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Abstract—The goal of software product lines (SPLs) is rapid 
development of high-quality software products in a specific 
domain with cost minimization. To assure quality of software 
products from SPLs, products need to be tested systematically. 
However, testing every product variant in isolation is generally 
not feasible for large number of product variants. An approach 
to deal with this issue is to use incremental testing, where test 
artifacts that are developed for one product are reused for 
another product which can be obtained by incrementally adding 
features to the prior product. We propose a novel model-based 
test generation approach for products developed using SPL that 
follows incremental testing paradigm. First, we introduce 
Featured Event Sequence Graphs (FESGs), an extension of 
ESGs, that provide necessary definitions and operations to 
support commonalities and variabilities in SPLs with respect to 
test models. Then we propose a test generation technique for the 
product variants of an SPL, which starts from any product. The 
proposed technique with FESGs avoids redundant test 
generation for each product from SPL. We compare our 
technique with in-isolation testing approach by a case study.

Keywords— software product lines, model-based testing, 
incremental testing, event sequence graphs

I. In t r o d u c t io n

The software product lines paradigm promises faster 
development cycles and increased quality by systematically 
reusing software assets [1], The paradigm enables a family of 
related products to be developed by selecting features from a 
feature diagram. An example feature diagram, Soda Vending 
Machine (SVM), is given inF ig.l, which is used as a running 
example in the paper. Using this diagram related products can 
be developed such as one serving free tea, one serving both 
tea and soda in EUR, and one servingjust soda inUSD.

Model-based testing (MBT) has a high potential to utilize 
reuse opportunities in testing SPLs [2], There are various 
MBT techniques proposed for SPLs in the literature as 
explained in Section VI. However, it has been noted that most 
of the existing approaches for SPL testing may potentially 
show at least one of the following two deficiencies [3]:

1. They require one superimposing specification with all 
possible variants of the product line [4], which 
becomes intractable for large-scale product lines 
because of computational overhead [3],

2. Focus is on structural and syntactical variability [5]; 
behavioral impact of variations is not considered. 
Thus, systematic propagation of behavioral properties 
from one variant to other variants is not available [3],

Incremental testing of SPLs, which is first proposed by 
Uzuncaova et al. [7], copes with those two deficiencies. The

idea of incremental testing of SPLs has been used in various 
studies (see Section VI). All of those studies are based on 
finite state machines (FSMs) without explicit mapping 
between features and FSMs. In other words, it is not shown 
how a single feature is represented by states, transitions, etc. 
and how states and transitions representing a single feature are 
connected to an FSM of a product. These representations are 
important in practical sense for the techniques to be used by 
industry for traceability reason.

Fig. 1. Example of a SPL feature diagram: soda vending machine 
(modified from [6])

The novelty of the proposed approach is as follows. We 
introduce Featured Event Sequence Graphs (FESGs), which 
are variable test models and used to explicitly capture 
behavioral variability in SPLs. We model core features, i.e. 
core of the SPL, and each feature as independent partial or full 
ESGs, and name them as c-ESG and f-ESG, respectively. The 
behavior of a given product is then the ESG that results from 
the combination of core ESG and feature ESGs representing 
the features of the product.

Initially we have three models for SPL: Feature Model 
(FM) with product configurations from feature diagram, 
FESGs for expressing feature-based SPL behavior, and 
mapping between features and FESGs. We start with a product 
with core features and selected features, prepare test models 
for this product and generate test cases for specified coverage 
criteria. Next, we obtain another valid product with adding 
features, reuse existing test models as well as test cases 
through automatic adaptation and composition.

The paper is organized as follows. In Section II, 
foundations of feature modelling and ESGs are introduced. 
FESGs for test models is presented in Section III. The 
incremental SPL testing approach is described in Section IV 
and validated through a case study in Section V. Related work 
is given in Section VI and Section VII concludes the paper.
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II. F u n d a m e n t a l s  

A. FeatureModeling
Feature diagrams, originally proposed by Kang et al. [8], 

are used to represent the configuration options and the 
dependencies of features in software product lines. An 
example SPL feature diagram is given in Fig. 1. The root 
represents the SPL and the nodes are features, which can be 
mandatory or optional, features with OR relationship can exist 
in a product in different combinations. If  there is XOR 
relationship between two features, only one of them can exist 
in a product of the SPL. There are also require and exclude 
relationships in feature diagrams, where the former denotes a 
feature that cannot exist without required feature and the latter 
denotes a feature that omits the excluded feature.

Feature diagrams are generally user-centric. Feature 
models are formal representations of feature diagrams. In this 
work, we use the following definitions of feature model and 
respective product configuration, i.e., a feature selection.

Definition 1. Let B  denote the domain of Boolean values 
by B = {false, true}. L e tF b e  a finite set ofBoolean variables 
(features). A feature model (FM) fin: ( F ^ B ) ^ B  is given as a 
propositional formula over the se tF  [3]

Definition 2. A  product configuration (PC) p: F ^ B  is an 
assignment ofBoolean values to features such thatfm(p)=true 
holds. [3]

Product diagrams are user-centric representations of 
product configurations, where all decisions about options and 
selections are made for the product and necessary 
dependencies are concretized. A product diagram of SVM 
SPL is given in Fig.2, which shows ServeSodaBeverage, 
ServeTeaBeverage, CancelPurchase, and EURPurchase 
features of the product called EUR-Soda-Tea-SVM.

Fig. 2. Product diagram ofEUR-Soda-Tea-SVM

B. Test Generation -with Event Sequence Graphs
In this work, we use the following definitions of event 

sequence graphs (ESGs).

Definition 3. An event sequence graph (ESG) (V, E) is a 
directed graph where V A 0 is a finite set of nodes (vertices) 
and E Q V  x  V is a finite set of arcs (edges), and E,V Q V  
finite sets of distinguished vertices with {  E H,y E T, called 
entry nodes and exit nodes, respectively. [9]

Example 1. For the ESG given inFig.3,V= {prompt, 
payEUR, select, serveSoda, serveTea, cancel, retumMoney}, 
H={prompt}, F={serveSoda, serveTea, retumMoney} and 
E={(prompt, payEUR), (payEUR, select),(payEUR, cancel), 
(select, serveSoda),(select, serveTea),(cancel,retumMoney)}. 
Note that arcs from pseudo vertex [, and to pseudo vertex ], 
are not included in E.

Definition 4. Let (V, E) be an ESG. Then a sequence of 
vertices <  v0, ... , v k > is called an event sequence (ES) if  the 
sequence is a walk on ESG.

Pseudo nodes represented by ‘[’ and ‘]’ respectively, are 
not included in V and also not included in ESs. They enable a 
simpler representation for the algorithms to construct minimal 
test sets. They are not considered in determining the initial, 
final vertices, or length of an ES.

Each edge of an ESG represents a legal event pair, or 
simply, an event pair (EP). ES <  v t,v k > oflength2isanEP.

Example 2. For the ESG given in Fig.3, payEUR-select- 
serveSoda is an ES of length 3 with initial vertex payEUR and 
end vertex serveSoda.

Definition 5. An ES <  v 0, ... , v k > is called a complete 
event sequence (CES), if  v0 = £, £ H isthe entry and vk = yis 
the exit. [10]

A complete ES (CES) starts at the entry of the ESG and 
ends at its exits, i.e., it represents a walk through the ESG. A 
sequence of n consecutive edges forms an ES oflength n+1.

A CES also represents a test sequence, i.e. test case, of the 
ESG realized by the form “(initial) user inputs ^  (interim) 
system responses ^ . . . ^  (final) system response” [11],

Example 3. prompt-payEUR-select-serveSoda is a CES 
of the ESG in Fig.3. CESs represent walks from the entry of 
the ESG to its exit.

Example 4. For the ESG given in Fig.3, CESs covering all 
ESs oflength 2 (test sequences for length 2) are as follows.

TS1: prompt payEUR, select, serveSoda 
TS2: prompt, payEUR, select, serveTea 
TS3: prompt, payEUR, cancel, retumMoney

III. F e a t u r e d  E v e n t  Se q u e n c e  G r a p h s

Information about configurations, which represents a 
specific product, is not available in feature diagrams. To solve 
this problem, FMs (Definition 1) and PC (Definition 2) are 
introduced. Similarly, there is a need for a specific model to 
associate features to test models, so, when a feature is added 
to an existing PC, the corresponding test model can be updated 
accordingly. To fulfill this need, we propose Featured Event 
Sequence Graphs (FESGs), an extension ofESGs.

Definition 6. A Featured Event Sequence Graph (FESG) 
is composed of a core ESG (c-ESG) and a set of feature ESGs 
(f-ESGs) based on PC information. A FESG can be 
transformed to an ESG but not vice versa.

Definition 7. A core ESG (c-ESG) corresponds to core 
features, which exist in all product configurations.

Fig.4 shows the c-ESG of the running example. A c-ESG 
represents the core behavior of SPL. Behavior of selected 
features represented as f-ESGs are joined to c-ESG to 
compose the behavior of a specific SPL product. As seen in 
Fig.4, prompt and select events are in the core behavior of 
SVM SPL and exist in every product generated for SVM SPL. 
The connection information is stored with f-ESGs.
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Fig. 4. c-ESG of SVM SPL

Definition 8. A feature ESG (f-ESG) corresponds to a 
specific feature in the feature model. Different from ordinary 
ESG nodes and c-ESG nodes, an f-ESG contains nodes 
associated with variability points, which are called connection 
events. Connection events are actually events in other c-ESGs 
or f-ESGs. They are shown as (ESG, Event) pairs.

Fig.5 shows the behavior of Serve Tea Beverage feature of 
SVM SPL. This f-ESG contains connection point information 
as seen in the leftmost node and rightmost node, where 
serveTea event can be connected. Fig.6 shows the behavior of 
EUR Purchase feature of SVM SPL, where payEUR event is 
to be connected to Core_SVM c-ESG and also to 
Feature_Cancel f-ESG. Those connections are mandatory.

Fig. 5. Serve Tea Beverage feature f-ESG of SVM SPL

Fig. 6. EUR Purchase feature f-ESG of SVM SPL

In a c-ESG, connection events are not included to exploit 
reuse. However, each f-ESG holds necessary information 
about connection events, i.e. variability points. For each leaf 
in product diagram, there is an f-ESG.

A c-ESG and a set of f-ESGs compose an FESG for the 
SPL under consideration. An FESG corresponds to the initial 
test model of SPL, however it is not a superimposed test 
model. Section IV explains FESG test composition technique.

IV. Model-Based Incremental Testing of Software 
Product Lines Using FESGs

The proposed model-based incremental testing technique 
requires three models: (1) Feature Model (FM) with product 
configurations corresponding to feature diagram, (2) Featured 
Event Sequence Graphs for expressing SPL behavior of core 
and features, and (3) mapping between features and FESGs. 
The first two models are explained in previous sections. The 
last one, the mapping between features and FESGs. With the 
selected features for a product, we obtain a product FESG tree. 
In a product FESG tree, root node stores link to c-ESG and 
leaf nodes store links to corresponding f-ESGs.

A product FESG tree may contain f-ESGs with events that 
are not in the product. First, those events must be removed 
from corresponding f-ESGs. Then the product FESG tree must 
be converted to a product FESG lattice, where all connection 
relationships are ordered. The first algorithm of the proposed 
technique given below achieves this goal. The notation x-ESG 
means either c-ESG or f-ESG.

Consider another product of SVM SPL, that is USD-Soda- 
Tea-SVM, which serves Soda and Tea in USD and consumer 
can cancel the purchase. To exemplify step 2 of Algorithm 1,

EURpay event is removed from Cancel Purchase feature f- 
ESG and resulting f-ESG can be seen in Fig.7. Once all events 
that does not belong to the product are cleared, it is time to 
build the product FESG lattice.

Algorithm.l: Construction of product FESG lattice

1. for each f-ESG
2. if it contains events, which are not in the product 

configuration, remove them
3. for each f-ESG (f)
4. if it has connection point(s) to c-ESG (c), build f ^  c
5. if it has connection point(s) to other one or more 

f-ESGs (g, h, etc.), build f ^  g , f  ^  h , etc.
6. loop back

Fig. 7. EURpay removed from Cancel Purchase feature f-ESG

By executing Algorithm 1, we obtain the product FESG 
lattice for USD-Soda-Tea-SVM as given in Fig.8, where c- 
ESG is at the top (level 0) and f-ESGs with c-ESG connection 
points are children of the root (level 1) and so on.

Fig. 8. Product FESG lattice for USD-Soda-Tea-SVM

The partial test sequence(s) to cover ESs of length 2 of 
each distinct path in the product FESG lattice for product 
USD-Soda-Tea-SVM are as follows:

PTS1: prompt, ..., select, serveTea 
PTS2: prompt, ..., select, serveSoda 
PTS3: ..., payUSD, cancel, returnMoney 
PTS4: prompt, payUSD, select, ...
PTS5: prompt, payUSD, cancel, returnMoney

As seen above, the first partial test sequence (PTS1) is 
generated from path ServeTea Core, PTS2 is generated from 
path ServeSoda ^  Core, PTS3 is generated from path Cancel 
^  Core, PTS4 and PTS5 are generated from path Cancel ^  
USDpay ^Core in Fig.8. It is important to notice that although 
PTS3 is in PTS5, we do not remove PTS3 since we do not 
know what kind of combinations it may have with other PTSs.

For the composition of test sequences, i.e. CESs in ESG 
terminology, we need to combine PTSs in all possible ways. 
The second algorithm of the proposed technique given below 
achieves this goal. To improve performance of Algorithm 2, 
we suggest refactoring design of f-ESGs in such a way that a 
level n f-ESG stores the connection point information to the 
same and lower level f-ESGs and if exists to c-ESG.

The prompt, select, and payUSD events are connection 
points for the partial test sequences of the running example 
and when they are connected, we obtain the following CESs.

prompt, payUSD, select, serveSoda 
prompt, payUSD, select, serveTea 
prompt, payUSD, cancel, returnMoney

If we have built the ESG for product USD-Soda-Tea- 
SVM, we would obtain the ESG shown in Fig.9.
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Algorithm.2: Composition of producttest sequences

1. find connection points in partial test sequences
2. order them w.r.t their levels in product FESG lattice, c-ESG 

having the highest order
3. starting from lowest order for each connection point
4. find PTSs from PTS list and classify them as preceding and 

succeeding sequences with respect to this connection point
5. combine with all preceding sequences and add to PTS list
6. combine with all succeeding sequences and add to PTS list

The test sequences generated from the ESG in Fig. 9 to 
cover ESs oflength 2 would be the same set of CESs.

This simple proof of concept indicates that we can obtain 
same test sequences from FESG lattice without constructing a 
model for the complete product. The advantage of using 
product FESG lattice is that we can reuse partial test 
sequences for other products that is close as a delta, where 
delta is a set of paths from leaf to root in product FESG lattice.

Consider another payUSD SVM product that serves soda 
but not tea. Let’s call this product base product as in the 
literature. If we have built the ESG for this base product USD- 
Soda-SVM, we would obtain the ESG shown inFig.10.

Fig. 10. Product ESG ofUSD-Soda-SVM

Algorithm.3: Incremental composition of producttest sequences

1. find connection points in partial test sequences of the delta
2. order them w.r.t their levels in product FESG lattice, c-ESG 

having the highest order
3. starting from lowest order for each connection point and using 

already composed PTSs for the previous product
4. find PTSs from PTS list and classify them as preceding and 

succeeding sequences with respect to this connection point
5. combine with all preceding sequences and add to PTS list
6. combine with all succeeding sequences and add to PTS list

Assume that PTSs, composed PTSs, and CESs are readily 
available for this base product. From this base product, we can 
obtain USD-Soda-Tea-SVM product FESG lattice by adding 
ServeTea ^  Core path, or delta, to product FESG lattice of 
base product USD-Soda-SVM. In this case, we would like to 
obtain CESs for the new product reusing existing PTSs and 
composed PTSs of the base product. Algorithm 3 achieves this 
goal. Please note that steps 4-6 are the same with steps 4-6 of 
Algorithm 2. The main difference is that Algorithm 3 reuses 
existing PTSs and composed PTSs at each level or order.

The proposed technique in this paper follows regression- 
based incremental approach. It reuses existing partial test 
models as well as partial test sequences through automatic 
adaptation and composition to generate test sequences for the 
product under consideration.

V. Case Study

As a case study, we work on American type checkers game 
maker (ATCGM) SPL. To our knowledge, it is the first time 
this SPL is used in academic research. From American type 
checkers game maker SPL, three products can be generated: 
Children checkers, American checkers, and Spanish checkers.

Although American checkers (also British Draughts) and 
Spanish checkers are well-known games, Children checkers is 
created by the authors of this paper to show how additional 
games can be easily generated from SPL. Another reason for 
selecting ATCGM SPL is to show that if features in feature 
diagrams are not behavioral, they can be transformed to 
behavioral features. This is rather the choice of product 
designers. The proposed approaches in the literature work 
with both types of feature diagrams.

American checkers is played on a chess board with 12 
pieces called pawns. Pawns move one space diagonally and 
capture by jumping over an opponent's piece. Pawns can only 
move forward until they reach the last row. After reaching the 
last row, pawns are promoted to kings and can move forward 
or backward. Game ends when a player’s all pieces are 
captured. In Spanish checkers, all rules are the same except 
pawns are promoted to queens. A piece has to capture 
opponent's piece if it is possible. In our ATCGM SPL, this rule 
is exempted in children checkers. Moreover, in children 
checkers, game ends if a pawn reaches to last row.

Fig. 11. Feature diagram of American type checkers game maker SPL

Feature diagram of ATCGM SPL is given in F ig.ll. 
Features in the diagram are not necessarily behavioral such as 
pieces in configuration feature. However, the require property 
ties them to rules, which are tied to actions and actions are 
behavioral. The behavioral feature models can be obtained 
from a transformed product diagram as given inFig.12.

Fig. 12. Transformed product diagram of Spanish checkers
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From the transformed product diagram, we obtain product 
FESG lattice using Algorithm 1. The product FESG lattice for 
product Spanish checkers is given inFig.13.

Fig. 13. Product FESG lattice for Spanish checkers

Fig. 14 shows the c-ESG of the ATCGM SPL, which 
appears at the top of product FESG lattice at level 0. The c- 
ESG represents core behavior that is valid for all products and 
does not hold any information about the connection points.

For each behavioral feature seen in the transformed 
product diagram, there is an f-ESG. Two of those f-ESGs for 
ATCGM SPL are given in Fig.22 and Fig.23. 
PromoteToQueen f-ESG in Fig.22 holds connection point 
information related to Capture f-ESG in Fig.23, whereas 
Capture f-ESG does not hold connection point information 
related to PromoteToQueen f-ESG. As explained in Section 
IV, with these refactoring on f-ESGs we improve performance 
of Algorithm 2. Table I shows FESG for ATCGM SPL. Four 
of f-ESGs are refactored and they are typed in bold.

Product ESGs for the Children checkers, American, and 
Spanish checkers are given in Table II to show difference and 
at same time complexity of test models for the case study. 
American checkers ESG is the same in terms of structure 
except Queens are replaced with Kings. Therefore, they have 
the same number of nodes and edges as seen in Table II.

TABLE I. ATCGM SPL FESG Details

Before
Refactoring

After
Refactoring

FESG # of 
Nodes

# of 
Edges

# of 
Nodes

# of 
Edges

c-ESG 3 2 3 2
KingJump f-ESG 11 24 10 16
OueenJump f-ESG 11 24 10 16
PawnJump f-ESG 7 12 6 8
KingMarch f-ESG 10 24 10 24
QueenMarch f-ESG 10 24 10 24
PawnMarch f-ESG 6 12 6 12
Capture f-ESG 14 13 12 11
PromoteToKing f-ESG 7 6 7 6
PromoteToQueen f-ESG 7 6 7 6
TOTAL 86 147 81 125

TABLE II. Checkers Product ESGs in Isolation

Number of 
Nodes

Number of 
Edges

Product Children Checkers ESG 14 33
Product American Checkers ESG 31 95
Product Spanish Checkers ESG 31 95
TOTAL 76 223

It is known that SPL-based development approach is better 
if the software products are similar. Table III shows that our 
approach agrees with this statement in terms of test artefacts.

TABLE III. Model Comparison of SPL and Products in
Isolation

Number of 
Nodes

Number of 
Edges

ATCGM SPL refactored FESG 81 125
All Products in isolation (3 ESGs) 76 223

Test sequences for checkers products are obtained using 
both our proposed technique and existing ESG test generation 
technique. Our proposed technique is executed on the FESG 
of each product and results are given with “in SPL” tag, 
whereas the existing ESG test generation technique is 
executed on the ESG of each product and results are given 
with “in Isolation” tag in Table IV for coverage of ESs of 
length 2. Our proposed technique results in more CESs and 
greater numbers of events.

TABLE IV. Test Sequence Comparison of SPL and Products in 
Isolation

# o f
CES

# o f
Events

Children Checkers in SPL 14 81
Children Checkers in Isolation 1 54
American Checkers in SPL 42 256
American Checkers in Isolation 1 171
Spanish Checkers in SPL 42 256
Spanish Checkers in Isolation 1 171

Time taken to generate CESs using both our proposed 
technique and existing ESG test generation technique is given 
in Table V for 10 runs. The runs are performed on a laptop 
having Intel 0.80 GHz and 4 GB RAM with 64-bit Windows 
10 Enterprise operating system.

TABLE V. Test Sequence Generation Time Comparison of SPL 
and Products in Isolation

Min
(ms)

Max
(ms)

Avg
(ms)

Children Checkers in SPL 5 11 6.8
Children Checkers in Isolation 53 61 57.3
American Checkers in SPL 11 21 12.3
American Checkers in Isolation 56 94 78.7
Spanish Checkers in SPL 11 23 12.4
Spanish Checkers in Isolation 57 76 63.8

Results in Table IV indicate that our approach yields test 
sets, which are ~50% larger than the test sets obtained by 
generating test cases from complete product models. 
However, as demonstrated by Table V, composition-based 
test generation takes ~80% to ~88% less time than full- 
product-based test generation. These results show that the 
proposed approach is a good alternative considering the fact 
that test cases generated from full-product models using an
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optimized test generation algorithm tend to be long and few 
(see Table IV). These properties may cause an increase in the 
testing costs due to the fact that such test cases are harder to 
trace and too many events need to be re-executed after each 
fault correction takes place.

VI. R e l a t e d  W o r k

One of the first proposed approaches in MBT of SPLs was 
ScenTED (Scenario based TEst case Derivation) technique, 
which provides reuse of the core assets and components for 
the reuse of the test cases [12]. Another important research on 
MBT of SPLs was performed by Olimpiew [2], where CADeT 
(Customizable Activity diagrams, Decision tables and Test 
specifications) method is proposed. This method produces 
feature-based test cases using UML use case and activity 
diagrams. It uses the decision tables for modeling variability 
and generating test cases. Cichos et al. [13] proposed a 
technique called 150% finite state machines, which employs a 
superimposed model for the SPL under consideration and 
includes a coverage-driven SPL test suite generation method. 
Model-checking is another approach for model-based 
verification of SPLs. Kishi and Noda [14] proposed to model 
the design as a finite state machine and to check whether the 
product actually has the specified features using model 
checking. There were several proposals for applying model 
checking to SPLs [15][6][16],

Two research directions for reducing redundancies in 
testing of SPLs currently exist: regression-based SPL testing 
and SPL subset selection heuristics [17]. Since our is on 
regression-based SPL testing, we cover that literature here. 
Uzuncaova et al. [18] proposed an approach that uses SAT- 
based analysis to generate test inputs for each product in SPL. 
Their approach enables incremental refinement of test suites 
for a particular product variant. Neto et al. [19] proposed an 
approach that reduces the testing effort through reusing test 
cases taking advantage of SPL architectures similarities. 
Lochau et al. [17] suggested a strategy for test artifact reuse 
between products. Our work follows an extended strategy. 
The novelty of our strategy is that our delta is simple and that 
makes our approach flexible in the sense that we do not need 
to start with a base product and incrementally reach others.

VII. C o n c l u s io n

This paper presents a novel compositional and incremental 
model-based test sequence generation technique for SPLs that 
reuses existing test artefacts and partial test sequences (PTSs). 
The proposed approach uses event sequence graphs for 
features, called FESGs, as test models. An FESG is composed 
of a c-ESG and a set of f-ESGs. A c-ESG models core features 
of an SPL, and f-ESGs model selectable features and express 
variability in SPL. The proposed technique introduces 
algorithms ( l ) to  form a product FESG lattice, (2) to generate 
test sequences through composition of PTSs obtained from f- 
ESGs with the help of product FESG lattice, and (3) to reuse 
existing sequences and new sequences for incremental testing 
of another product that is a delta away.

Instantiations of Algorithms 2 and 3 made for Section V 
ignore connection/variability points in the middle parts of the 
PTSs. Furthermore, all PTSs generated from the c-ESG are 
assumed to end with a finish event for efficiency. In the next 
step, we plan to relax these assumptions and add an explicit 
variability model to our approach in order to increase 
utilization of approach in industry.
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