0. Thus, no matter what is the sign of Ω2

0 = ω2
0−γ2/4 for the original

oscillator, if one adds to the system B(t) defined here, the new oscillator always becomes in the
underdamping case. The corresponding homogenous solutions are of the form

x1(t) =
x0
ω0

√
ω2
0 + b2e−γt/2 cos(ω0t− δ), x2(t) =

1

ω0x0
e−γt/2 sin(ω0t), δ = tan−1(b/ω0),

and particular solution xp(t) = xh(t) + Ap cos(ωt − δp), where xh(t) is the transient part such
that xp(t) satisfies initial conditions xp(0) = 0, ẋp(0) = 0. The amplitude and phase shift of the
steady-state part of xp(t) are

Ap =
D0√

((ω2
0 + γ2/4)− ω2)2 + γ2ω2

, δp = arctan

(
γω

(ω2
0 + γ2/4)− ω2

)
.
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(a) (b)

Figure 2. Model 1: Probability density ρα,r,θ(q, t) with γ = 1, ω0 =
√
12,Λ2

0 = 0, h̄ = 1, α =
0, r = 1/2, θ = 0 (a)ρα,r,θ(q, t) without displacement and (b) ρα,r,θ(q, t) displaced by xp(t) at

resonance frequency ω =
√
23/2, D0 =

√
47/2.

For θ = 0 and θ = π, we have squeezing coefficient

Qr,θ(t)|r=0 = e−γt/2

√√√√(ω2
0 + b2

ω2
0

)
e±2r cos2(ω0t− δ) + e∓2r sin2(ω0t),

which is smooth for any constant b, and uncertainties are found as follows:

(∆q̂)r,θ(t) =
√
h̄/2ω0Qr,θ(t),

(∆p̂)r,θ(t) =

√
ω0h̄

2

1

Qr,θ(t)

√√√√1 +
e2γtQ4

r,θ

ω2
0

(
Q̇r,θ(t)

Qr,θ(t)
+

γ

2
− b

1 + bt

)2

,

(∆q̂)r,θ(∆p̂)r,θ(t) =
h̄

2

{
1 +

1

4

[(
2b/ω0

1 + bt

)((
ω2
0 + b2

ω2
0

)
e±2r cos2(ω0t− δ) + e∓2r sin2(ω0t)

)
+

(
ω2
0 + b2

ω2
0

)
e±2r sin(2(ω0t− δ))− e∓2r sin(2ω0t)

]2}1/2

.

In this model, for fixed values of r > 0 and the frequency ω0, the amplitude of oscillations
of (∆q̂)r,θ(t) can be increased by increasing the value of |b|. And when |b| → 0, the amplitude
of oscillations decreases, as one can see in Fig.3(a). In Fig.4, we show the probability density
ρα,r,θ(q, θ) when b = 6, (a) for xp(t) = 0 and (b) for xp(t) cos(

√
47/2t−tan−1(

√
47)) at resonance

frequency ω =
√
47/2 and observe the oscillatory squeezing in (∆q̂)r,θ(t).

3.3. Model 3
Now, consider the Hamiltonian (3) with B(t) = −(γ/2)−ΩB tan(ΩBt), where ΩB =

√
Λ2
0 − γ2/4

and Λ2
0 > γ2/4. Here, B(t) is periodic with singularities at times t = (n−1/2)π/ΩB, n = 1, 2, ....
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Figure 3. Model 2:For ω0 =
√
12, γ = 1, and b = 0, 3, 6, r = 1/2, θ = 0. (a)Uncertainty

(∆q̂)r,θ(t), (b)Uncertainty (∆p̂)r,θ(t), (c) Uncertainty product (∆q̂∆p̂)r,θ.

(a) (b)

Figure 4. Model 2: Probability density ρα,r,θ(q, t) with γ = 1, ω0 =
√
12, b = 6, h̄ = 1, α =

0, r = 1/2, θ = 0 (a)ρα,r,θ(q, t) without displacement and (b) ρα,r,θ(q, t) displaced by xp(t) at

resonance frequency ω =
√
47/2, D0 =

√
12.

In this model, since Λ2
0 − γ2/4 > 0, we have Ω2

d = ω2
0 + Λ2

0 − γ2/4 > 0 for any γ and ω0,
which means the modified oscillator is always in the special underdamping case. Solutions of
the classical oscillator have the same form as in Model 1, with only difference the range of the
allowed values of Λ2

0. Therefore, for θ = 0 and θ = π (z = ±r), squeezing coefficient becomes

Qr,θ(t) = e−γt/2

√
e±2r cos2(Ωdt) +

ω2
0

Ω2
d

e∓2r sin2(Ωdt), (27)

and uncertainties are of the form (∆q̂)r,θ(t) =
√
h̄/2ω0Qr,θ(t),

(∆p̂)r,θ(t) =

√
ω0h̄

2

1

Qr,θ(t)

√√√√1 +
e2γtQ4

r,θ

ω2
0

(
Q̇r,θ(t)

Qr,θ(t)
+

γ

2
+ ΩB tan(ΩBt)

)2

,

(∆q̂∆p̂)r,θ(t) =
h̄

2

{
1 +

1

ω2
0

[
ΩB tan(ΩBt)(e

±2r cos2(Ωdt) +
ω2
0

Ω2
d

e∓2r sin2(Ωdt))

+
1

2

(
Ωde

±2r − ω2
0

Ωd
e∓2r

)
sin(2Ωdt)

]2}1/2

.
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For this model, uncertainty of position (∆q̂)r,θ(t) is smooth and oscillatory, and approaches zero

0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

0.5

1.0

1.5

q

0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

5

10

15

20

25

30

p

0.2 0.4 0.6 0.8 1.0 1.2 1.4
t

1

2

3

4

5

q p

(a) (b) (c)

Figure 5. Model 3: ω0 =
√
12, γ = 1, and Λ0 =

√
209/2, θ = 0. (a)Uncertainty (∆q̂)r,θ(t) for

r = 0, 1/2, 3/2, (b)Uncertainty (∆p̂)r,θ(t) for r = 1/2, (c) Uncertainty product (∆q̂∆p̂)r,θ for
r = 1/2.

as increasing time, see Fig.5(a). But uncertainty of momentum and uncertainty product have
singularities at the points where B(t) is singular, see Fig.5(b) and 5(c). Then, in Fig.6(a), we plot
the probability density ρα,r,θ(q, t), without displacement (xp(t) = 0) and observe the oscillatory
squeezing of the width. Then, in Fig.6(b), we show ρα,r,θ(q, t) under periodic displacement

xp(t) = cos(
√
255/2t− tan−1(

√
255)) at resonance frequency ω =

√
255/2.

(a) (b)

Figure 6. Model 3: Probability density ρα,r,θ(q, t) with γ = 1, ω0 =
√
12,Λ0 =

√
209/2, h̄ =

1, α = 0, r = 1/2, θ = 0 (a)ρα,r,θ(q, t) without displacement and (b) ρα,r,θ(q, t) displaced by xp(t)

at resonance frequency ω =
√
255/2, D0 = 8.
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