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Determination of honey adulteration with beet
sugar and corn syrup using infrared
spectroscopy and genetic-algorithm-based
multivariate calibration
Başak Başar and Durmuş Özdemir*

Abstract

BACKGROUND: Fourier transform infrared spectroscopy (FTIR) equipped with attenuated total reflectance accessory was used
to determine honey adulteration. Adulterated honey samples were prepared by adding corn syrup, beet sugar and water as
adulterants to the pure honey samples in various amounts. The spectra of adulterated and pure honey samples (n = 209) were
recorded between 4000 and 600 cm−1 wavenumber range.

RESULTS: Genetic-algorithm-based inverse least squares (GILS) and partial least squares (PLS) methods were used to determine
honey content and amount of adulterants. Results indicated that the multivariate calibration generated with GILS could produce
successful models with standard error of cross-validation in the range 0.97–2.52%, and standard error of prediction between
0.90 and 2.19% (% w/w) for all the components contained in the adulterated samples. Similar results were obtained with PLS,
generating slightly larger standard error of cross-validation and standard error of prediction values.

CONCLUSION: The fact that the models were generated with several honey samples coming from various different botanical
and geographical origins, quite successful results were obtained for the detection of adulterated honey samples with a simple
Fourier transform infrared spectroscopy technique. Having a genetic algorithm for variable selection helped to build somewhat
better models with GILS compared with PLS.
© 2018 Society of Chemical Industry
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INTRODUCTION
Honey is one of the most valuable natural food products, and
there has been an increasing public awareness about consump-
tion owing to its nutrient and therapeutic effects. The most com-
mon varieties of honey are the flower honeys that are produced
by honey bees (Apis mellifera L.) from the nectars of various kinds
of flowers depending on the geographical region and the season.
The second type of well-known honey is honeydew honey, which
is produced from secretions of living parts of pine trees, especially
in late summer to early autumn. Depending on the type of honey
and the geographical region where the honey is produced, the
price of honey may vary significantly. As consumption demand for
honey increases, adulteration of honey with low-cost sugar substi-
tutes has become a serious public issue that should be addressed
to protect consumers from possible health issues while promoting
honest honey producers. It is also a very important subject for the
sake of honest honey producers and local bee farmers, as they can-
not compete with the price of adulterated honey products. Turkey
is one of the leading countries in the production of honey. The Min-
istry of Health has tightened the control of honey producers and
companies to prevent them from selling adulterated honey sam-
ples to consumers. Moreover, parameters concerning the quality
and safe consumption of honey have become important for the

protection of human health in recent years not only in Turkey, but
also all over the world.

Consumption of adulterated honey samples causes human
health problems due to the existence of 5-hydroxymethylfurfural
(HMF) during the adulteration process. When adulterants are
added into pure honey samples, the mixture is generally heated in
order to obtain a homogeneous fake product that becomes very
difficult to distinguish from unadulterated honey by ordinary con-
sumers. As thermal treatment is applied under acidic conditions
to sugar-rich food products, HMF can form as an intermediate
in a Maillard reaction by direct dehydration of sugars.1 HMF
formation is not only a common problem at high temperatures
but also at low temperatures, depending on the duration period.
While it can also be seen in pure honey, adding inverted sugar
and high-fructose corn syrup to adulterate honey might cause
high amounts of HMF formation. All this information indicates
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Figure 1. Turkey map that shows the geographical regions (black areas) of the collected authentic honey samples which were used during the whole
period of this study.

that adulteration of honey with cheap (i.e., corn syrup) or syn-
thetic sugars for producing cheaper honeys poses a public health
risk. Consequently, to be able to distinguish natural honey from
adulterated fake products is very important.

There have been a large number of publications in the last cou-
ple of decades about determination of honey adulteration with
cheaper sugar substitutes such as beet sugar, corn syrup, and so
on. Scientists have aimed to detect honey adulteration by working
on a variety of analytical methods. Among them, nuclear magnetic
resonance spectroscopy2–5 is one of the most widely used analyt-
ical techniques for detection of honey adulteration. Additionally,
honey samples contain several types of sugars, such as glucose,
fructose, sucrose and so on. Chromatographic methods have also
been used to determine sugar composition, and these analytical
methods have generally been coupled with mass spectrometry
(MS) such as gas chromatography–MS and high-performance
liquid chromatography–MS. Furthermore, gas chromatography6,7

and high-performance liquid chromatography8–13 are also used
to detect adulterated honey samples. Moreover, carbon isotope
ratio (C12/C13) analysis14–20 (IR-MS) is used as a standard technique
to detect the presence of artificial sweeteners in honey. Although
there has been a great deal of study in the literature, IR-MS anal-
ysis requires more elaborate sample preparation techniques and
therefore takes a lot of time. In addition, a recent report on the use
of IR-MS for the quantitative determination of honey adulteration
claims that it can be very difficult to assess adulteration based on
the C12/C13 ratio as the geographical and botanical origin of the
honey might cause significant variations in these isotope ratios.19

In recent years, researchers have focused on molecular spectro-
scopic methods, as they are cheaper, faster and simpler than
chromatographic and hyphenated techniques. The most widely
used molecular spectroscopic methods are fluorescence spec-
troscopy, Raman spectroscopy,21 near-infrared spectroscopy22–27

and Fourier transform infrared (FTIR) spectroscopy.28–35

In this study, FTIR spectroscopy coupled with a three-reflection
diamond attenuated total reflectance (ATR) accessory was used
to determine honey adulteration based on pure and adulter-
ated honey samples synthetically prepared in the laboratory with
three different adulterants (beet sugar, corn syrup and water). A

genetic-algorithm-based inverse least squares (GILS) multivariate
calibration method36–38 was used to develop calibration models
with pure and synthetically adulterated honey samples. In order
to study the predictive performance of the GILS method, the par-
tial least squares (PLS) method was also used to develop cali-
bration models with the same data set, and these models were
tested with 100 pure honey samples. Multivariate calibration mod-
els were generated for both the honey content of the samples and
adulterants, and then predictions on the pure honey samples were
conducted for all the components (honey and adulterants) and the
results of both GILS and PLS were compared.

MATERIAL AND METHODS
Materials
A total of 115 pure honey samples were collected from var-
ious geographical and botanical origins around Turkey in the
2014–2016 harvest seasons. Among these 115 samples, 20 of
them were commercial brands of honey collected from local mar-
kets, 23 of them were from the Ordu Apiculture Research Institute
(Republic of Turkey Ministry of Food Agriculture and Livestock) and
72 of them were collected on site from various beekeepers. Botan-
ical origins of the commercial honey samples were accepted as
the labels on the products, whereas the samples coming from the
Ordu Apiculture Research Institute were classified according to a
pollen test that was done at the institute. On the other hand, the
botanical origins of the samples collected directly from the bee-
keepers were accepted as statements of the owners as to the col-
lection season and geographical region. The map in Fig. 1 indicates
the geographical regions of the honey samples that were used in
this study. All of these pure honey samples were stored at room
temperature until analysis. Corn syrup and beet sugar were pur-
chased from a local market to be used as adulterants for prepara-
tion of synthetic samples.

Sample preparation
Among the 72 original honey samples collected from beekeepers,
six of them were selected as the stock pure honey samples for the

J Sci Food Agric 2018; 98: 5616–5624 © 2018 Society of Chemical Industry wileyonlinelibrary.com/jsfa
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Table 1. Percentage composition (% w/w) of adulterated honey samples, prepared with pure honey, corn syrup, beet sugar and water

No. Honey Corn syrup Beet sugar Water No. Honey Corn syrup Beet sugar Water

1 64.35 35.65 0.00 0.00 38 77.44 9.92 6.32 6.32
2 80.07 19.93 0.00 0.00 39 62.75 8.50 14.38 14.38
3 72.91 27.09 0.00 0.00 40 74.92 0.13 12.47 12.47
4 74.81 25.19 0.00 0.00 41 56.36 10.76 16.44 16.44
5 60.46 39.54 0.00 0.00 42 44.66 12.68 21.33 21.33
6 94.36 5.64 0.00 0.00 43 65.07 3.39 15.77 15.77
7 86.33 13.67 0.00 0.00 44 41.42 23.62 17.48 17.48
8 79.85 20.15 0.00 0.00 45 45.86 13.79 20.17 20.17
9 66.23 33.77 0.00 0.00 46 53.83 20.39 12.89 12.89
10 67.70 32.30 0.00 0.00 47 55.98 7.63 18.19 18.19
11 69.50 30.50 0.00 0.00 48 51.66 16.86 15.74 15.74
12 82.71 17.29 0.00 0.00 49 69.24 19.17 5.79 5.79
13 69.45 30.55 0.00 0.00 50 48.65 19.02 16.17 16.17
14 86.45 13.55 0.00 0.00 51 60.35 21.76 8.95 8.95
15 94.56 0.00 2.72 2.72 52 59.55 26.29 7.08 7.08
16 89.36 0.00 5.32 5.32 53 69.20 10.46 10.17 10.17
17 84.70 0.00 7.65 7.65 54 79.15 11.82 4.51 4.51
18 99.08 0.00 0.46 0.46 55 58.80 9.17 16.01 16.01
19 47.36 0.00 26.32 26.32 56 71.19 24.36 2.22 2.22
20 30.43 0.00 34.79 34.79 57 48.70 23.28 14.01 14.01
21 26.64 0.00 36.68 36.68 58 59.70 10.11 15.09 15.09
22 77.84 0.00 11.08 11.08 59 53.59 19.90 13.25 13.25
23 87.90 0.00 6.05 6.05 60 85.04 4.83 5.07 5.07
24 79.60 0.00 10.20 10.20 61 57.04 5.58 18.69 18.69
25 74.58 0.00 12.71 12.71 62 79.42 5.36 7.61 7.61
26 97.56 0.00 1.22 1.22 63 83.97 6.80 4.62 4.62
27 35.51 0.00 32.24 32.24 64 63.87 23.15 6.49 6.49
28 71.19 24.31 2.25 2.25 65 60.35 29.78 4.94 4.94
29 64.75 16.23 9.51 9.51 66 58.21 11.77 15.01 15.01
30 61.88 12.65 12.73 12.73 67 59.76 14.31 12.96 12.96
31 54.72 23.02 11.13 11.13 68 52.15 23.94 11.95 11.95
32 55.32 18.34 13.17 13.17 69 69.52 26.33 2.07 2.07
33 89.32 7.07 1.80 1.80 70 58.17 20.06 10.89 10.89
34 68.62 14.89 8.25 8.25 71 50.81 28.46 10.36 10.36
35 64.27 7.34 14.19 14.19 72 68.84 10.19 10.49 10.49
36 85.75 3.30 5.48 5.48 73 79.73 11.37 4.45 4.45
37 69.29 4.35 13.18 13.18 74 59.23 26.50 7.13 7.13

preparation of the adulterated sample set. These six monofloral
pure honey samples were also mixed in equal amounts in order to
have a polyfloral honey sample, resulting in a total of seven stock
samples (6 + 1 = 7). The selection of the six monofloral samples
was made on the basis of their botanical and geographical origin in
order to cover the maximum variability in adulterated samples. A
total of 74 synthetically adulterated binary (honey and corn syrup),
ternary (honey, beet sugar and water) and quaternary (honey, corn
syrup, beet sugar and water) mixtures were prepared by mass
percentage (Table 1). While preparing adulterated honey samples,
corn syrup was used in its commercial form, which was a highly vis-
cous water solution, and tap water was used to dissolve solid beet
sugar as 50% (% w/w) solution. As can be seen from Table 1, the
concentration ranges of each component were chosen to cover
a wide range of possible real-life adulteration scenarios. Though
all 74 samples given in Table 1 have some amount of honey, it is
also important to introduce samples with no honey content for
the models in order to detect samples with no honey content. For
these, two additional sets of binary mixtures of corn syrup–water

and beet sugar–water were prepared. and the percentage compo-
sitions of these samples are shown in Table 2. Among the 17 binary
samples given in Table 2, nine of them were corn syrup–water and
eight of them were beet sugar–water mixtures. While preparing
the adulterated samples, two corn syrup stocks were used, and
one of these undiluted samples was included in the calibration
set and one of them reserved for future prediction. In addition,
pure honey samples from various botanical and geographical ori-
gins were included in the calibration and validation sets in order
to improve the predictive ability of the models. A total of 16 pure
honey samples were reserved for the model construction. Honey
samples that were included in the adulterated set were the ones
specifically collected on site from the local producers.

To develop multivariate calibration models, a calibration set that
contains 73 samples and an independent validation set with 30
samples were prepared. Among the 73 samples in the calibra-
tion set, 27 of them were quaternary mixtures of honey, corn
syrup, beet sugar and water, 9 of them ternary mixtures of honey,
beet sugar and water, 11 of them binary mixtures of honey and

wileyonlinelibrary.com/jsfa © 2018 Society of Chemical Industry J Sci Food Agric 2018; 98: 5616–5624
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Table 2. Percentage composition (% w/w) of corn syrup–water and
beet sugar–water binary mixtures

No. Honey Corn syrup Beet sugar Water

1 0.00 9.97 0.00 90.03
2 0.00 20.02 0.00 79.98
3 0.00 30.07 0.00 69.93
4 0.00 40.22 0.00 59.78
5 0.00 50.01 0.00 49.99
6 0.00 60.15 0.00 39.85
7 0.00 69.96 0.00 30.04
8 0.00 79.82 0.00 20.18
9 0.00 90.29 0.00 9.71
10 0.00 0.00 10.20 89.80
11 0.00 0.00 19.97 80.03
12 0.00 0.00 30.05 69.95
13 0.00 0.00 39.99 60.01
14 0.00 0.00 49.87 50.13
15 0.00 0.00 60.06 39.94
16 0.00 0.00 70.08 29.92
17 0.00 0.00 77.75 22.25

corn syrup, 6 of them binary mixtures of corn syrup and water,
6 of them binary mixtures of beet sugar and water, 1 of them
stock corn syrup and finally 13 of them pure honey samples
(27 + 9 + 11 + 6 + 6 + 1 + 13 = 73). On the other hand, the inde-
pendent validation set was constructed with 20 quaternary mix-
tures (honey, corn syrup, beet sugar and water), 4 ternary mixtures
(honey, beet sugar and water), 3 binary mixtures (honey and corn
syrup) and 3 pure honey samples (20 + 4 + 3 + 3 = 30). In addition
to the calibration and independent validation sets, a secondary
test set that contains 100 pure honey samples, 3 binary mixtures
of corn syrup and water, 2 binary mixtures of beet sugar and
water, and 1 undiluted corn syrup stock (100 + 3 + 2 + 1 = 106)
were designed.

Spectroscopic analysis
FTIR-ATR spectra of 209 authentic honey and adulterated sam-
ples (73 in the calibration set, 30 in the independent validation set
and 106 in the secondary test set) were collected using with an
FTIR spectrometer (Frontier FTIR/FTNIR, PerkinElmer Inc., MA, USA)
equipped with a three-reflection diamond ATR crystal between
4000 and 600 cm−1 wavenumber ranges. Single-beam spectra of
the samples were collected against the air background. The resolu-
tion of all these spectra was set to 4 cm−1, and each spectrum was
obtained using four replicate scans. The ATR crystal was cleaned
with ethanol before each analysis and left to dry in order to collect
a background spectrum before each sample.

Multivariate calibration
Multivariate calibration takes advantage of multiple variables for
constructing models to predict the properties of interest of new
samples – unlike univariate calibration, which relies on a single
variable. For instance, a spectral peak that is assumed to be
linearly proportional with the concentration of a compound might
interfere with a peak of another compound. Also, in some cases the
spectrum may be so complex that choosing a single wavenumber
is not possible. Another point is the complementary information
from the detector: readings in other wavenumbers can be taken

Figure 2. (a) FTIR-ATR spectra of 87 binary, ternary and quaternary adulter-
ated honey samples prepared with pure honey, corn syrup, beet sugar and
water together with 16 pure honey samples of which six of them were used
to prepare adulterated samples. (b) FTIR-ATR spectra of 100 pure honey
samples that were collected from different geographic areas and had dif-
ferent botanical origins.

into account by using multivariate calibration techniques in order
to enhance the predictive power of the model.

GILS is multivariate calibration method in which a genetic algo-
rithm (GA) is used as a variable selection and optimization method
while constructing calibration models by using a standard inverse
least squares method. Those variables that were selected by the
GA were then put into an evolutionary process where the best
subset of the variables was used in the models. The algorith-
mic details of the GILS algorithm were given in a number of
previous studies36,39,40 and will not be repeated here. PLS is a
well-known factor-based multivariate calibration method origi-
nally proposed by Svante Wold41 and has been used in many appli-
cations previously.42,43

Data analysis
Spectra of pure and adulterated honey samples were then trans-
ferred to another computer where data processing was carried
out. The GILS and PLS methods were implemented in the MAT-
LAB programming language using Matlab 2016a (MathWorks Inc,
Natick, MA). PLS was used as a reference multivariate calibration
method to compare the performance of GILS. The standard error of
cross-validation (SECV) and the standard error of prediction (SEP)
were calculated with the following equations for the assessment
of the models:

SECV =

√
m∑

i=1
(ci−ĉi)2

m−2
SEP =

√
m∑

i=1
(ci−ĉi)2

m

J Sci Food Agric 2018; 98: 5616–5624 © 2018 Society of Chemical Industry wileyonlinelibrary.com/jsfa
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Figure 3. Actual versus predicted plots of GILS models for pure honey (a), corn syrup (b), beet sugar (c) and water (d).

where ci is the reference and ĉi is the predicted values of concentra-
tion of ith sample and m is the number of samples in the calibration
and independent validation sets.

RESULTS AND DISCUSSION
The FTIR-ATR spectra of the samples from the calibration and
independent validation sets (73 + 30 = 103 samples) are shown
in Fig. 2(a), and Fig. 2(b) shows the FTIR-ATR spectra of the 100
authentic honey samples which were reserved for a secondary test
set in order to test the performance of the models for the pure
samples.

As can be seen from Fig. 2(a), there are significant spectral dif-
ferences among the samples due to the concentration variations,
especially in the fingerprint region (1500–500 cm−1) of the FTIR
spectra. It is expected that these differences will lead to success-
ful calibration models throughout multivariate calibration for each
component in the calibration set. When compared with the cali-
bration and independent validation set spectra given in Fig. 2(a),
the pure honey spectra shown in Fig. 2(b) demonstrates similar
spectral features as expected, but there are some spectral inten-
sity differences among those 100 pure honey samples possibly due

to the geographical and botanical origins. These differences could
also be partially attributed to the highly viscous nature of pure
honey resulting in a slight scattering on the spectra. As a result,
the predictive ability of the multivariate calibration with GILS and
PLS could be affected not only for pure honey but also for adulter-
ants. Nevertheless, multivariate calibration models generated with
a large number of pure honey samples (16 pure honey samples in
the calibration set) with various geographical and botanical origins
are expected to account for these differences during the model
building step.

Leave one out cross-validation was used with the calibration set
defined in the ‘Sample preparation’ section for each method and
the models generated were also tested with independent valida-
tion and test sets. Multivariate calibration models for each com-
ponent (honey, beet sugar, corn syrup and water) were developed
separately with the GILS and PLS methods.

GILS is a GA-based method for variable selection, and the algo-
rithm was set to run with 30 genes where each gene represents
a collection of randomly selected variables whose maximum size
depends on the number of calibration samples. The variables are
randomly selected from the whole spectral range, with an initial
selection criterion of R2 having a value of at least 0.50. The program

wileyonlinelibrary.com/jsfa © 2018 Society of Chemical Industry J Sci Food Agric 2018; 98: 5616–5624
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Table 3. Standard error of cross-validation (SECV), standard error of prediction (SEP) and regression coefficient (R2) of honey, corn syrup, beet
sugar and water contents obtained with GILS and PLS methods, along with number of principal components (PCs) and minimum and maximum
concentrations of each component

GILS results PLS results Range

(% w/w) (% w/w) (% w/w)

SECV SEP R2 No. PCs SECV SEP R2 Min. Max.

Honey 2.52 2.19 0.9946 8 4.73 2.89 0.9807 0.00 100.00
Corn syrup 0.98 1.64 0.9976 10 2.43 2.55 0.9846 0.00 100.00
Beet sugar 1.43 1.54 0.9910 8 2.26 1.66 0.9772 0.00 77.75
Water 0.97 0.90 0.9982 7 1.47 1.18 0.9959 0.00 90.00

was set to run 100 times, in which the number of iterations was
kept to 50 in each run. At the end, the best gene with the low-
est SECV for the calibration set was selected to build the final
model for each run, resulting in a total of 100 best models. These
models were then used to predict the independent validation set,
and the SEPs were determined. In addition, each model was also
used to predict the honey content of the 100 pure honey sam-
ples and the six samples that contain only corn syrup–water or
beet sugar–water binary mixtures in the secondary test set men-
tioned in the ‘Sample preparation’ section. In order to benefit from
the averaging effect of the individual GILS models resulting from
100 best runs, the prediction values of the calibration set, indepen-
dent validation set and the secondary test set were averaged. The
results are plotted as actual versus predicted plots for the calibra-
tion and independent validation sets in Fig. 3.

As seen from Fig. 3, honey and corn syrup contents of the
adulterated samples in the calibration and independent validation
sets range from 0 to 100% (% w/w) and the average model
generated from the results of the 100 best models produced
R2 values of 0.9946 and 0.9976 (Fig. 3(a,b)) for honey and corn
syrup respectively. On the other hand, beet sugar content of the
adulterated samples ranged from 0 to 80% (% w/w) and water
content in the same samples ranged from 0 to 90% (% w/w). Owing
to the fact that the corn syrup was purchased as a ready-to-use
water solution and there was no indication of the actual water
content, the water models were only constructed with the values
given in Table 2. The R2 values of the beet sugar and water models
were also found to be over 0.99. Table 3 shows the SECV and SEP

values for the GILS and PLS models, along with the number of
principal components (PCs) for PLS.

Since the SECV and SEP values carry the same unit of the sample
concentrations (% w/w), care must be taken while evaluating the
magnitude of these values with respect to the dynamic range
of the models as given in Table 3. The SECV and SEP values
of honey content were found to be 2.52 (% w/w) and 2.19 (%
w/w), respectively. For the corn syrup content of the samples,
somewhat lower error values were calculated: 0.98 and 1.64 (%
w/w). According to these results, the calibration model that was
developed for corn syrup content can be evaluated as a slightly
better model than the honey content model because both models
have the same dynamic range; that is, between 0 and 100% (%
w/w). Although the beet sugar model has a narrower operating
range, both SECV and SEP values of this model are found to be
slightly larger than those of the water model. The results of the
PLS models are given Table 3 for the same data sets used in the
GILS method.

The full spectral data were used in the case of PLS modelling, and
no further data reduction was applied after mean centering. The
optimum number of PCs for honey and beet sugar was 8, whereas
for corn syrup it was 10 and for water it was 7. The R2 values
of mixture components honey, corn syrup, beet sugar and water
were found as 0.9843, 0.9846, 0.9772 and 0.9959 respectively.
When compared with the R2 values obtained from GILS models,
these regression coefficient values are relatively smaller. This is a
reasonable result for an iterative method like GILS, and it is likely
that the models may tend to be somewhat overfitted in favor

Figure 4. Predicted honey contents of pure honey samples with both GILS and PLS calibration methods.

J Sci Food Agric 2018; 98: 5616–5624 © 2018 Society of Chemical Industry wileyonlinelibrary.com/jsfa
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Figure 5. Predicted corn syrup, beet sugar and water contents of pure honey samples with both GILS (a) and PLS (b) calibration methods.

of calibration samples even though cross-validation is applied.
However, the SEP results of GILS models for honey and water
content do not seem to indicate any overfitting, as their values are
even lower than the SECV values of the models. On the other hand,
SEP values of corn syrup and beet sugar models are somewhat
larger than SECV values, as can also be seen from Table 3.

On the other hand, the SECV and SEP values of honey, corn syrup,
beet sugar and water obtained with PLS were higher than those
obtained from GILS. In particular, the honey and corn syrup results
are almost double the SECV and SEP values of the corresponding
GILS models, whereas the differences for the beet sugar and water
models in terms of SEP values were less significant. In addition,
except for the corn syrup model, the SEP models for the other
three components resulted in lower values when compared with
the SECV values of the PLS models. These results indicate that while
there is a slight overfitting problem in GILS, no such problem is
observed in PLS. After completing the modelling studies with the
GILS and PLS methods, the successful models were also evaluated
with the secondary test set, which contains 100 pure honey
samples. Figure 4 shows the honey content predictions of these
samples with the GILS and PLS methods.

As can be seen from the comparison of the two methods, the
predicted honey content of the samples was found to range

between 90 and 110% (% w/w), resulting in a ±10% variability
at the extreme limits. However, when the graph is examined in
detail it is seen that the majority of samples (about 80) were
predicted within ±5% (% w/w) error rate within both the GILS and
PLS models. Considering the SECV and SEP values of the honey
models generated with both GILS and PLS, the 5% variability in
the honey content predictions of these pure honey samples is a
reasonable error for 80% of the test set samples. On the other hand,
both methods showed similar prediction ability for the overall
comparison of all the secondary test samples in honey content.
The prediction results of corn syrup, beet sugar and water content
of the samples are given in two separate graphs in Fig. 5 for GILS
(a) and PLS (b).

The GILS prediction results of corn syrup, which should be zero
in the ideal case, demonstrated much larger variations compared
with beet sugar and water in the pure honey samples. In fact, devi-
ations from 0% are the smallest for water predictions, especially
in first 60 samples. Overall, the majority of the samples yielded
±3% variability for sugar beet and water content, whereas for the
corn syrup content there were 20 samples whose predictions were
below the −5% boundary line and five samples above the +5%
boundary line. On the other hand, there were only five samples
whose beet sugar predictions were above the +5% boundary line,

wileyonlinelibrary.com/jsfa © 2018 Society of Chemical Industry J Sci Food Agric 2018; 98: 5616–5624
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Table 4. GILS predicted results of binary mixtures of corn syrup with water and beet sugar with water

Corn syrup (% w/w) Beet sugar (% w/w) Water (% w/w) Honey (% w/w)

No. Actual Predicted Actual Predicted Actual Predicted Actual Predicted

1 40.22 38.96 0.00 −0.13 59.78 59.82 0.00 0.92
2 60.15 60.96 0.00 0.70 39.85 40.90 0.00 −2.38
3 79.82 79.62 0.00 −1.19 20.18 21.06 0.00 −0.63
4 100.00 97.84 0.00 −0.64 0.00 −1.24 0.00 4.96
5 0.00 −0.79 39.99 42.13 60.01 61.10 0.00 −2.24
6 0.00 −2.64 60.06 59.22 39.94 36.12 0.00 9.04

Table 5. PLS predicted results of binary mixtures of corn syrup with water and beet sugar with water

Corn syrup (% w/w) Beet sugar (% w/w) Water (% w/w) Honey (% w/w)

No. Actual Predicted Actual Predicted Actual Predicted Actual Predicted

1 40.22 35.19 0.00 0.53 59.78 61.05 0.00 7.03
2 60.15 61.64 0.00 0.88 39.85 40.35 0.00 0.54
3 79.82 82.10 0.00 0.91 20.18 20.72 0.00 −1.85
4 100.00 91.27 0.00 −3.00 0.00 −2.09 0.00 12.53
5 0.00 0.92 39.99 45.32 60.01 61.18 0.00 −11.01
6 0.00 −2.18 60.06 60.65 39.94 36.43 0.00 4.63

and the rest of the 100 samples were all in between ±5% intervals.
In terms of water content predictions, there was no sample outside
the ±5% boundary lines. The results of the PLS predictions shown
in Fig. 5(b) display more uniform variability, which ranges mostly in
the ±5% interval for all three adulterants in the secondary test set.
When compared with GILS predictions, it is seen that GILS predic-
tions are less scattered than PLS predictions in the first 40 samples.

In order to clarify the figures, the GILS and PLS predicted results
of the samples with no honey content (sample numbers 101–106
in the secondary test set) are given in Tables 4 and 5 respectively.

As shown in Tables 4 and 5, the first four samples are the corn
syrup–water mixtures, and their actual corn syrup contents are
40.22%, 60.15%, 79.82% and 100% (% w/w). On the other hand, the
subsequent two samples had been prepared as binary mixtures of
beet sugar and water, with 39.99% and 60.06% (% w/w) beet sugar
content. The corn syrup, beet sugar, water and honey contents
were predicted with GILS and PLS models in order to evaluate
their prediction ability, and the actual and predicted results are
given in four distinct columns for each model. When Table 4 is
examined, it is clear that corn syrup determinations of the six
samples are quite accurate, with less than ±3% (% w/w) deviation
from the actual values. However, the PLS predictions of corn
syrup for samples 1 and 4 deviated around 5–9% (% w/w) in the
negative direction. The results of the remaining samples predicted
by both methods were in good agreement with the actual values.
When the predicted beet sugar concentrations were assessed, GILS
results were found to be more reliable than PLS predicted results
for the fourth and fifth samples. Additionally, results of water
content predictions demonstrated that sample 6 was predicted
with a relatively larger deviation (approximately 4%) by both GILS
and PLS models but the other five sample prediction results were
in good agreement with the actual values. The models developed
for honey with both GILS and PLS were also used to assess the
prediction ability, although these binary mixtures had no honey
content. Among the PLS predicted results, honey contents for the
first, fourth and fifth samples were predicted above the ±5% (%

w/w) interval. When the GILS predicted results were examined for
the same content, only the last sample was predicted over the±5%
(% w/w) range.

CONCLUSION
As a general concluding remark it can be said that GILS offers some
advantages over the conventional PLS method due to the variable
selection with a GA. In terms of honey content determination of
pure honey samples, both methods gave quite successful results
regardless of the botanical and geographical origin of the samples.
The results revealed that both GILS and PLS can be used for
initial detection of honey adulteration coupled with FTIR-ATR
spectroscopy, and even onsite when the models are transferred to
a portable FTIR system. FTIR spectroscopy is a simpler, faster and
cheaper method for field application in comparison with the other
analytical techniques, which require tedious sample preparation.
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