
2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

Featured Event Sequence Graphs for Model-Based
Incremental Testing of Software Product Lines

Tugkan Tuglular
Dept. ofComputer Engineering

Izmir institute ofTechnology
Izmir, Turkey

tugkantuglular@iyte.edu.tr

Mutlu Beyazit
Dept. ofComputer Engineering

Yaqar University
Izmir, Turkey

mutlu.beyazit@yasar.edu.tr

Dilek Öztürk
Dept. ofComputer Engineering

Izmirinstitute ofTechnology
Izmir, Turkey

dilekozturk@iyte.edu.tr

Abstract—The goal of software product lines (SPLs) is rapid
development of high-quality software products in a specific
domain with cost minimization. To assure quality of software
products from SPLs, products need to be tested systematically.
However, testing every product variant in isolation is generally
not feasible for large number of product variants. An approach
to deal with this issue is to use incremental testing, where test
artifacts that are developed for one product are reused for
another product which can be obtained by incrementally adding
features to the prior product. We propose a novel model-based
test generation approach for products developed using SPL that
follows incremental testing paradigm. First, we introduce
Featured Event Sequence Graphs (FESGs), an extension of
ESGs, that provide necessary definitions and operations to
support commonalities and variabilities in SPLs with respect to
test models. Then we propose a test generation technique for the
product variants of an SPL, which starts from any product. The
proposed technique with FESGs avoids redundant test
generation for each product from SPL. We compare our
technique with in-isolation testing approach by a case study.

Keywords— software product lines, model-based testing,
incremental testing, event sequence graphs

I. In t r o d u c t io n

The software product lines paradigm promises faster
development cycles and increased quality by systematically
reusing software assets [1], The paradigm enables a family of
related products to be developed by selecting features from a
feature diagram. An example feature diagram, Soda Vending
Machine (SVM), is given inF ig.l, which is used as a running
example in the paper. Using this diagram related products can
be developed such as one serving free tea, one serving both
tea and soda in EUR, and one servingjust soda inUSD.

Model-based testing (MBT) has a high potential to utilize
reuse opportunities in testing SPLs [2], There are various
MBT techniques proposed for SPLs in the literature as
explained in Section VI. However, it has been noted that most
of the existing approaches for SPL testing may potentially
show at least one of the following two deficiencies [3]:

1. They require one superimposing specification with all
possible variants of the product line [4], which
becomes intractable for large-scale product lines
because of computational overhead [3],

2. Focus is on structural and syntactical variability [5];
behavioral impact of variations is not considered.
Thus, systematic propagation of behavioral properties
from one variant to other variants is not available [3],

Incremental testing of SPLs, which is first proposed by
Uzuncaova et al. [7], copes with those two deficiencies. The

idea of incremental testing of SPLs has been used in various
studies (see Section VI). All of those studies are based on
finite state machines (FSMs) without explicit mapping
between features and FSMs. In other words, it is not shown
how a single feature is represented by states, transitions, etc.
and how states and transitions representing a single feature are
connected to an FSM of a product. These representations are
important in practical sense for the techniques to be used by
industry for traceability reason.

Fig. 1. Example of a SPL feature diagram: soda vending machine
(modified from [6])

The novelty of the proposed approach is as follows. We
introduce Featured Event Sequence Graphs (FESGs), which
are variable test models and used to explicitly capture
behavioral variability in SPLs. We model core features, i.e.
core of the SPL, and each feature as independent partial or full
ESGs, and name them as c-ESG and f-ESG, respectively. The
behavior of a given product is then the ESG that results from
the combination of core ESG and feature ESGs representing
the features of the product.

Initially we have three models for SPL: Feature Model
(FM) with product configurations from feature diagram,
FESGs for expressing feature-based SPL behavior, and
mapping between features and FESGs. We start with a product
with core features and selected features, prepare test models
for this product and generate test cases for specified coverage
criteria. Next, we obtain another valid product with adding
features, reuse existing test models as well as test cases
through automatic adaptation and composition.

The paper is organized as follows. In Section II,
foundations of feature modelling and ESGs are introduced.
FESGs for test models is presented in Section III. The
incremental SPL testing approach is described in Section IV
and validated through a case study in Section V. Related work
is given in Section VI and Section VII concludes the paper.

978-1-7281-2607-4/19/$31.00 ©2019 IEEE 197
DOI 10.1109/COMPSAC.2019.00035

_ IEEE
computer

society

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 21,2022 at 08:08:47 UTC from IEEE Xplore. Restrictions apply.

II. F u n d a m e n t a l s

A. FeatureModeling
Feature diagrams, originally proposed by Kang et al. [8],

are used to represent the configuration options and the
dependencies of features in software product lines. An
example SPL feature diagram is given in Fig. 1. The root
represents the SPL and the nodes are features, which can be
mandatory or optional, features with OR relationship can exist
in a product in different combinations. If there is XOR
relationship between two features, only one of them can exist
in a product of the SPL. There are also require and exclude
relationships in feature diagrams, where the former denotes a
feature that cannot exist without required feature and the latter
denotes a feature that omits the excluded feature.

Feature diagrams are generally user-centric. Feature
models are formal representations of feature diagrams. In this
work, we use the following definitions of feature model and
respective product configuration, i.e., a feature selection.

Definition 1. Let B denote the domain of Boolean values
by B = {false, true}. L e tF b e a finite set ofBoolean variables
(features). A feature model (FM) fin: (F ^ B) ^ B is given as a
propositional formula over the se tF [3]

Definition 2. A product configuration (PC) p: F ^ B is an
assignment ofBoolean values to features such thatfm(p)=true
holds. [3]

Product diagrams are user-centric representations of
product configurations, where all decisions about options and
selections are made for the product and necessary
dependencies are concretized. A product diagram of SVM
SPL is given in Fig.2, which shows ServeSodaBeverage,
ServeTeaBeverage, CancelPurchase, and EURPurchase
features of the product called EUR-Soda-Tea-SVM.

Fig. 2. Product diagram ofEUR-Soda-Tea-SVM

B. Test Generation -with Event Sequence Graphs
In this work, we use the following definitions of event

sequence graphs (ESGs).

Definition 3. An event sequence graph (ESG) (V, E) is a
directed graph where V A 0 is a finite set of nodes (vertices)
and E Q V x V is a finite set of arcs (edges), and E,V Q V
finite sets of distinguished vertices with { E H,y E T, called
entry nodes and exit nodes, respectively. [9]

Example 1. For the ESG given inFig.3,V= {prompt,
payEUR, select, serveSoda, serveTea, cancel, retumMoney},
H={prompt}, F={serveSoda, serveTea, retumMoney} and
E={(prompt, payEUR), (payEUR, select),(payEUR, cancel),
(select, serveSoda),(select, serveTea),(cancel,retumMoney)}.
Note that arcs from pseudo vertex [, and to pseudo vertex],
are not included in E.

Definition 4. Let (V, E) be an ESG. Then a sequence of
vertices < v0, ... , v k > is called an event sequence (ES) if the
sequence is a walk on ESG.

Pseudo nodes represented by ‘[’ and ‘]’ respectively, are
not included in V and also not included in ESs. They enable a
simpler representation for the algorithms to construct minimal
test sets. They are not considered in determining the initial,
final vertices, or length of an ES.

Each edge of an ESG represents a legal event pair, or
simply, an event pair (EP). ES < v t,v k > oflength2isanEP.

Example 2. For the ESG given in Fig.3, payEUR-select-
serveSoda is an ES of length 3 with initial vertex payEUR and
end vertex serveSoda.

Definition 5. An ES < v 0, ... , v k > is called a complete
event sequence (CES), if v0 = £, £ H isthe entry and vk = yis
the exit. [10]

A complete ES (CES) starts at the entry of the ESG and
ends at its exits, i.e., it represents a walk through the ESG. A
sequence of n consecutive edges forms an ES oflength n+1.

A CES also represents a test sequence, i.e. test case, of the
ESG realized by the form “(initial) user inputs ^ (interim)
system responses ^ . . . ^ (final) system response” [11],

Example 3. prompt-payEUR-select-serveSoda is a CES
of the ESG in Fig.3. CESs represent walks from the entry of
the ESG to its exit.

Example 4. For the ESG given in Fig.3, CESs covering all
ESs oflength 2 (test sequences for length 2) are as follows.

TS1: prompt payEUR, select, serveSoda
TS2: prompt, payEUR, select, serveTea
TS3: prompt, payEUR, cancel, retumMoney

III. F e a t u r e d E v e n t Se q u e n c e G r a p h s

Information about configurations, which represents a
specific product, is not available in feature diagrams. To solve
this problem, FMs (Definition 1) and PC (Definition 2) are
introduced. Similarly, there is a need for a specific model to
associate features to test models, so, when a feature is added
to an existing PC, the corresponding test model can be updated
accordingly. To fulfill this need, we propose Featured Event
Sequence Graphs (FESGs), an extension ofESGs.

Definition 6. A Featured Event Sequence Graph (FESG)
is composed of a core ESG (c-ESG) and a set of feature ESGs
(f-ESGs) based on PC information. A FESG can be
transformed to an ESG but not vice versa.

Definition 7. A core ESG (c-ESG) corresponds to core
features, which exist in all product configurations.

Fig.4 shows the c-ESG of the running example. A c-ESG
represents the core behavior of SPL. Behavior of selected
features represented as f-ESGs are joined to c-ESG to
compose the behavior of a specific SPL product. As seen in
Fig.4, prompt and select events are in the core behavior of
SVM SPL and exist in every product generated for SVM SPL.
The connection information is stored with f-ESGs.

198

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 21,2022 at 08:08:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. c-ESG of SVM SPL

Definition 8. A feature ESG (f-ESG) corresponds to a
specific feature in the feature model. Different from ordinary
ESG nodes and c-ESG nodes, an f-ESG contains nodes
associated with variability points, which are called connection
events. Connection events are actually events in other c-ESGs
or f-ESGs. They are shown as (ESG, Event) pairs.

Fig.5 shows the behavior of Serve Tea Beverage feature of
SVM SPL. This f-ESG contains connection point information
as seen in the leftmost node and rightmost node, where
serveTea event can be connected. Fig.6 shows the behavior of
EUR Purchase feature of SVM SPL, where payEUR event is
to be connected to Core_SVM c-ESG and also to
Feature_Cancel f-ESG. Those connections are mandatory.

Fig. 5. Serve Tea Beverage feature f-ESG of SVM SPL

Fig. 6. EUR Purchase feature f-ESG of SVM SPL

In a c-ESG, connection events are not included to exploit
reuse. However, each f-ESG holds necessary information
about connection events, i.e. variability points. For each leaf
in product diagram, there is an f-ESG.

A c-ESG and a set of f-ESGs compose an FESG for the
SPL under consideration. An FESG corresponds to the initial
test model of SPL, however it is not a superimposed test
model. Section IV explains FESG test composition technique.

IV. Model-Based Incremental Testing of Software
Product Lines Using FESGs

The proposed model-based incremental testing technique
requires three models: (1) Feature Model (FM) with product
configurations corresponding to feature diagram, (2) Featured
Event Sequence Graphs for expressing SPL behavior of core
and features, and (3) mapping between features and FESGs.
The first two models are explained in previous sections. The
last one, the mapping between features and FESGs. With the
selected features for a product, we obtain a product FESG tree.
In a product FESG tree, root node stores link to c-ESG and
leaf nodes store links to corresponding f-ESGs.

A product FESG tree may contain f-ESGs with events that
are not in the product. First, those events must be removed
from corresponding f-ESGs. Then the product FESG tree must
be converted to a product FESG lattice, where all connection
relationships are ordered. The first algorithm of the proposed
technique given below achieves this goal. The notation x-ESG
means either c-ESG or f-ESG.

Consider another product of SVM SPL, that is USD-Soda-
Tea-SVM, which serves Soda and Tea in USD and consumer
can cancel the purchase. To exemplify step 2 of Algorithm 1,

EURpay event is removed from Cancel Purchase feature f-
ESG and resulting f-ESG can be seen in Fig.7. Once all events
that does not belong to the product are cleared, it is time to
build the product FESG lattice.

Algorithm.l: Construction of product FESG lattice

1. for each f-ESG
2. if it contains events, which are not in the product

configuration, remove them
3. for each f-ESG (f)
4. if it has connection point(s) to c-ESG (c), build f ^ c
5. if it has connection point(s) to other one or more

f-ESGs (g, h, etc.), build f ^ g , f ^ h , etc.
6. loop back

Fig. 7. EURpay removed from Cancel Purchase feature f-ESG

By executing Algorithm 1, we obtain the product FESG
lattice for USD-Soda-Tea-SVM as given in Fig.8, where c-
ESG is at the top (level 0) and f-ESGs with c-ESG connection
points are children of the root (level 1) and so on.

Fig. 8. Product FESG lattice for USD-Soda-Tea-SVM

The partial test sequence(s) to cover ESs of length 2 of
each distinct path in the product FESG lattice for product
USD-Soda-Tea-SVM are as follows:

PTS1: prompt, ..., select, serveTea
PTS2: prompt, ..., select, serveSoda
PTS3: ..., payUSD, cancel, returnMoney
PTS4: prompt, payUSD, select, ...
PTS5: prompt, payUSD, cancel, returnMoney

As seen above, the first partial test sequence (PTS1) is
generated from path ServeTea Core, PTS2 is generated from
path ServeSoda ^ Core, PTS3 is generated from path Cancel
^ Core, PTS4 and PTS5 are generated from path Cancel ^
USDpay ^Core in Fig.8. It is important to notice that although
PTS3 is in PTS5, we do not remove PTS3 since we do not
know what kind of combinations it may have with other PTSs.

For the composition of test sequences, i.e. CESs in ESG
terminology, we need to combine PTSs in all possible ways.
The second algorithm of the proposed technique given below
achieves this goal. To improve performance of Algorithm 2,
we suggest refactoring design of f-ESGs in such a way that a
level n f-ESG stores the connection point information to the
same and lower level f-ESGs and if exists to c-ESG.

The prompt, select, and payUSD events are connection
points for the partial test sequences of the running example
and when they are connected, we obtain the following CESs.

prompt, payUSD, select, serveSoda
prompt, payUSD, select, serveTea
prompt, payUSD, cancel, returnMoney

If we have built the ESG for product USD-Soda-Tea-
SVM, we would obtain the ESG shown in Fig.9.

199

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 21,2022 at 08:08:47 UTC from IEEE Xplore. Restrictions apply.

Algorithm.2: Composition of producttest sequences

1. find connection points in partial test sequences
2. order them w.r.t their levels in product FESG lattice, c-ESG

having the highest order
3. starting from lowest order for each connection point
4. find PTSs from PTS list and classify them as preceding and

succeeding sequences with respect to this connection point
5. combine with all preceding sequences and add to PTS list
6. combine with all succeeding sequences and add to PTS list

The test sequences generated from the ESG in Fig. 9 to
cover ESs oflength 2 would be the same set of CESs.

This simple proof of concept indicates that we can obtain
same test sequences from FESG lattice without constructing a
model for the complete product. The advantage of using
product FESG lattice is that we can reuse partial test
sequences for other products that is close as a delta, where
delta is a set of paths from leaf to root in product FESG lattice.

Consider another payUSD SVM product that serves soda
but not tea. Let’s call this product base product as in the
literature. If we have built the ESG for this base product USD-
Soda-SVM, we would obtain the ESG shown inFig.10.

Fig. 10. Product ESG ofUSD-Soda-SVM

Algorithm.3: Incremental composition of producttest sequences

1. find connection points in partial test sequences of the delta
2. order them w.r.t their levels in product FESG lattice, c-ESG

having the highest order
3. starting from lowest order for each connection point and using

already composed PTSs for the previous product
4. find PTSs from PTS list and classify them as preceding and

succeeding sequences with respect to this connection point
5. combine with all preceding sequences and add to PTS list
6. combine with all succeeding sequences and add to PTS list

Assume that PTSs, composed PTSs, and CESs are readily
available for this base product. From this base product, we can
obtain USD-Soda-Tea-SVM product FESG lattice by adding
ServeTea ^ Core path, or delta, to product FESG lattice of
base product USD-Soda-SVM. In this case, we would like to
obtain CESs for the new product reusing existing PTSs and
composed PTSs of the base product. Algorithm 3 achieves this
goal. Please note that steps 4-6 are the same with steps 4-6 of
Algorithm 2. The main difference is that Algorithm 3 reuses
existing PTSs and composed PTSs at each level or order.

The proposed technique in this paper follows regression-
based incremental approach. It reuses existing partial test
models as well as partial test sequences through automatic
adaptation and composition to generate test sequences for the
product under consideration.

V. Case Study

As a case study, we work on American type checkers game
maker (ATCGM) SPL. To our knowledge, it is the first time
this SPL is used in academic research. From American type
checkers game maker SPL, three products can be generated:
Children checkers, American checkers, and Spanish checkers.

Although American checkers (also British Draughts) and
Spanish checkers are well-known games, Children checkers is
created by the authors of this paper to show how additional
games can be easily generated from SPL. Another reason for
selecting ATCGM SPL is to show that if features in feature
diagrams are not behavioral, they can be transformed to
behavioral features. This is rather the choice of product
designers. The proposed approaches in the literature work
with both types of feature diagrams.

American checkers is played on a chess board with 12
pieces called pawns. Pawns move one space diagonally and
capture by jumping over an opponent's piece. Pawns can only
move forward until they reach the last row. After reaching the
last row, pawns are promoted to kings and can move forward
or backward. Game ends when a player’s all pieces are
captured. In Spanish checkers, all rules are the same except
pawns are promoted to queens. A piece has to capture
opponent's piece if it is possible. In our ATCGM SPL, this rule
is exempted in children checkers. Moreover, in children
checkers, game ends if a pawn reaches to last row.

Fig. 11. Feature diagram of American type checkers game maker SPL

Feature diagram of ATCGM SPL is given in F ig.ll.
Features in the diagram are not necessarily behavioral such as
pieces in configuration feature. However, the require property
ties them to rules, which are tied to actions and actions are
behavioral. The behavioral feature models can be obtained
from a transformed product diagram as given inFig.12.

Fig. 12. Transformed product diagram of Spanish checkers

200

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 21,2022 at 08:08:47 UTC from IEEE Xplore. Restrictions apply.

From the transformed product diagram, we obtain product
FESG lattice using Algorithm 1. The product FESG lattice for
product Spanish checkers is given inFig.13.

Fig. 13. Product FESG lattice for Spanish checkers

Fig. 14 shows the c-ESG of the ATCGM SPL, which
appears at the top of product FESG lattice at level 0. The c-
ESG represents core behavior that is valid for all products and
does not hold any information about the connection points.

For each behavioral feature seen in the transformed
product diagram, there is an f-ESG. Two of those f-ESGs for
ATCGM SPL are given in Fig.22 and Fig.23.
PromoteToQueen f-ESG in Fig.22 holds connection point
information related to Capture f-ESG in Fig.23, whereas
Capture f-ESG does not hold connection point information
related to PromoteToQueen f-ESG. As explained in Section
IV, with these refactoring on f-ESGs we improve performance
of Algorithm 2. Table I shows FESG for ATCGM SPL. Four
of f-ESGs are refactored and they are typed in bold.

Product ESGs for the Children checkers, American, and
Spanish checkers are given in Table II to show difference and
at same time complexity of test models for the case study.
American checkers ESG is the same in terms of structure
except Queens are replaced with Kings. Therefore, they have
the same number of nodes and edges as seen in Table II.

TABLE I. ATCGM SPL FESG Details

Before
Refactoring

After
Refactoring

FESG # of
Nodes

of
Edges

of
Nodes

of
Edges

c-ESG 3 2 3 2
KingJump f-ESG 11 24 10 16
OueenJump f-ESG 11 24 10 16
PawnJump f-ESG 7 12 6 8
KingMarch f-ESG 10 24 10 24
QueenMarch f-ESG 10 24 10 24
PawnMarch f-ESG 6 12 6 12
Capture f-ESG 14 13 12 11
PromoteToKing f-ESG 7 6 7 6
PromoteToQueen f-ESG 7 6 7 6
TOTAL 86 147 81 125

TABLE II. Checkers Product ESGs in Isolation

Number of
Nodes

Number of
Edges

Product Children Checkers ESG 14 33
Product American Checkers ESG 31 95
Product Spanish Checkers ESG 31 95
TOTAL 76 223

It is known that SPL-based development approach is better
if the software products are similar. Table III shows that our
approach agrees with this statement in terms of test artefacts.

TABLE III. Model Comparison of SPL and Products in
Isolation

Number of
Nodes

Number of
Edges

ATCGM SPL refactored FESG 81 125
All Products in isolation (3 ESGs) 76 223

Test sequences for checkers products are obtained using
both our proposed technique and existing ESG test generation
technique. Our proposed technique is executed on the FESG
of each product and results are given with “in SPL” tag,
whereas the existing ESG test generation technique is
executed on the ESG of each product and results are given
with “in Isolation” tag in Table IV for coverage of ESs of
length 2. Our proposed technique results in more CESs and
greater numbers of events.

TABLE IV. Test Sequence Comparison of SPL and Products in
Isolation

o f
CES

o f
Events

Children Checkers in SPL 14 81
Children Checkers in Isolation 1 54
American Checkers in SPL 42 256
American Checkers in Isolation 1 171
Spanish Checkers in SPL 42 256
Spanish Checkers in Isolation 1 171

Time taken to generate CESs using both our proposed
technique and existing ESG test generation technique is given
in Table V for 10 runs. The runs are performed on a laptop
having Intel 0.80 GHz and 4 GB RAM with 64-bit Windows
10 Enterprise operating system.

TABLE V. Test Sequence Generation Time Comparison of SPL
and Products in Isolation

Min
(ms)

Max
(ms)

Avg
(ms)

Children Checkers in SPL 5 11 6.8
Children Checkers in Isolation 53 61 57.3
American Checkers in SPL 11 21 12.3
American Checkers in Isolation 56 94 78.7
Spanish Checkers in SPL 11 23 12.4
Spanish Checkers in Isolation 57 76 63.8

Results in Table IV indicate that our approach yields test
sets, which are ~50% larger than the test sets obtained by
generating test cases from complete product models.
However, as demonstrated by Table V, composition-based
test generation takes ~80% to ~88% less time than full-
product-based test generation. These results show that the
proposed approach is a good alternative considering the fact
that test cases generated from full-product models using an

201

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 21,2022 at 08:08:47 UTC from IEEE Xplore. Restrictions apply.

optimized test generation algorithm tend to be long and few
(see Table IV). These properties may cause an increase in the
testing costs due to the fact that such test cases are harder to
trace and too many events need to be re-executed after each
fault correction takes place.

VI. R e l a t e d W o r k

One of the first proposed approaches in MBT of SPLs was
ScenTED (Scenario based TEst case Derivation) technique,
which provides reuse of the core assets and components for
the reuse of the test cases [12]. Another important research on
MBT of SPLs was performed by Olimpiew [2], where CADeT
(Customizable Activity diagrams, Decision tables and Test
specifications) method is proposed. This method produces
feature-based test cases using UML use case and activity
diagrams. It uses the decision tables for modeling variability
and generating test cases. Cichos et al. [13] proposed a
technique called 150% finite state machines, which employs a
superimposed model for the SPL under consideration and
includes a coverage-driven SPL test suite generation method.
Model-checking is another approach for model-based
verification of SPLs. Kishi and Noda [14] proposed to model
the design as a finite state machine and to check whether the
product actually has the specified features using model
checking. There were several proposals for applying model
checking to SPLs [15][6][16],

Two research directions for reducing redundancies in
testing of SPLs currently exist: regression-based SPL testing
and SPL subset selection heuristics [17]. Since our is on
regression-based SPL testing, we cover that literature here.
Uzuncaova et al. [18] proposed an approach that uses SAT-
based analysis to generate test inputs for each product in SPL.
Their approach enables incremental refinement of test suites
for a particular product variant. Neto et al. [19] proposed an
approach that reduces the testing effort through reusing test
cases taking advantage of SPL architectures similarities.
Lochau et al. [17] suggested a strategy for test artifact reuse
between products. Our work follows an extended strategy.
The novelty of our strategy is that our delta is simple and that
makes our approach flexible in the sense that we do not need
to start with a base product and incrementally reach others.

VII. C o n c l u s io n

This paper presents a novel compositional and incremental
model-based test sequence generation technique for SPLs that
reuses existing test artefacts and partial test sequences (PTSs).
The proposed approach uses event sequence graphs for
features, called FESGs, as test models. An FESG is composed
of a c-ESG and a set of f-ESGs. A c-ESG models core features
of an SPL, and f-ESGs model selectable features and express
variability in SPL. The proposed technique introduces
algorithms (l) to form a product FESG lattice, (2) to generate
test sequences through composition of PTSs obtained from f-
ESGs with the help of product FESG lattice, and (3) to reuse
existing sequences and new sequences for incremental testing
of another product that is a delta away.

Instantiations of Algorithms 2 and 3 made for Section V
ignore connection/variability points in the middle parts of the
PTSs. Furthermore, all PTSs generated from the c-ESG are
assumed to end with a finish event for efficiency. In the next
step, we plan to relax these assumptions and add an explicit
variability model to our approach in order to increase
utilization of approach in industry.

A c k n o w l e d g m e n t

This research is supported by The Scientific and
Technological Research Council of Turkey (TUBITAK)
under the grant 117E884.

R e f e r e n c e s

[1] X. Devroey et al., “A vision for behavioural model-driven
validation o f software product lines,” in International Symposium
On LeveragingApplications ofFormalM ethods, Verification and
Validation, 2012, pp. 208-222.

[2] E. M. Olimpiew, “Model-based testing for software product lines.”
Ph.D. Dissertation, George Mason, University, 2008.

[3] M. Lochau, S. Mennicke, H. Bailer, and L. Ribbeck, “Incremental
model checking o f delta-oriented software product lines,” .Journal
ofLogical andAlgebraicM ethods in Programming, vol. 85, no. 1,
pp. 245-267, 2016.

[4] K. Czamecki and M. Antkiewicz, “Mapping features to models: A
template approach based on superimposed variants,” in
International conference on generativeprogramming and
component engineering, 2005, pp. 422-437.

[5] S. Apel and D. Hutchins, “A calculus for uniform feature
composition,”ACM Transactions on Programming Languages and
Systems (TOPLAS), vol. 32, no. 5, p. 19, 2010.

[6] A. Classen, “Modelling and model checking variability-intensive
systems.” Ph. D. dissertation, 2011.

[7] E. Uzuncaova, D. Garcia, S. Khurshid, and D. Batory, “Testing
software product lines using incremental test generation,” in
SoftwareReliabilityEngineering, 2008. ISSRE2008. 19th
InternationalSymposium on, 2008, pp. 249-258.

[8] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-oriented domain analysis (FODA) feasibility
study,” Camegie-Mellon Univ Pittsburgh Pa Software Engineering
Inst, 1990.

[9] F. Belli, “Finite state testing and analysis o f graphical user
interfaces,” in Software Reliability Engineering, 2001. ISSRE 2001.
Proceedings. 12thInternationalSymposium on, 2001, pp. 34-43.

[10] F. Belli, C. J. Budnik, and L. White, “Event based modelling,
analysis and testing o f user interactions: approach and case study,”
Software Testing, Verification andReliability, vol. 16, no. 1, pp. 3­
32, 2006.

[11] F. Belli and C. J. Budnik, “Test minimization for human-computer
m teractionfAppliedlntelligence, vol. 26, no. 2, pp. 161-174,
2007.

[12] A. Reuys, E. Kamsties, K. Pohl, and S. Reis, “Model-based system
testing o f software product families,” presented at the International
Conference on Advanced Information Systems Engineering, 2005,
pp. 519-534.

[13] H. Cichos, S. Oster, M. Lochau, and A. Schürr, “Model-based
coverage-driven test suite generation for software product lines,”
presented at the International Conference on Model Driven
Engineering Languages and Systems, 2011, pp. 425-439.

[14] T. Kishi and N. Noda, “Formal verification and software product
lines,” Communications o f theACM , vol. 49, no. 12, pp. 73-77,
2006.

[15] A. Gruler, M. Leucker, and K. Scheidemann, “Modeling and model
checking software product lines,” presented at the International
Conference on Formal Methods for Open Object-Based Distributed
Systems, 2008, pp. 113-131.

[16] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay,
“Symbolic model checking o f software product lines,” presented at
the Proceedings o f the 33rd International Conference on Software
Engineering, 2011, pp. 321-330.

[17] M. Lochau, I. Schaefer, J. Kamischke, and S. Lity, “Incremental
model-based testing o f delta-oriented software product lines,” in
International Conference on Tests andProofs, 2012, pp. 67-82.

[18] E. Uzuncaova, S. Khurshid, and D. Batory, “Incremental test
generation for software product lines,” IEEE transactions on
software engineering, vol. 36, no. 3, pp. 309-322, 2010.

[19] P. A. da M. S. Neto, I. do Carmo Machado, Y. C. Cavalcanti, E. S.
de Almeida, V. C. Garcia, and S. R. de Lemos Meira, “A regression
testing approach for software product lines architectures,”
presented at the Software Components, Architectures and Reuse
(SBCARS), FourthBrazilian Symposium on, 2010, pp. 41-50.

202

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on December 21,2022 at 08:08:47 UTC from IEEE Xplore. Restrictions apply.

