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On the number of bound states of semirelativistic Hamiltonian
with Dirac delta potentials in one dimension
Fatih Erman

Abstract: We study the bound state problem for semirelativistic N attractive Dirac �-potentials in one dimension. We give a
sufficient condition for the Hamiltonian to have N bound states and give an explicit criterion for it.
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Résumé : Nous étudions le problème des états liés pour N potentiels � de Dirac, attractifs et semi-relativistes en une dimension.
Nous déterminons une condition suffisante pour que le Hamiltonien ait N états liés et donnons un critère explicite pour sa
réalisation. [Traduit par la Rédaction]

Mots-clés : potentiel delta de Dirac, hamiltonien de Saltpeter, nombre d’états liés, renormalisation, noyau de chaleur.

1. Introduction
Schrödinger Hamiltonians with Dirac delta potentials or point

interactions are one class of exactly solvable models that describe
the short-range interactions in nuclear, atomic, and solid state
physics. There is a vast amount of literature in this field from
different points of view (see, for example, refs. 1 and 2). Dirac delta
potentials in one dimension are even introduced as a pedagogical
tool for analytically solvable potentials in standard quantum me-
chanics textbooks [3]. Two attractive Dirac delta potentials in one
dimension are also used as an elementary model of a one-
dimensional diatomic ion H2

�. The Schrödinger equation for this
model is

�
ħ2

2m

d2�

dx2
� ��(x)�(x) � ��(x � a)�(x) � E�(x) (1.1)

where a detailed bound state analysis has been discussed in refs. 3
and 4. The bound states can be determined by solving the above
Schrödinger equation in each region separated by the location of
delta potentials and imposing the continuity and jump conditions
for � at the location of delta potentials, namely,

�(0�) � �(0�) �(a�) � �(a�)

� ′(0�) � � ′(0�) � �
2m�

ħ2
�(0)

� ′(a�) � � ′(a�) � �
2m�

ħ2
�(a)

(1.2)

These conditions give us the following transcendental equation:

e��a � ±�1 �
2�

	
� (1.3)

where 	 = 2m�/�2 and � � ���2mE/ħ2�. Here we naturally assume
that E < 0 for the bound states (there cannot be square integrable

solutions for E ≥ 0). When one has “–” in (1.3), then –1 + (2�/	) is a
monotonically increasing function whereas e−�a is decreasing in �.
As a result of this, there always exists one root of (1.3) for this case.
On the other hand, when one has “+” in (1.3), 1 – (2�/	) is decreas-
ing and it passes through the point (0, 1). If we assume that (
/

�)(e−�a) < (
/
�)[1 – (2�/	)] at � = 0, then (1.3) has one root for � > 0,
that is, if we impose

a �
ħ2

m�
(1.4)

we have two bound states. However, if we consider an arbitrary
finite number of centers (say N), it becomes a rather hard problem
to determine the sufficiency condition for the equality between
the number of bound states (say, n(H)) and the number of delta
interactions (N). This is a very natural problem when we deal with
a particle moving in a one-dimensional crystal modelled by Dirac
delta potentials. One solution to the above problem was given by
Albeverio and Nizhnik, and they found the necessary and suffi-
cient conditions for n(H) = N when all intensities are negative [5]
(i.e., �k > 0 where k = 1, 2, …, N). More recently, Ogurisu studied the
conditions for n(H) = N with negative intensities [6]. This has been
illustrated by reformulating the problem as an eigenvalue prob-
lem of a finite dimensional matrix and studying the general be-
havior of the eigenvalues of this matrix.

Another reason why the Dirac delta potentials attract a great
deal of interest from the physical point of view is that the Dirac
delta potentials in two and three dimensions require the so-called
renormalization procedure in quantum field theory [7]. That is
why they help us to understand many concepts originally intro-
duced in quantum field theory, such as dimensional transmutation,
regularization, asymptotic freedom, etc. Recently, a semirelativistic
version of the Schrödinger equation, known as the Salpeter equa-
tion, for one and two Dirac delta potentials has been studied in
detail [8–10]. What we mean by the semirelativistic Schrödinger
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equation or Salpeter equation is that the free Hamiltonian is given
by the nonlocal operator [11, 12]

H0 � ��
d2

dx2
� m2 (1.5)

where we have used units such that ħ = c = 1. The square root

�p2 � m2 is the symbol of the pseudo-differential operator

���d2/dx2� � m2 defined by

��
d2

dx2
� m2�(x) � �

�∞

∞

dp

2�
�p2 � m2eipx�̂(p) (1.6)

where �̂�p� is the Fourier transform of �(x). If we substitute back
�̂�p�, we can express the action of H0 on the function in coordinate
representation as

H0�(x) � �
m

�
�
�∞

∞

dy
K1(x � y)

|x � y|
�(y) (1.7)

where K1 is the modified Bessel function of the first kind. This
Hamiltonian can be considered as a good approximation to rela-
tivistic systems in which particle creations and annihilations are
not allowed. The Salpeter Hamiltonians (1.5) with several poten-
tials have been studied and considered as very successful models
in phenomenological meson physics [13–15]. We have recently
considered a single semirelativistic quantum mechanical particle
of mass m moving in one dimension in the presence of finitely
many �-interactions located at isolated points ak. The Hamiltonian
is formally given by [16]

H � ��
d2

dx2
� m2 � 	

k�1

N

�k�(x � ak) (1.8)

where �k are assumed to be positive and called the coupling con-
stants (or strengths), and ak are the locations of the Dirac-� centers
in R. We assume that ak ≠ aj for k ≠ j. This problem requires
renormalization in contrast to its one-dimensional non-relativistic
version. The renormalization of the problem is summarized in the
following section to make the paper self-contained. In particular,
we have considered two centers and discussed the bound state
spectrum of the problem (see also ref. 10). Therein, we have also
found a condition sufficient for n(H) = 2 studying numerically the
bound state solutions. This problem is analytically hard to solve
since the expressions that we have are not analytically closed
expressions.

For some class of regular potentials in the non-relativistic case,
the various upper and lower bounds (e.g., the Bargmann’s bound,
the Calogero bound, the Birmann-Schwinger bound, the Lieb-
Thirring bound) on the number of bound states for a given poten-
tial are given in the literature [17]. This subject is also partially
summarized in a more elementary way in ref. 18. All these bounds
are valid only for regular potentials when the renormalization is
not required. Hence, it is not obvious to find the upper and lower
bounds on the number of bound states for singular potentials and
find the conditions for n(H) = N (the conditions that saturate the
upper bound of the number of bound states). For the non-
relativistic version of the problem with N Dirac delta centers for
various dimensions,

Hnr � �
ħ2

2m

 � 	

k�1

N

�k�(x � ak) (1.9)

the conditions n(Hnr) = N have been rigorously studied in great
detail from several points of view [5, 6, 19–23]. The main aim of
this work is to give a sufficient condition for n(H) = N. Our proof is
basically the extension of the work in ref. 6 to the semirelativistic
case, where the renormalization is required and explicit analyti-
cal expressions are absent.

The paper is organized as follows. We first summarize the
renormalization of the Salpeter Hamiltonian with N attractive
Dirac delta potentials in Sect. 2. Then, the bound state spectrum is
shortly described in Sect. 3. Finally, we give the main result of this
paper in Sect. 4.

2. Renormalization of one-dimensional Salpeter
Hamiltonian with Dirac delta potentials

Before discussing the number of bound states of the problem,
we first summarize the renormalization of the model through
the heat kernel that has been recently considered in ref. 16. The
Salpeter equation for the formal Hamiltonian (1.8) is given by


x|H|�� � 
x|H0|�� � 	
k�1

N

�k�(x � ak)�(x)

� 
x|�H0 � 	
k�1

N

�k|ak�
ak|�|�� � E�(x) (2.1)

where the kets |ak� are the generalized eigenkets of the position
operator with the generalized eigenvalue ak. These generalized
Dirac’s bras and kets live in the so-called Rigged Hilbert spaces
[24]. As in the case of two- and three-dimensional non-relativistic
versions of the problem, the above formal Hamiltonian is not a
well-defined self-adjoint operator in the above formal form. Here
we first give a heuristic construction through the heat kernel
regularization of the above formal Hamiltonian. In other words,
we start with the regularized Salpeter Hamiltonian


x|H�|�� � 
x|H0|�� � 	
k�1

N

�k(�)
x�ak
��
ak

���� (2.2)

where � is the short “time” cutoff and the coupling constants are
considered to depend on � and 
x�ak

�� ¡ 
x�ak� � ��x � ak� as � ¡

0� in the distributional sense. For this reason, one natural choice
of the regularization scheme is to use the heat kernel (i.e.,

x�ak

��Í K�/2�x, ak�; note that K�/2�x, ak� ¡ ��x � ak� in the distribu-
tional sense). We recall that the heat kernel is defined as the
fundamental solution to the heat equation [25]

H0Kt(x, y) � �

Kt(x, y)


t
(2.3)

Actually, what we mean by (2.2) is

H� � H0 � 	
k�1

N

�k(�)(K�/2(·, ak), ·)K�/2(x, ak) (2.4)

where (·, ·) is the L2 inner product (i.e., �K�/2�·, ak�, �� � �
�∞
∞ dxK�/2�x,

ak��̄�x�). Then, by solving the following inhomogenous equation:
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H0�(x) � 	
k�1

N

�k(�)K�/2(x, ak)�
�∞

∞

dyK�/2(y, ak)�̄(y) � E�(x) � �(x) (2.5)

we can find the regularized resolvent R��E� � �H� � E��1 using
the integral representation of the free resolvent �H0 � E��1 �
�0

∞ dte�t�H0�E�,

R�(E) � R0(E) � 	
k,j�1

N

��
0

∞

dtetEKt��/2(x, ak)
[��1(�, E)]kj��
0

∞

dtetEKt��/2(aj, ·), ·�
(2.6)

where

�kj(�, E) �

1

�k(�)
� �

0

∞

dtKt��(ak, ak)e
tE if k � j

��
0

∞

dtKt��(ak, aj)e
tE if k ≠ j

(2.7)

If we choose the coupling constants

1

�k(�)
� �

0

∞

dtKt��(ak, ak)e
tEB

k

(2.8)

where EB
k is the bound state energy of the system for the kth center

in the absence of the rest of the centers, and take the formal limit
as � ¡ 0+, we obtain a non-trivial finite expression for the resol-
vent

R(E) � R0(E) � 	
k,j�1

N

��
0

∞

dtetEKt(x, ak)
[��1(E)]kj��
0

∞

dtetEKt(aj, ·), ·� (2.9)

where

�kj(E) � ��0

∞

dtKt(ak, ak)(e
tEB

k

� etE) if k � j

��
0

∞

dtKt(ak, aj)e
tE if k ≠ j

(2.10)

where ��E� � m. We call the matrix ��E� � ��kj�E��k,j�1
N the princi-

pal matrix. We assume that (2.10) can be extended onto the largest

possible subset of the complex plane by analytic continuation.
The principal matrix satisfies �†�E� � ��Ē�. The resolvent for-
mula (2.9) is a kind of Krein’s formula [26] and it is expressed in
terms of the heat kernel. The explicit expression of the heat ker-

nel associated with the operator ���d2/dx2� � m2 is given in [25]
by the following formula:

Kt(x, y) �
mt

��(x � y)2 � t2

K1
�m�(x � y)2 � t2� (2.11)

for any x, y � R and t > 0. In particular, the formula contains the
massless case m = 0. In this case, the heat kernel associated with

H0 � ���d2/dx2� is given by [25]

Kt(x, y) �
1

�� t

t2 � (x � y)2
� (2.12)

The above condition ��E� � m is imposed to guarantee the con-
vergence of the integrals due to the exponential decaying behav-
ior of the heat kernel for large values of t [16]

Kt(ak, ak) �
m

�� m

2mt
e�tm (2.13)

The principal matrix (2.10) can also be expressed in the momen-
tum space by using the generalized completeness relation ��∞

∞ �dp/
2���p�
p� � 1 [24],

�kj(E) �

�
�∞

∞

dp

2�� 1

�p2 � m2 � EB
k

�
1

�p2 � m2 � E
� if k � j

��
�∞

∞

dp

2�

exp[ip(ak � aj)]

�p2 � m2 � E

if k ≠ j

(2.14)

where ��E� � m. The integral in the diagonal terms can be directly
evaluated

�kk(E) �
EB

k

��m2 � �EB
k�2��

2
� arctan

EB
k

�m2 � �EB
k�2�

�
E

��m2 � E2��

2
� arctan

E

�m2 � E2� (2.15)

where we have used arctanz = (1/2i)log[(i – z)/(i + z)] and chosen the
principal branch of arctanz such that arctan0 = 0. The off-diagonal
elements can also be expressed in the following form by using the
residue theorem in refs. 8 and 9]:

�kj(E) �

�
1

�
�
m

∞

d	 exp(�	|ak � aj|)
�	2 � m2

	2 � m2 � E2
if R(E) � m

�i
exp�i�E2 � m2|ak � aj|�

�1 � (m2/E2)

�
1

�
�
m

∞

d	 exp(�	|ak � aj|)
�	2 � m2

	2 � m2 � E2
if R(E) � m

(2.16)
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Here the integral over the variable 	 is due to the branch cut along
[im, i∞). Expressing the integral in the off-diagonal part of princi-
pal matrix (2.14) by (2.16) is very useful when we study the scatter-
ing spectrum of the problem [16].

We will now show that R�(E) converges to R(E) as � ¡ 0+ in the
Hilbert–Schmidt norm. For this reason, we need to prove that

lim
�¡0�	

l�1

∞

���
0

∞

dtetEKt��/2(aj, ·), fl(·)���
0

∞

dtetEKt��/2(aj, x)

� ��

0

∞

dtetEKt(aj, ·), fl(·)���
0

∞

dtetEKt(aj, x)
� � 0 (2.17)

where �fl� l�I is an orthonormal basis for the Hilbert space L2�R�. By
adding and subtracting a term

��
0

∞

dtetEKt(aj, ·), fl(·)���
0

∞

dtetEKt��/2(aj, x)
 (2.18)

and combining the common factors we end up with the terms
including the following factor:

�
�∞

∞

dx�
0

∞

dtetE[Kt��/2(aj, x) � Kt(aj, x)]2 (2.19)

where we have used the triangle and Cauchy–Schwarz inequalities.
Using ��∞

∞ dxKt1
�ai, x�Kt2

�x, aj� � Kt1�t2
�ai, aj� and the upper bound of

the modified Bessel function of the first kind [27]

K1(x) � e�x/2�1

x
�

1

2
� (2.20)

it is easy to show that the limit is zero.

3. Bound states
Because the bound state energies are the poles of resolvent (2.9),

they must be the points of the real E axis such that the principal
matrix is not invertible. Equivalently, E must be the solution to

det �(E) � 0 (3.1)

This is a transcendental equation so it is rather hard to solve for an
arbitrary number of centers. It is important to emphasize that free
resolvent has no bound state spectrum, and it has only a contin-
uous spectrum starting from m on the real E axis. In ref. 9, a
terminology for the bound states depending on the values of the
energy on the real axis has been introduced, namely, weak,
strong, and ultrastrong bound states. However, we are not going

to study the number of bound states according to this classifica-
tion and we do not distinguish them in this paper.

To study the bound state spectrum for an arbitrary number of
centers and make some general conclusions about the number of
bound states, we consider the eigenvalue equation of the princi-
pal matrix

�(E)A(E) � �(E)A(E) (3.2)

Then, the solutions of (3.1) are actually zeros of the eigenvalues of
the principal matrix. Moreover, the principal matrix is a symmet-
ric analytic family in the sense of Kato [28] so that its eigenvalues
and eigenprojections are analytic on the real axis due to theo-
rem 6.1 in ref. 28. For real E, the principal matrix is Hermitian
because Kt(ak, aj) = Kt(aj, ak). Hence, all the eigenvalues � are real.
Because it is legitimate to interchange the order of momentum
integration in the matrix elements (2.14) and the derivation with
respect to E, we can find (
�kj/
E). Then, from the Feynman–Hell-
mann theorem [29, 30]


�r


E
� 	

k,j�1

N

Āk


�kj


E
Aj (3.3)

we find that the eigenvalues � are decreasing functions of E [16]


�r(E)


E
� 0 (3.4)

Here the index r stands for the index of the eigenvalues. The
monotonic behavior of the eigenvalues implies that there are at
most N bound states (including the weak, strong, and ultrastrong
ones). From the explicit expression of the principal matrix (2.16),
all the off-diagonal terms vanish as |ak – aj| ¡ ∞ for all k, j. Hence,
�r ¡ �rr. If all EB

k are the same, then we have N degenerate bound
states.

For simplicity, we have considered in our previous work [16] the
special case, where we have two ( EB

1 � EB
2 � EB) centers located at

a1 = 0 and a2 = a. In this case, we numerically illustrated that there
are exactly two bound states if

ma � 0.775 (3.5)

for EB/m = 1/2. In other words, there appears a second bound state
beyond the certain critical value of the distance between the cen-
ters. However, when we increase the number of centers, it is very
hard to make numerical computations and determine whether
such a type of condition exists. For a typical example for modeling
one-dimensional lattice, N is very large. In the following section,
we will determine such conditions for N bound states by following
the ideas originally given in ref. 6 for the non-relativistic case. In
contrast to the non-relativistic case, the principal matrix in this
case is not given in a closed form.

In the massless case, we can explicitly calculate the principal
matrix given by

�kj(E) � � 1

�
log� E

EB
k � if k � j

1

2�
{2 cos[E(ak � aj)]Ci(�E|ak � aj|) � sin(E|ak � aj|)[� � 2Si(E|ak � aj|)]} if k ≠ j

(3.6)

where EB
k � 0. Here Ci and Si are the sine integral and the cosine integral functions defined by their integral representations [31]

1238 Can. J. Phys. Vol. 96, 2018

Published by NRC Research Press



Ci(x) � ��
x

∞

dt
cos t

t
Si(x) � �

0

x

dt
sin t

t
(3.7)

For the same problem for two centers located symmetrically, the
condition sufficient for n(H) = 2 can be analytically found [16] by
solving the equation det�(E) = 0, or

log� E

EB
� � ±�2 cos(aE)Ci(�aE) � sin(aE)[� � 2Si(aE)]

2
� (3.8)

We can plot the left-hand side and right-hand side as a function of
E/|EB| for particular values of a|EB| = 1 and a|EB| = 1/e�, as shown in
Fig. 1. Let RHS be the right hand side of (3.8) with positive sign in
front of the parenthesis. Using the arguments similar to the ones
in the non-relativistic case, we obtain the sufficient condition for
n(H) = 2

a|EB| �
1

e�
(3.9)

where � ≈ 0.5772 is Euler’s constant.

4. Main results
From the explicit expression of the principal matrix, it is real

symmetric and continuously differentiable matrix-valued func-
tion on the complex half-plane with ��E� � m. Let us first now
recall the following theorem [28, Theorem II.6.8]:

Theorem 1 If T��� � �tkj����k,j�1
N is a real symmetric and continuously

differentiable matrix and

lim
�¡�∞

T(�) � diag(a1, a2, …, aN) (4.1)

then, the following assertions hold:

(i) There exist N continuously differentiable functions �j��� that
represent the repeated eigenvalues of the matrix T(�).

(ii) lim�¡�∞�j��� � aj for all j = 1, …, N.

In light of Theorem 1, let us define

Tkj(E) �
1

g(E)
�kj(E) (4.2)

where

Fig. 1. The graphs of RHS (–RHS) and LHS of (3.8) for the particular values of the parameters.
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g(E) � �
E

��m2 � E2��

2
� arctan

E

�m2 � E2� (4.3)

where �kj are the elements of the principal matrix for the massive
case (we shall consider the massless case separately) and we as-
sume that E is restricted to the real axis and E < m. Thanks to the
Lebesgue dominated convergence theorem, we can change the
order of limit and integration with respect to t in (2.10). Suppose
furthermore that EB

1 � EB
2 � … � EB

N � EB for simplicity. Then, we
obtain limE¡�∞�1/g�E����E� � diag�1, 1, …, 1�. Hence, the above ma-
trix (1/g(E))�(E) satisfies all the hypothesis of Theorem 1 and there
exist N continuously differentiable functions �k(E)/g(E) that repre-
sent the eigenvalues of (1/g(E))�(E), where �k(E) is the kth eigen-
value of the principal matrix �(E). Moreover, limE¡�∞��k�E�/
g�E�� � 1 for all k. This means that the eigenvalues �k are positive
for sufficiently negative values of E for all k.

If �(E) is negative definite with some E0 < m (i.e., �k(E0) < 0 for all
k), then there exist at least N numbers Ek such that �k(Ek) = 0 for all
k due to the intermediate value theorem. Hence, it implies that
det�(Ek) = 0, so that Ek is an eigenvalue. The monotonic behaviour
of the eigenvalues �k guarantees that there exists exactly N num-
ber of Ek such that �k(Ek) = 0 for all k. In other words, there are
N bound states.

To find an explicit condition for N bound states, we recall the
following theorem, called Gerschgorin theorem [32] in matrix
analysis:

Theorem 2 All the eigenvalues of the matrix T � �Tkj�k,j�1
N are contained

in the union of Gerschgorin’s disks

Gk � �z � C; |z � Tkk| ≤ 	
j≠k

|Tkj|� (4.4)

for k = 1, …, N.
Let us apply Gerschgorin theorem for the principal matrix.

Then, all the eigenvalues � of the principal matrix are located in
the union of following disks Gk:

Gk(E) � ��kk(E) � 	
j≠k

|�kj(E)|, �kk(E) � 	
j≠k

|�kj(E)|� (4.5)

Thus, all the eigenvalues �k(E) are negative if

�kk(E) � 	
j≠k

|�kj(E)| � 0 (4.6)

for some E = E0 < m. Let us denote the above sum 	j≠k|�kj�E�| by
bk(E).

Let us now find an explicit condition for bk(E) to be negative. For
that purpose, we first notice that

�kk(E) � 	
j≠k

|�kj(E)| ≤ max
1≤k≤N

�kk(E) � (N � 1)max
1≤k≤N

max
1≤j≠k≤N

|�kj(E)| (4.7)

Because all the EB
k are assumed to be the same, we have

�kk(E) � 	
j≠k

|�kj(E)| ≤ �kk(E) � (N � 1)max
1≤k≤N

max
1≤j≠k≤N

|�kj(E)| (4.8)

For (4.8) to be negative, it is necessary that �kk(E) < 0, which is true
for E > EB. Using a lower bound of the modified Bessel function K1

of the first order [16]

K1(x) �
e�x

x
(4.9)

for all x > 0, we can find a upper bound of �kk for E > EB

�kk(E) � �
0

∞

dtKt(ak, ak)(e
tEB � etE) �

1

�
log� m � E

m � EB
� (4.10)

If we define d � min1≤k,j≤N��ak � aj�; k ≠ j� and use the upper bound

of the Bessel function (2.20) together with e��m/2��d2 � t2
≤ e��m/2�t

and �d2�t2 ≥ t for all t, we can find an upper bound of the
off-diagonal terms of the principal matrix

|�kj(E)| ≤ �
0

∞

dt
mt

��d2 � t2

etE exp��
m

2
�d2 � t2�� 1

m�d2 � t2

�
1

2�
�

1

�d2
�
0

∞

dtt exp��t�m

2
� E�� �

m

2�d
�
0

∞

dtt exp��t�m

2
� E��

�
1

(E � m)2
� 1

�d2
�

m

2�d� (4.11)

where we have assumed E < m/2 for the convergence of the inte-
grals. If we now impose

1

�
log� m � E

m � EB
� � (N � 1)� 1

(E � m)2
� 1

�d2
�

m

2�d�� � 0 (4.12)

it implies the condition (4.6). Let t = m – E and tB = m – EB and define
f(t) = (1/�)log(t/tB) + (N – 1)[C(d)/t2], where C(d) = (1/�d2) + (m / 2�d) and

nt > 0. The unique critical point of f(t) is tc � �2�C�N � 1�. It is easy
to show that f ′′(tc) > 0, thus, tc is the point of the global minimum
of f. Hence, if we impose that f(tc) < 0 with the condition t > 0, or
more explicitly

N � 1 �
(m � EB)2

2�e[(1/�d2) � (m/2�d)]
(4.13)

then we will get (4.12). Therefore, if condition (4.13) is satisfied,
then we have exactly N bound states.

For the massless case, the upper bound of the off-diagonal term
of the principal matrix is given by

|�kj(E)| ≤
1

�d2E2
(4.14)

where we have used d2 + t2 ≥ d2. Then, applying the similar argu-
ments above, we obtain

N � 1 �
d2EB

2

2e
(4.15)

for the condition of N bound states.
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Conditions (4.13) in the massive and (4.15) in the massless case
for N bound states are consistent with the numerical computa-
tions for N = 2, summarized above. However, condition (4.13) for
N = 2

2�e� 1

�a2
�

m

2�a� � (m � EB)2 (4.16)

and condition (4.15) for N = 2

a|EB| � e (4.17)

are not exactly reduced to conditions (3.5) and (3.9) because we
have used the upper bounds of the principal matrix to obtain
analytical results.

5. Concluding remarks
In this paper, we elaborated the sufficient conditions (4.13) and

(4.15) for Salpeter Hamiltonian with N attractive delta potentials
to have N bound states. The condition that we have found overes-
timates the real bound computed numerically for delta poten-
tials. For EB/m = 1/2, condition (4.13) becomes

1

a2m2
�

1

2am
�

1

8e
(5.1)

or equivalently ma � 2e�1 � �1 � �2/e��. The bound is definitely
less stringent than the one obtained numerically (ma > 0.775). The
reason for this is that we have used upper bounds instead of the
exact values of the principal matrix to find the sufficient condi-
tion analytically. Similarly, in the massless case, our bound for
N = 2 is larger than 1/e�, where � ≈ 0.5772 is Euler’s constant.
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