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ARTICLE INFO ABSTRACT

Keywords: Steel fibers have been used in concrete structures to increase the tensile strength and ductility of

Steel fiber reinforced concrete concrete. Fibers bridging cracks reduce micro cracking and improve post-cracking strength in

De'bOHVdiﬂg' ) concrete. Propagation of damage in a fiber reinforced concrete member occurs by concrete

é\lcoustl_c emission (AE) matrix cracking and widening of these cracks, which is accompanied by de-bonding of steel fibers
ustering

from the concrete matrix. Fiber de-bonding is the main factor affecting the post-peak behavior of
these members. Therefore, distinguishing the matrix cracking and fiber de-bonding mechanisms
is important in nondestructive structural health monitoring methods. This study is focused on
characterizing steel fiber/matrix de-bonding events apart from concrete matrix cracking sources
in acoustic emission (AE) method. Two reinforced concrete beams, one of which included steel
fibers within the concrete matrix, were tested under three point bending and monitored by AE.
Afterwards, Principal Component Analysis (PCA) was applied to AE data and the failure me-
chanisms were clustered for characterization of steel fiber/matrix de-bonding. Finally, different
AE features of these clusters were evaluated and applicable AE parameter distributions, which
are useful to clarify steel fiber de-bonding mechanisms, were revealed.

Principal component analysis (PCA)

1. Introduction

Concrete is a widely used construction material, which has a tensile strength significantly lower than its compressive strength.
Typically steel bars are used in concrete structures to overcome this weakness and provide ductility to structural concrete members.
In addition to steel bars, natural, synthetic, glass or steel fibers are also used in concrete structural elements due to their function in
bridging the cracking surfaces transferring tensile stresses, which significantly increases post-cracking ductility of concrete [1].
Tensile stresses carried across cracks decrease crack widths in such fiber reinforced structural members, increasing their ductility and
bending stiffness [2-8].

Steel fibers have its advantages over other types of fibers due to their higher stiffness, higher strength and high aspect ratio.
Therefore, they are commonly used in numerous applications where cracking of concrete is of primary concern, such as industrial
slabs, precast structural members and tunnel linings [2]. Mechanical properties of concrete members reinforced with steel fibers
depend on fiber dosage, geometry, bonding with concrete and orientation of fibers as well as characteristics of concrete matrix
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[3,9,10].

In order to clarify these mechanisms and determine the damage level of a structure, various test techniques can be used.
Generally, these techniques investigate the damaged state of the member and they need sampling for testing. However, it is important
to make a decision before any visible damage takes place. Nondestructive testing methods have been developed for this purpose,
providing information about the state of overall system without inflicting any damage on the structure. Acoustic Emission (AE) is one
of the nondestructive test techniques providing information about crack progresses even at low load levels. The method is based on
the detection of elastic waves propagating in the body generated by energy discharge due to fracture [11]. By capturing these waves
with sensors, location and time of origin of fracture can be determined. A number of studies have been carried out to identify fracture
mechanisms and fracture energies of concrete and steel fiber reinforced concrete members [2,12-18]. The studies about steel fiber
reinforced concrete conclude that AE activity is proportional to the fiber content [12].

Based on AE parameters, it is possible to determine the failure mechanism of the concrete by various analyses [19-21]. In this
paper, cluster analysis was applied to AE parameters which provides grouping objects according to their similarities such that the
similarities in the same group are high while in different groups the similarities are low [22]. K-means is one of the most popular and
widely used clustering algorithms due to its reliability and simplicity. The method aims to separate observations into the clusters in
which distance between mean and the observations in the cluster are minimized. In the iterative algorithm, firstly, the clusters are
initialized with random centers. Then the distances of each input to the cluster’s center are computed and the inputs are assigned to
their nearest cluster. Finally, the centers of the clusters are recalculated. Last two stages are repeated until the centers of the clusters
converge [23].

Studies show that PCA is an effective tool to correlate clusters using various data [24-29]. Rossiter [30] used principal component
regression on infrared spectra of concrete samples in order to predict their properties. Godin et al. [31] conducted tensile tests on
pure resin samples and on polyester/glass fiber unidirectional composites and identified mechanisms as matrix cracking and inter-
facial de-cohesion by k-means. Precisely discriminating signals associated with de-bonding and signals associated with fiber failure
was difficult, but the researchers regarded the results as encouraging. Ning et al. [32] and Milovanovic and Pecur [33] applied PCA to
infrared thermography results obtained in concrete. Calabrese et al. [34] tested AE behavior of concrete beams under four-point-
bending and determined their clusters. For this purpose, they used PCA and Kohonen’s self-organizing map clustering algorithms and
compared them with traditional AE parameter analysis procedures. They pointed out that the methods require the development of
validation procedure to optimize a correct interpretation of great amounts of data. Calabrese et al. [35] used AE to monitor hydrogen
assisted stress corrosion cracking of post-tensioned strands and distinguished three subsequent damage phases using cumulative hits.
Then they confirmed the results with PCA and self-organizing maps and proved them to be particularly effective in identifying the
evolution and intensity of corrosion damage on steel wires in the monitored post-tensioned concrete beam. Saliba et al. [36] carried
out an experimental investigation to characterize local damages and physical mechanisms underlying creep of concrete. As a result of
the study, the researchers obtained two clusters for basic creep and three clusters for desiccation creep. Fotouhi et al. [37] used AE
and PCA to investigate different failure mechanisms of delamination in glass/epoxy composite laminates. They found out matrix
cracking and fiber/matrix de-bonding dominantly and some fiber breakages took place. Anay et al. [38] monitored cement paste
specimens by AE under compression test and classified active crack growth by PCA. They acquired three stages as crack micro crack
initiation, stable and unstable crack growth by separating AE data into clusters. Roundi et al. [39] investigated static and fatigue
behavior of glass/epoxy composite laminates with AE and classified accumulated damages as matrix cracking, fiber/matrix de-
bonding, delamination and fiber breakage by k-means method and PCA. Researchers observed matrix micro-cracks as the most
dominant damage mechanism and detected few signals representing the fibers breaking.

In this study, differently from the abovementioned studies, it was aimed to distinguish steel fiber/matrix de-bonding events apart
from concrete matrix cracking by cluster analysis based on PCA using AE features. For this purpose, two reinforced concrete beams,
one of which included steel fibers within concrete matrix, were tested under three point bending and monitored by acoustic emission.
Afterwards, cluster analyses were applied to AE data for characterization of steel fiber/matrix de-bonding.

2. Acoustic emission (AE)

According to ASTM E 1316 [40], Acoustic Emission (AE) is defined as an event producing transient elastic waves by releasing of a
number of local sources in materials under stress. In this context, AE can be considered as a microseism. In the method, stress wave is
produced at a source by applied stress. The vibration reaches to sensors located at the surface and is transformed into an electrical
signal. Then it arrives to pre-amplifier, filter, power amplifier, and counters, respectively.

In AE procedure, the first purpose is to determine the location of a crack. It can be determined by using the time difference
between each sensor and the source. It is also possible to make some predictions about the fracture by using AE parameters as shown
in Fig. 1. Here, “amplitude” is the maximum voltage on an AE waveform and it is a significant parameter with regard to constitution
of the perceptibility of AE activity. AE amplitude is directly related to magnitude of an event. During the test, a definite amplitude
value is specified in order to pick ambient noise. This parameter is defined as “threshold”. The number of pulse passing the threshold
is “count”. “Rise time” is an elapsed time between first and last counts passing the threshold. The area under the rectified signal
envelope is named as “MARSE (Measured Area under the Rectified Signal Envelope)”, which is the energy.

3. Principal component analysis (PCA)
Principal component analysis (PCA) is an approach to discern the patterns in data. Through that, the similarities and differences in
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Fig. 1. AE signal parameters.

the dataset can be highlighted. Since graphical representation and efficient numerical analysis in dataset with high dimensionality
bring difficulties, PCA can be used as a reliable tool for reducing dimensionalities of the data without losing much information.

Introducing PCA to a set of data consists of several steps including calculation of covariance and eigenvectors of the dataset which
has already been put into a matrix. The detailed steps are represented in the following tree diagram [41].

The dataset must be formed into a matrix of data. In order to increase the efficiency of the algorithm, the mean value of each
dimension must be subtracted from the corresponding dimension. The resulted dataset will have the zero-mean value. The product of
the Sections 3,4 and 5 are actually a matrix of vectors in which an eigenvalue can be calculated for each vector. The vectors with the
highest eigenvalues are the desired vectors which can produce the final data set by simply taking the transpose of the vector and
multiplying it on the left of the original dataset (Eq. (1)):

Final data = (Raw Feature Vector) X (Raw Data) 1)

where Raw Feature Vector is the matrix of the eigenvectors with the highest corresponding eigenvalues ordered from top to bottom.
Raw Data is the mean-adjusted data transposed. The Final Data which comprises a stronger pattern relative to the primary dataset can
be taken for desirable analysis. Algorithm of PCA is shown in Fig. 2.

As mentioned in Section 2, acoustic emission signals are comprised of several features that each one of them carries some
information of the originating source. In order to perform a precise dimensionality reduction by applying PCA analysis, all possible
known features must be taken into account. In this study, primary vectors for initiating PCA analysis are considered to be the peak
frequency, root mean square error (RMS), amplitude, duration, count, rise time, and absolute energy.

3.1. k-mean clustering algorithm

Among the unsupervised clustering algorithms, k-mean is well known for its simplicity and feasibility. This algorithm follows a
straightforward way to classify a given set of data into a certain number of clusters. First step is to define the centroids in which the
number of the centroids is depending on the number of clusters that have been presumed. The primary positions of the centroids must
be as far as possible relative to each other to increase the precision of the analysis. The next step is to associate each point to the
nearest centroid. When no point is pending, the initial classification has been completed. This point forward, the new positions of the
centroid must be recalculated until the so called objective function, J, becomes minimized as calculated using Eq. (2) [42].

x g2

k
J= Il
jzzll i=1 (2)

where IIxi(")—chI2 is a specific length between point x” and the cluster center cj, which is an indicator of the n* point from their
respective cluster centers. In other words, the last step would be repeated until centroids move no longer and a separation of the
objects into classes for which the distances are minimized is obtained.

B
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Fig. 2. Algorithm of principal component analysis.

75



S. Tayfur et al. Engineering Fracture Mechanics 194 (2018) 73-85

3.2. Silhouette function

Silhouette function is an efficient method for evaluation of the consistency of a set of data within the corresponding classes. To be
precise, Silhouette can be applied as a tool for investigating how well a set of data have been clustered into a certain given number of
clusters by use of a certain clustering method. The Silhouette value is a measure of how similar an object is to its own cluster
compared to other clusters [43].

Through the following equation, Silhouette value can be calculated as follows:

. _ _ b(@)-a()
S0 = axa® b®) ®)

In which the a (i) is the average dissimilarity of i with all other data within the same cluster. b(i) is the lowest average dissimilarity
of i to any other cluster, of which i is not a member. Therefore, as the similarity of data in each cluster increases, the equation would
yield a higher average value which indicates the validity of the number of clusters predefined as well as proper assignment of each
data to the clusters. The value calculated by Silhouette function is a number between 0 and 1.

4. Experimental program
4.1. Design of the specimens

In the experimental program, two reinforced concrete beams were produced and were tested under three-point-bending. The
specimens were designed with 208mm longitudinal steel reinforcement at both top and bottom and without shear stirrups. While one
of the specimens was the reference beam (RC Beam), the other (SFRC Beam) was strengthened with 1% steel fibers in volume
fraction. The beams were 150 X 250 X 2350 mm in dimension with 2000 mm span. Test setup and section details of the specimens
are presented in Fig. 3.

4.2. Materials

Concrete used for production of the specimens was included in C25/30 strength class and cement type was CEM II B-M (L-W) 42.5
R. Water/cement ratio of the mixture and maximum aggregate sizes were 0.65 and 16 mm, respectively. Moreover, in order to
enhance the workability of the concrete, which was reduced due to steel fibers, superplasticizer was added into the mixture.
Mechanical properties of plain and steel fiber reinforced concrete are given in Table 1. Steel reinforcing bars were tested in tension to
obtain the mechanical properties. Characteristic strength and elastic modulus of longitudinal reinforcing bars were determined as
420 MPa and 200 GPa, respectively.
I

.- .
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Fig. 3. (a) Test setup, (b) Section details of the specimens.
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Table 1
Mechanical properties of plain and steel fiber reinforced concrete.

Volume fraction of steel fiber (%) fc (MPa)® fts (MPa)” ftf (MPa)*
28-days Test day Test day
33.80 42.40 2.30 3.45

1 35.20 45.40 3.50 5.25

@ Compressive strength of concrete.
b Splitting tensile strength of concrete.
¢ Flexural tensile strength of concrete.

Bekaert Dramix RC 8060 BN hooked steel fibers were used for reinforcing of concrete. Characteristics of the steel fiber are
presented in Table 2.

4.3. Experimental setup

The specimens were tested under three-point-bending. A vertical monotonic load was applied to the beams at their bottom mid-
spans systematically and slowly in order to observe crack propagations better. Thirteen potentiometers were used to monitor dis-
placements. Seven AE sensors having 150 kHz frequency (R15, PAC) were attached to different locations of the specimens by silicon
grease to detect AE waves. In order to record AE data, an 8-channel DiSP AE system by Mistras Holding was used. A threshold level of
40 dB was set. HDT, PDT and HLT values were configured as 800, 200 and 200 microseconds, respectively. All AE hits were used in
the analyses. Locations of the sensors are shown in Fig. 4.

5. Results and discussion
5.1. Mechanical results

Three-point-bending tests were performed on both specimens. During the tests, mechanical properties and AE results were ob-
tained. Load vs. mid-span deflection curves of the specimens are shown in Fig. 5.

Fig. 6 shows crack propagations of the test specimens. First cracks of RC Beam were observed at 19 kN load level. By increasing
the load, these cracks and other invisible ones propagated. New cracks became visible when the load was 26.1 kN. The specimen
reached to its ultimate load capacity of 30.4 kN when deflection was 43 mm. After this, applied load decreased while deflections
increased. The specimen failed by four major flexural cracks when the displacement was measured 52.1 mm. First cracks of SFRC
Beam occurred at 35.5 kN load level. Increase in load gave rise to new cracks. The specimen reached to its ultimate load capacity of
42.2 kN, when deflection was 26 mm. Finally, it collapsed by a major flexural crack when the displacement was 41.5 mm. SFRC Beam
showed higher ultimate resistance in contrast to the reference specimen, RC Beam. This is a consequence of presence of the steel
fibers.

5.2. Cluster analysis results

As given in Fig. 7, the dimensionality reduction of the AE matrixes of features was successfully accomplished by application of
PCA analysis. This fact is referred to the total values of the variances of PCA1 and PCA2 in each specimen which are obtained more
than 90%. PCA1 and PCA2 are said to be the new features in the novel coordinate system calculated by PCA analysis. In other words,
the two new features (PCA1 and 2) belonging to each specimen can be replaced by initial multiple features introduced in the primary
coordinate system. It is clear that numerical calculation can be more easily applied for two variants (PCA 1 and 2) in comparison to
multiple variants.

It is important to bear in mind that, the number of clusters which different classes of events can be attributed to, must be
approximated based on the primary knowledge; then, according to the assumption, the clustering must be performed, and the validity
of the result can be examined by Silhouette function. For two different specimens, clustering has been tried for different number of
clusters ranging from 2 to 8. Obtained results are calculated and represented in Fig. 8. The maximum obtained value is said to be the
most reliable cluster number in which the data must be put. According to Fig. 8, the most appropriate values were obtained as 2 and 3

Table 2
Characteristics of the steel fiber.

Properties Remarks of Bekaert Dramix RC 8060 BN
Length (mm) 60

Diameter (mm) 0.75

Tensile strength (MPa) 1050
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Test Specimen Sensor X (m) Y (m) Z (m)

1 0895 0.125  0.000

) S o7 2 1430 0.125  0.000

- 3 1440 0.120  0.150
\1,,2____1@___‘5_2 ______ (1 4 0955 0115  0.150
i i 5 0865  0.000  0.080

X 518 6 6 1490 0.000  0.075

7 1.380  0.250 0.085

Fig. 4. Locations of AE sensors.

SFRC Beam

RC Beam

0 10 20 30 40 50 60
Displacement (mm)

Fig. 5. Load vs. deflection responses of the test specimens.

RC Beam

Fig. 6. Crack propagations in the test specimens.
for RC and SFRC specimens, respectively.

While the main purpose of this study is to discriminate the AE signals related to steel fiber/matrix de-bonding failure mechanism,
the data set of RC Beam was assumed to be a single cluster so that the influence of the steel fiber addition could be easily recognized
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Fig. 8. Silhouette function values: (a) RC Beam, (b) SFRC Beam.

while analyzing the data set of SFRC Beam. Distribution of the data set related to RC Beam is given in Fig. 9 (left side).
Considering the clustering result of SFRC Beam (Fig. 9, right), it can be seen that, the data set pattern of RC Beam is exactly
repeated in the data set pattern of SFRC Beam with approximately 0.7 unit shifted to right and a bit counterclockwise rotation. The
changes in position of the pattern is due to the normalizing of the initial matrixes of features and the clustering algorithm im-
plementation, hence, does not incorporate any practical significances. As a result, it can be concluded that the data set pattern which
is representing a failure mechanism recognized in RC Beam has also been identified in SFRC Beam.

The top graph in Fig. 9 is representing a part of data distributed in PCA1 and PCA2 coordinates which appears in both specimens,
thus, it was called as the repetitive pattern. This pattern is attributed to series of events that occurred in both RC and SFRC specimens.
It was considered as a black box since the authors were interested in the specific event that is exclusive to the SFRC specimen, which
found to be the steel fiber debonding from concrete matrix.

On the other hand, it can be seen that, the single cluster in RC Beam (Fig. 9, left) is divided into two separate clusters (clusters 1
and 3) in SFRC Beam (Fig. 9, right). This fact could be attributed to the micro-failure mechanisms the RC Beam may experience whilst
loading. Occurrence of micro-failure mechanisms in RC Beam could be originated from the cement and mortar composition and the
size of aggregates as well as the quality of concrete production procedure.
While the main objective of this study was to identify the steel fiber/matrix de-bonding failure mechanism, the occurrence of
micro-failure mechanisms will be ignored and the clusters 1 and 3 (in RC Beam) will be integrated into one cluster. Final schemes of
the k-means clustering results are shown in Fig. 10.

According to Fig. 10, the main distinguishing point of the RC Beam and SFRC Beam clustering result is the presence of the second

cluster in Fig. 10(b). While the main difference between two specimens is the usage of steel fibers, it can be easily concluded that the
second cluster seen in Fig. 10(b) is attributed to the steel fiber/matrix de-bonding. It should be kept in mind that the total assumable

79



S. Tayfur et al. Engineering Fracture Mechanics 194 (2018) 73-85

v
{ .
i .
.
o* oi . o:
L 4 ¢
- E.di, & &
s ¢ 2 . .
1 o = & ——
| RC Beam & - . - clusterl SFRC
. :: .2 . cluster2 SFRC
g. o= g . . 3 :%' cluster3 SFRC
0.5 , L
2 0 2
w U 0.5
< <
) 9]
& & g
0.5/
-15
-1
2
1= 0.5 0 0.5 1 235 a4 05 0 0.5 1 1.5 2

PCAl
Fig. 9. Patterns of clusters in k-means clustering results: (left) RC Beam, (right) SFRC Beam.

T 1 i T i

O Matrix Failure M% O Matrix Failure

0.5 % O Matrix/Reinforcement Debonding ||

PCA2
PCA2

Fig. 10. Final schemes of the k-mean clustering results: a) RC Beam, b) SFRC Beam.

failure mechanisms in such steel fiber reinforced specimens are matrix failure, fiber failure and steel fiber/matrix de-bonding.

5.2.1. Relative distribution of acoustic emission features

Relative distribution patterns of rise time vs. count are shown in Fig. 11. Based on the clustering results, the repeating part in both
distribution patterns is correspondent to Cluster 1. The distribution pattern for RC Beam is concluding an extra area (Cluster 2) which
is attributed to steel fiber/matrix de-bonding failure mechanism.

It can be seen that, “rise time vs. count” distribution pattern can clearly reveal the changes in acoustic emission data with the
addition of steel fiber.

Distribution patterns for duration and amplitude combination are given in Fig. 12. It can be seen that, Cluster 2 in SFRC Beam
distribution pattern has been clearly separated from Cluster 1. Due to that, a similar discussion given for rise time vs. count dis-
tribution pattern can be introduced for duration and amplitude combination. “Duration vs. amplitude” has also shown good cap-
ability in identifying steel fiber/matrix debonding failure mechanism.
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Fig. 12. Distribution patterns of duration vs. amplitude: (a) RC Beam, (b) SFRC Beam.

Unlike the two latter combinations of features, peak frequency vs. amplitude and rise time vs. duration could not sufficiently
separate the clusters of two failure mechanisms which are matrix failure and matrix/reinforcement de-bonding. As can be seen in
Fig. 13, clusters are stacked together and the boundary cannot easily be distinguished. Hence, these two combinations cannot be
considered as trustable way of identifying the de-bonding failure mechanism.

Based on the aforementioned results, it can be concluded that among the whole acoustic emission features and their combina-
tions, rise vs. count and duration vs. amplitude have the highest capability in determining the failure status of the concrete and steel
fiber reinforced concrete. The obtained results are in accordance with results acquired by k-means clustering algorithm.

Magnitude ranges of the acoustic emission features for both failure mechanisms (clusters) are given in Fig. 14. The summary of
the magnitudes are shown in Table 3. The differences in the ranges of features’ magnitudes can easily be recognized. As presented in
Table 3, the magnitudes of the AE features for Cluster 2 in SFRC Beam have egregious differences from magnitudes of Cluster 1. This
is where the values for Cluster 1 in SFRC Beam are very similar to the values for single cluster of RC Beam which confirms that there
exists an identical failure mechanism in both specimens which is matrix failure and the other failure mechanism (Cluster 2) is
exclusive for SFRC Beam.

Considering the magnitude ranges of the acoustic emission features of two failure mechanisms, it can be concluded that, steel
fiber/matrix de-bonding failure mechanism produces high magnitude acoustic emissions relative to matrix failure. This is a critical
point of distinguishing the signals emitted during occurrence of the failure mechanisms.

5.2.2. AE cumulative energy analysis
In order to obtain a more profound understanding of influence of steel fiber/matrix de-bonding on behavior of the reinforced
concrete beam, time vs AE cumulative energies and the corresponding loads are presented in Fig. 15. A meaningful difference
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Fig. 13. Distribution patterns of peak frequency vs. amplitude and rise time vs. duration: (a) RC Beam, (b) SFRC Beam.

between the maximum AE cumulative energy of RC Beam and SFRC Beam can easily be detected. For RC Beam, the final AE energy
approximately reaches to 7.2x10* aJ, while this value for SFRC Beam is about 1.4x10* aJ which means that the total AE energy
released by the SFRC Beam has a significant decrease. This result is in agreement with Aggelis et al. [44] concerning increasing of the
toughness with the amount of the steel fiber increase and decreasing of AE energy with the increase in toughness.

As clearly seen in Fig. 15a, at times when the longitudinal reinforcement yielded and the RC Beam lost its load bearing capacity,
significant AE energies were released and related sudden increases can be spotted. After the first sudden increase in RC Beam, the
structure lost the major part of its load bearing capacity since no other sudden increases in cumulative AE energy occurred until the
last one, which afterward, the structure completely lost its load bearing capacity and culminated to its failure point. However, in the
SFRC Beam, no fluctuations in AE energy were observed and the graph increased gradually (Fig. 15b). This phenomenon is inter-
preted by Behnia et al. [28] as mechanisms supported by steel fibers do not cause sudden AE activities after cracking of concrete due
to bridging mechanism of the steel fibers.

6. Conclusions

In this study, two reinforced concrete beams, one of which included steel fibers within the concrete matrix, were tested under
three-point-bending and monitored by acoustic emission (AE) technique. In order to characterize the steel fiber/matrix de-bonding
apart from concrete matrix cracking sources, cluster analyses were applied to AE data. Cracking strength, yielding load capacity and
ultimate load capacity of SFRC Beam were obtained 87%, 33% and 39% higher than those of RC Beam, respectively. In this way, it
was demonstrated that presence of the steel fiber in concrete enhances the structural performance of the reinforced concrete beam
under bending.

Clustering is a promising technique to characterize steel fiber/concrete matrix de-bonding mechanism apart from cracking of the
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Fig. 14. Magnitude ranges of the acoustic emission features: (a) RC Beam, (b) SFRC Beam.
Table 3

Mean values of the acoustic emission features.

Test Specimen Failure Mechanism Rise Time (us) Count Duration Amplitude (ps) RMS Abs-Energy (aJ)
RC Beam Cluster 1 (Matrix Failure) 152.3 23.17 573.3 45.16 0.0018 5714.1
0-200 0-50 0-1500 40-52 2 x107%-0.3674 0 - 3,270,000
SFRC Beam Cluster 1 (Matrix Failure) 110.87 13.13 417.17 44.47 0.0042 2121.03
0-500 0-50 0-1500 40-55 2 x 1074 - 1.4430 0 - 3,270,000
Cluster 2 (De-bonding) 425.54 144.61 4162.3 70.8 0.0905 1.2194 x 107
100-2000 50-350 700-12000 55-100 2x107%-1.4776 3192 - 341,587,000

concrete. By conducting “k-means” algorithm, effect of presence of the steel fiber within concrete was clearly distinguished due to
revealing two types of clusters as concrete matrix failure and steel fiber/matrix de-bonding. Thus, it was proved that k-means is an
effective method to clarify steel fiber/matrix de-bonding mechanism.

After evaluating the relative distributions of AE features, it was shown that “rise time vs. count” and “duration vs. amplitude”
distribution patterns have the highest capability in determining the failure status of the concrete and steel fiber reinforced concrete,
while it is not possible to make a distinction using “peak frequency vs. amplitude” and “rise time vs. duration” distribution patterns.
Total AE energy released by the plain reinforced concrete beam is higher than the steel fiber reinforced concrete beam. This is

because the mechanisms supported by steel fibers do not cause sudden AE activities after cracking of concrete due to bridging
mechanism of the steel fibers.
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Fig. 15. Time vs AE cumulative energy and load: (a) RC Beam, (b) SFRC Beam.
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