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On Operational Space Tracking
Control of Robotic Manipulators
With Uncertain Dynamic and
Kinematic Terms
In this study, a continuous robust-adaptive operational space controller that ensures
asymptotic end-effector tracking, despite the uncertainties in robot dynamics and on the
velocity level kinematics of the robot, is proposed. Specifically, a smooth robust control-
ler is applied to compensate the parametric uncertainties related to the robot dynamics
while an adaptive update algorithm is used to deal with the kinematic uncertainties.
Rather than formulating the tracking problem in the joint space, as most of the previous
works on the field have done, the controller formulation is presented in the operational
space of the robot where the actual task is performed. Additionally, the robust part of the
proposed controller is continuous ensuring the asymptotic tracking and relatively smooth
controller effort. The stability of the overall system and boundedness of the closed loop
signals are ensured via Lyapunov based arguments. Experimental results are presented
to illustrate the feasibility and performance of the proposed method.
[DOI: 10.1115/1.4041008]

1 Introduction

Most of the proposed past research on control of robot manipu-
lators focused on improving joint space tracking performance,
despite the fact that it is the end effector of the robot actually per-
forming the desired task at the operational space (Cartesian space
or end-effector space). This is mainly due to the fact that, on most
robot manipulators, sensors measure joint variables and actuators
are designed to apply the corresponding control input torque to
the joints. The operational space variables are then calculated
using the forward kinematics of the robot manipulator. Therefore,
when the desired task is given in the operational space, one
commonly accepted method is to convert the operational space
reference/desired trajectory into the joint space trajectory by using
inverse kinematics, and then ensure joint space tracking via the
controllers applied to the joints. This method requires calculation
of inverse kinematics of the manipulator in real time. In an alter-
native method, the tracking error term is defined in the operational
space of the robot manipulator while the control input torque is
again designed to be applied to the joints [1]. This technique
avoids the calculation of inverse kinematics of the robot manipu-
lator but requires the inverse Jacobian matrix.

Another challenge to be dealt with in control of robot manipula-
tors is the presence of dynamic and/or kinematic uncertainties.
From a theoretical point of view, when the dynamic model of the
robot manipulator has structured/parametric uncertainties, adapt-
ive control techniques are preferred. In view of this, several works
addressed adaptive operational space tracking control to deal with
kinematic uncertainties. In Ref. [2], Cheah proposed an adaptive
law to estimate the uncertain kinematic model parameters for the
approximate Jacobian method. Without requiring the operational
space velocity and the inverse of the approximate Jacobian matrix,
the authors in Refs. [3] and [4] proposed an approximate Jacobian
controller for robot manipulators having uncertainties in kinemat-
ics and in Jacobian. In Ref. [5], Cheah presented approximate

transpose Jacobian and inverse Jacobian methods for set point
control of nonredundant robots with parametric uncertainties in
kinematics. Adaptive controller formulations to deal with dynami-
cal uncertainties were also presented in several works. In Refs. [6]
and [7], the authors designed an adaptive controller that achieves
asymptotic operational space tracking despite parametric uncer-
tainties associated with the dynamic model. In Refs. [8] and [9],
the authors developed a quaternion-based adaptive full-state feed-
back controller for redundant robot manipulators with parametric
uncertainties in their dynamic model. In Refs. [10] and [11], the
authors designed an adaptive feedback linearizing controller to
compensate for the parametric uncertainties in dynamics. The
study in Ref. [12] presented an adaptive operational space control-
ler for redundant robots by considering time-varying uncertainties
and without knowledge of their bounds. Recent works on adaptive
control were realized for robot end-effector motion in Refs. [13]
and [14]. While different research problems were tackled in the
aforementioned past works, nearly all of them required the robot
dynamics to be in a certain form (i.e., the linear parametrization
property).

On the other hand, to deal with unstructured dynamical uncer-
tainties, robust control techniques are utilized. In robust control
literature, two methods are common: variable structure type con-
trollers and high gain controllers. Variable structure type control-
lers for operational space tracking of robot manipulators presented
in Refs. [15–21] are based on discontinuous control method. Zer-
geroglu et al. [15] developed a robust controller that achieves uni-
formly ultimately bounded end-effector and subtask tracking
despite the parametric uncertainties associated with the dynamics
and additive external disturbances. Braganza et al. [16] and Kapa-
dia et al. [17] developed robust operational space tracking control-
lers for kinematically redundant robot manipulators in the
presence of unstructured uncertainties. Recently, variable struc-
ture type controllers were designed for operational space tracking
control of robot manipulators [18–21]. To eliminate the disconti-
nuity, in Ref. [18], the authors integrated a fuzzy logic control
method with sliding mode controller and achieved the robustness
of the robot manipulator. In Ref. [19], to deal with dynamic uncer-
tainties of robot manipulators, Galicki developed a terminal slid-
ing mode algorithm that includes the first-order sliding mode
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method achieving asymptotic convergence and the second-order
sliding mode method generating absolutely continuous control,
then extended his study by considering the kinematic uncertainties
in Ref. [20]. Galicki [21] proposed a Jacobian inverse-free robust
controller to achieve asymptotic convergence and utilized a
boundary layer control method to eliminate the undesirable chat-
tering effects. Variable structure controllers ensure asymptotic
tracking but usually require the use of switching functions, like
the signum function, in their design, which results most of them to
be discontinuous. Continuous approximations of the signum func-
tion such as hyperbolic tangent or saturation functions can be uti-
lized but then asymptotic tracking will be lost. On the other hand,
high gain controllers cannot usually ensure asymptotic tracking
[22]. In our previous study [23], we proposed a continuous robust
controller to ensure an asymptotic operational space tracking
despite the presence of unstructured uncertainties associated with
the dynamical terms. However, the previous study did not deal
with the parametric uncertainties in the kinematic model and only
performed on simulation studies. As a subclass of robust control-
lers, learning controllers also deal with unstructured uncertainties.
For robot manipulators with periodic desired end-effector trajec-
tory, Dogan et al. [24] developed an operational space learning
controller that ensures asymptotic operational space tracking by
learning the uncertainties associated with the robot dynamics.

In this study, operational space tracking control of robot manip-
ulators is aimed. The direct method where the tracking error is
designed in the operational space is preferred. The control prob-
lem is complicated by the presence of parametric uncertainties in
the velocity kinematics. To address a realistic problem, the
dynamics are considered to have both parametric and unstructured
uncertainties. Furthermore, design of a continuous robust control-
ler scheme is aimed. The adaptive portion of the controller formu-
lation uses a gradient-based update to deal with the kinematic
uncertainties and then for the robust part, a model free control
scheme is utilized to compensate for the dynamical uncertainties
where instead of making use of the signum of the error term,
integral of the signum of an auxiliary term is utilized to ensure
continuous controller structure. When compared to the previous
adaptive and learning type operational space controller formula-
tions, the proposed method, due to its robust nature, can compen-
sate for a broader class of uncertainties. In addition, when
compared to the robust controller formulations of the same kind,
the proposed method ensures a smoother controller effort due to
the continuous structure of the overall formulation. The asymp-
totic stability of the end-effector tracking error and the bounded-
ness of the closed-loop signals are ensured via Lyapunov-type
analysis. Experiments conducted on a PHANToM Omni haptic
device (Control Laboratory of Izmir Institute of Technology in
Turkey, Urla, Turkey) are presented to demonstrate the feasibility
and the performance of the proposed controller.

The rest of the paper is organized in the following manner:
Dynamic and kinematic models for the robot manipulator are
given in Sec. 2. Error system formulation is developed in Sec. 3.
Sections 4 and 5 present the design and the stability analysis of
the robust operational space controller, respectively. The experi-
mental results are given in Sec. 6. Finally, concluding remarks are
given in Sec. 7.

2 Robot Manipulator Dynamic and Kinematic Models

The equations of motion describing an n-link nonredundant
robot manipulator having revolute joints can be given in the fol-
lowing form [25]

MðhÞ€h þ Nðh; _h; tÞ ¼ sðtÞ (1)

where hðtÞ; _hðtÞ; €hðtÞ 2 Rn are the joint position, velocity, and
acceleration vectors, respectively, MðhÞ 2 Rn�n represents the
inertia matrix, and the rest of the dynamical terms such as centrip-
etal Coriolis, gravity, and friction effects are combined in

Nðh; _h; tÞ 2 Rn which also includes additive bounded disturban-
ces, and sðtÞ 2 Rn is the control input torque.

The dynamical terms satisfy the following standard properties
and assumptions.

PROPERTY 1. The inertia matrix is positive-definite and symmet-
ric and can be bounded from below and above as [26,27]

m1knk2 � nTMðhÞn � m2knk2 8n 2 Rn (2)

where m1 and m2 2 R are positive bounding constants, n 2 Rn is
a vector with real entries, k � k denotes the standard Euclidean
norm, and (�)T is used to define the transpose of the vector (�).

ASSUMPTION 1. The dynamical effects combined in Nðh; _h; tÞ are
assumed to be trigonometric functions of hðtÞ (valid for robots
having revolute joints) and all entries of it are bounded when the
vector _hðtÞ is bounded.

ASSUMPTION 2. The dynamical terms in Eq. (1) are assumed to
be at least second-order differentiable. That is, the terms

MðhÞ; Nðh; _h; tÞ 2 C2, and _M ; €M ; _N , and €N 2 L1 when their
arguments are bounded.

The end-effector pose, denoted by xðtÞ 2 Rn, is obtained from

x ¼ f ðhÞ (3)

where f : Rn ! Rn is the forward kinematics. Differentiating
Eq. (3) with respect to time yields

_x ¼ J _h (4)

where _xðtÞ 2 Rn is the operational space velocity vector, and
JðhÞ¢ð@f ðhÞ=@hÞ 2 Rn�n is the manipulator Jacobian.

Remark 1. During the control development, all kinematic singu-
larities are always avoided and the inverse of the Jacobian matrix
is available 8h.

The velocity kinematics in Eq. (4) is linearly parameterizable in
the sense that

J _h ¼ Wj/j (5)

where Wjðh; _hÞ 2 Rn�p denotes a known regression matrix and
/j 2 Rp denotes an unknown constant parameter vector. The
entries of the kinematic parameter vector /j can be lower and
upper bounded as

/
ji
� /ji � /ji (6)

where /ji 2 R denotes the ith entry of /j 2 Rp and /
ji

and /ji 2
R denote the ith entries of lower and upper bounds

/
j

and /j 2 Rp, respectively.

ASSUMPTION 3. The Jacobian matrix is a function of hðtÞ as
arguments of trigonometric functions only, and hence, remains
bounded for all possible hðtÞ. And JðhÞ and J�1ðhÞ are second-

order differentiable with _J; €J; _J
�1

, and €J
�1 2 L1 provided their

arguments are bounded.

3 Error System Formulation

The main control objective is to ensure that the end effector of
the robot manipulator tracks a desired operational space trajec-
tory. To quantify the tracking objective, the operational space
tracking error, denoted by eðtÞ 2 Rn, is defined as

e¢xd � x (7)

where xdðtÞ 2 Rn denotes the desired operational space trajectory,
which is assumed to be sufficiently smooth. Taking the time deriv-
ative of Eq. (7) and substituting Eq. (4), the following expression
is obtained
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_e ¼ _xd þ ae� ae� J _h (8)

where a 2 Rn�n denotes a diagonal, positive-definite gain matrix.
For the subsequent analysis, an auxiliary error-like term, denoted
by rðtÞ 2 Rn, is defined as

r¢Ĵ
�1ð _xd þ aeÞ � _h (9)

where ĴðhÞ¢Jj/j¼/̂ j
2 Rn�n is the estimated Jacobian matrix

with /̂jðtÞ 2 Rp being the estimated kinematic parameter vector

yields (8) to be rewritten as

_e ¼ �aeþ Ĵr � ~J _h (10)

where ~JðhÞ¢J � Ĵ 2 Rn�n is the difference between the manipu-
lator Jacobian and the estimated manipulator Jacobian.

From the above definitions, it is easy to see that Ĵ _h ¼ Wj/̂j

and ~J _h ¼ Wj
~/j with ~/j ¼ /j � /̂j 2 Rp being the parameter

estimation error.
Another auxiliary error, denoted by sðtÞ 2 Rn, is defined as2

s¢ _r þ cr (11)

where c 2 Rn�n is a diagonal, positive-definite gain matrix.
Taking the time derivative of Eq. (11), substituting the second

time derivative of Eq. (9) and then premultiplying by MðhÞ yields

M _s ¼ M
d2

dt2
Ĵ
�1

_xd þ aeð Þ
n o

� _s þ _M€h þ _N þMc _r (12)

where the time derivative of Eq. (1) was also utilized. Via defining
an auxiliary vector Qðx; _x; €x; e; r; s; tÞ 2 Rn as

Q¢M
d2

dt2
Ĵ
�1

_xd þ aeð Þ
n o

þ _M€h þ _N þMc _r þ 1

2
_Msþ r (13)

Equation (12) can be rewritten as

M _s ¼ Q� 1

2
_Ms� r � _s (14)

The desired form of Q, denoted by Qdðxd ; _xd ; €xd ; &xdÞ 2 Rn, is
defined as

Qd¢Qjx¼xd ; _x¼ _xd ;€x¼€xd
(15)

after which ~Qðx; _x; €x; e; r; s; tÞ 2 Rn is defined as3

~Q¢Q� Qd : (16)

Remark 2. The norm of ~Q can be upper bounded by functions of
the error terms in the sense that

k~Qk � qðkzkÞkzk (17)

where q is a non-negative nondecreasing bounding function of its
argument, and zðtÞ 2 R3n is the combined error vector defined as

z¢½ eT rT sT �T (18)

4 Control Design

From the error system development in Sec. 3 and the subse-
quent stability analysis, the control input torque sðtÞ is designed
as

s ¼ ðK þ InÞ rðtÞ � rð0Þ þ c
ðt

0

rðrÞdr

� �
þ b

ðt

0

SgnðrðrÞÞdr

(19)

where In 2 Rn�n is the standard identity matrix, K 2 Rn�n is a
constant, diagonal, positive-definite gain matrix, b 2 Rn�n is a
constant, diagonal, positive-definite gain matrix, and Sgnð�Þ 2 Rn

is the vector signum function. It is noted that the term rð0Þ is
introduced in the control input to zero initial torque. The control-

ler in Eq. (19) requires only rðtÞ, which has the form r ¼
Ĵðh; /̂jÞ�1ð _xd þ aðxd � xÞÞ � _h and can be calculated via the

measurements of h; _h, the parameter estimate /̂j is updated

according to4

_̂/j ¼ projflg (20)

where the auxiliary term l 2 Rp is defined as

l¢CjW
T
j e (21)

where Cj 2 Rp�p is a constant, diagonal, positive-definite adapta-
tion gain matrix and the projection function of l is designed as
follows:

projflig ¼

li if /̂ji > /
ji

li if /̂ji ¼ /
ji

and li > 0

0 if /̂ji ¼ /
ji

and li < 0

0 if /̂ji ¼ /ji and li > 0

li if /̂ji ¼ /ji and li � 0

li if /̂ji < /ji

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(22)

where li denotes the ith entry of l, and /̂jiðtÞ denotes the ith entry

of /̂jðtÞ. Under the projection algorithm, the lower and upper

bounds of the estimated parameter vector satisfy that /
j
�

/̂jðtÞ � /j provided that /
ji
� /̂jið0Þ � /ji 8i ¼ 1; 2;…; p is sat-

isfied [28,29].
After substituting Eq. (16) and the time derivative of Eq. (19)

into Eq. (14), the closed-loop error system for sðtÞ is obtained as

M _s ¼ Qd þ ~Q � 1

2
_Ms� r � K þ Inð Þs� bSgn rð Þ (23)

where Eq. (11) was also utilized.

5 Stability Analysis

The stability analysis is enframed by the following Theorem:
THEOREM 1. The controller in Eq. (19) and the parameter update

rule in Eq. (20) ensure asymptotic operational space tracking in
the sense that

keðtÞk ! 0 as t!1 (24)

provided that the controller gains are selected to satisfy the fol-
lowing conditions2It should be highlighted that the calculation of s(t) requires €hðtÞ; however, it is

not used in control design.
3It should be noted that Q, Qd, and ~Q will be used only for the subsequent

stability analysis, and they are not required to be known for the control design.

4It is highlighted that the projection algorithm is introduced to ensure that Ĵ
�1

is
available for all /̂ j .
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bi � jQdi tð Þj þ 1

ci

j _Qdi tð Þj 8t (25)

amin > nĴ

2
(26)

cmin > nĴ

2
(27)

and the entries of K are chosen sufficiently large compared to the
initial conditions of the system. In Eqs. (25), (26), (27), bi and
ci 2 R denote the ith diagonal entries of b and c, respectively,

and QdiðtÞ and _QdiðtÞ denote the ith entries of QdðtÞ and _QdðtÞ,
respectively, amin and cmin denote the minimum eigenvalues of a

and c, respectively, and nĴ 2 R is a positive bounding constant

satisfying nĴ � kĴðhÞk8h.
Proof. The proof is started by defining a non-negative scalar

function, denoted by Vðy; tÞ 2 R, as

V¢
1

2
eTeþ 1

2
rTr þ 1

2
sTMsþ Pþ 1

2
~/

T

j C�1
j

~/j (28)

where PðtÞ 2 R is an auxiliary function defined as

P¢fP �
ðt

0

sTðrÞ½QdðrÞ � bSgnðrðrÞÞ�dr (29)

where fP 2 R is defined as follows:

fP¢
Xn

i¼1

bijrið0Þj � rTð0ÞQdð0Þ (30)

and yðtÞ 2 Rð3nþ1þpÞ�1 is defined as

yðtÞ¢½ eT rT sT
ffiffiffi
P
p

~/
T

j
�T (31)

Based on the proof in Refs. [30] and [31] provided that Eq. (25) is
satisfied PðtÞ � 0 and thus Vðy; tÞ is a Lyapunov function. Note
that Eq. (28) can be lower and upper bounded as follows:

k1kzk2 � k1kyk2 � VðyÞ � k2kyk2
(32)

where k1 and k2 2 R are positive bounding constants defined as

k1¢
1

2
min 1;m1;

1

Cj;max

� �
; k2¢max 1;

1

2
m2;

1

Cj;min

� �
(33)

where Cj;min and Cj;max denote the minimum and maximum eigen-
values of Cj, respectively.

Taking the time derivative of Eq. (28) yields

_V ¼ eT _e þ rT _r þ 1

2
sT _Msþ sTM _s þ _P þ ~/

T

j C�1
j

_~/j (34)

Substituting Eqs. (10), (11), (20), and (23), and the time derivative
of Eq. (29) into Eq. (34), and canceling common terms, the fol-
lowing expression is obtained:

_V � �eTaeþ eTĴr � rTcr þ sT ~Q � sTðK þ InÞs (35)

where �~Q
T
C�1

j projflg � �~Q
T
C�1

j l was utilized [28,29]. After

considering Assumption 3 along with the boundedness of the
output of the projection algorithm, and utilizing Eq. (17), the
following upper bound is obtained for the right-hand side of
Eq. (35) as

_V � �aminkek2 þ nĴ

2
kek2 þ nĴ

2
krk2 � cminkrk2 � ksk2

þ qkskkzk � Kminksk2
(36)

where Kmin denotes the minimum eigenvalue of K. Note that the
last two terms of Eq. (36) can be upper bounded as

qkskkzk � Kminksk2 � q2

4Kmin

kzk2
(37)

and in view of this inequality, the right-hand side of Eq. (36) can
further be upper bounded as

_V � � min amin �
nĴ

2

� �
; cmin �

nĴ

2

� �
; 1

� �
� q2

4Kmin

" #
kzk2

(38)

Provided that Eqs. (26) and (27) are satisfied, and the entries of K are
chosen sufficiently big enough when compared to the initial condi-
tions of the system, the following expression can be obtained as:

_V � �k3kzk2
(39)

for some 0 < k3 < 1. From Eqs. (28) and (39), Vðy; tÞ 2 L1 is
ensured. Therefore, yðtÞ 2 L1, and thus, based on its definition in

Eq. (31), eðtÞ; rðtÞ; sðtÞ; ~/ðtÞ 2 L1. Based on the boundedness of
the desired operational space trajectory, from Eq. (7), it is clear
that xðtÞ 2 L1. In view of Assumption 3, boundedness of eðtÞ and
rðtÞ can be utilized along with Eq. (10) to conclude that
_xðtÞ 2 L1. Above boundedness statements can be utilized with

Eq. (9) to prove that _hðtÞ 2 L1. The boundedness of the joint

velocity can be utilized to prove that Wjðh; _hÞ 2 L1. Above
boundedness statements can be utilized with Eq. (20) to prove that

/̂jðtÞ 2 L1. From Eq. (11), it is clear that _rðtÞ 2 L1, which can

be utilized along with the time derivatives of Eqs. (9) and (10) to

show that €hðtÞ; €eðtÞ 2 L1, respectively. The above boundedness
statements can be utilized along with Eq. (23) to prove that
_sðtÞ 2 L1 where Assumption 1 was utilized. The robot manipula-
tor dynamic model in Eq. (1) can be utilized to demonstrate
sðtÞ 2 L1. Standard signal chasing arguments can then be used to
prove that all signals remain bounded under the closed-loop oper-
ation. Integrating the inequality in Eq. (39) in time from 0 to þ1
results

Ðþ1
0
jjzðrÞjj2dr � ðVð0Þ=k3Þ, from which, zðtÞ is square

integrable. Finally, since zðtÞ 2 L2 \ L1 and _zðtÞ 2 L1, utilizing
Barbalat’s Lemma [29] yields jjzðtÞjj ! 0 as t!1 from which
the asymptotic tracking result given in Eq. (24) follows.

With the stability proof we have presented in our study, the
asymptotic stability of the closed-loop system and the bounded-
ness of the system variables are ensured. However, similar to
most adaptive type controllers, the convergence of the parameters
to their actual values was not achieved. We can only ensure the
convergence of the parameter estimates to some constant values.
This may seem like a weakness from a pure theoretical point of
view; however, from an engineering point of view, the main
objective of the controller, that is tracking an end-effector trajec-
tory, is still achieved.

6 Experiment Results

To illustrate the performance of the proposed controller, experi-
ments were performed on a PHANToM Omni haptic device
shown in Fig. 1. The Phantom device communicated with a com-
puter via a local area network port. OPENHAPTICS TOOLKIT software
used on the computer ensured real-time applications and MATLAB

SIMULINK with QUARC library transmitted control input torques to
the Phantom device, and read the encoder values with joint posi-
tions of the device. During the experimental studies, MATLAB
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SIMULINK was run with a data rate of 100 Hz. The block diagram of
the closed-loop system is presented in Fig. 2.

In the experiments, the first three joints of the device were
used. Using the standard Denavit–Hartenberg convention on the
device, the end-effector position of the device in the operational
space can then be calculated in the following form [32–34]

xðtÞ ¼
XðtÞ
YðtÞ
ZðtÞ

2
4

3
5 ¼ �s1ðl1c2 þ l2s3Þ

l1s2 � l2c3 þ ly

c1ðl1c2 þ l2s3Þ � lz

2
4

3
5 (40)

where l1¼ l2¼ 0.133 m represent the first and the second link
lengths, respectively, ly¼ 0.023 m, lz¼ 0.168 m are the opera-
tional space transformation offsets between the origin of the end
effector and the first joint. The notations are ci ¼ cosðhiÞ and
si ¼ sinðhiÞ for i �{1, 2, 3} where h1, h2, and h3 represent joint
angles as shown in Fig. 1. In view of Eqs. (5), from Eq. (40), the
regression matrix Wj 2 R3�2 is obtained as

Wj ¼
�c1c2

_h1 þ s1s2
_h2 �c1s3

_h1 � s1c3
_h3

c2
_h2 s3

_h3

�s1c2
_h1 � c1s2

_h2 �s1s3
_h1 þ c1c3

_h3

2
664

3
775 (41)

with /j ¼ ½l1; l2�T 2 R2.
The desired operational space trajectory for the experimental

studies is selected to ensure that the robot is not close to its kine-
matic singularities as follows:

xdðtÞ ¼
Xd

Yd

Zd

2
4

3
5 ¼ 0:05ð1� expð�0:05tÞÞ

�0:05þ 0:02 cosð0:05tÞ
�0:05þ 0:02 sinð0:05tÞ

2
4

3
5ðmÞ (42)

The control gains were selected as a ¼ diagf½40; 30; 20�g;
b ¼ c ¼ 0:1I3; K ¼ diagf½0:12; 0:03; 0:02�g, and Cj ¼ 2I2. The
manipulator was initialized to be at rest at joint positions
hð0Þ ¼ ½0;�0:26;�0:5�Trad. The selection of the controller gains
are done by trial and error method. We would like to note that for

similar type of controller formulations self-tuning methodologies
(as in Refs. [35] and [36]) can be utilized as an add-on strategy,
especially for the control gains b and K; however, specific to the
experiments in this study, the tuning process was quite easy.

The results of the experiments are presented in Figs. 3–6.
Figure 3 presents the operational space tracking errors. In Fig. 4,
the desired and the actual operational space trajectories are

Fig. 2 The block diagram of the closed-loop system

Fig. 3 Operational space tracking error e(t)
Fig. 1 PHANToM Omni haptic device

Fig. 4 Desired and actual operational space trajectories

Fig. 5 The control input torque s(t)
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presented. The actual trajectories presented in Fig. 4 are calcu-
lated via the forward kinematic formulations given in Eq. (40). As
can be observed from Figs. 3 and 4 at the initial phase of the
experiment, there is a slight jerk and after a reasonable amount of
time the end-effector position converges to the desired position
profile. We would like to note that this initial jerk is mostly due to
the initial estimates of the uncertain system parameters. However,
when the control effort kicks in and the parameter estimates con-
verging to some values, tracking control objective is already
achieved. In Fig. 5, the control input torque values are presented.
As it is seen, the control effort is relatively smooth and the values
are below the maximum torque limits of each joint (less than 2.2
N�m at nominal position). Finally, the parameter estimates are
presented in Fig. 6. As illustrated in Fig. 6, the estimated values of
the uncertain kinematic parameters approximately converge to
some values in finite time.

7 Conclusions

In this study, a new operational space controller formulation for
robot manipulators is presented. Under mild assumptions on kine-
matics and dynamics of the robot manipulator, the proposed
robust adaptive operational space controller ensured asymptotic
end-effector tracking performance despite unstructured uncertain-
ties in the dynamics and structured uncertainties in the velocity
kinematics. We also want to note that the proposed robust-
adaptive controller when compared to the adaptive counterparts
presented in Refs. [9–14] the literature due to robust part of the
controller formulation can compensate for a broader class of
uncertainties. As opposed to most variable structure controllers
presented in the literature, like the high gain robust controller of
Ref. [22], the proposed robust controller is continuous, and
asymptotic tracking is ensured via the continuous nature of the
controller formulation. Also, when compared to the recent vari-
able structure type controllers of Refs. [17–21,23], the proposed
robust-adaptive controller is capable of dealing with both the
velocity level kinematic and dynamic uncertainties of robot
manipulators. The stability of the proposed controller is ensured
via rigorous theoretical analysis based on Lyapunov techniques.
Experimental studies performed on a PHANToM Omni haptic
device are used to illustrate the feasibility and the performance of
the proposed robust-adaptive controller.
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