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Abstract: The aim of this work is to extend the recent work of the author on the discrete frequency function to the
more delicate continuous frequency function T , and further to investigate its relations to the Hardy–Littlewood maximal
function M , and to the Lebesgue points. We surmount the intricate issue of measurability of T f by approaching it
with a sequence of carefully constructed auxiliary functions for which measurability is easier to prove. After this, we
give analogues of the recent results on the discrete frequency function. We then connect the points of discontinuity of
Mf for f simple to the zeros of T f , and to the non-Lebesgue points of f .
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1. Introduction
Let R be the set of real numbers, and let R+ denote the set of positive real numbers. Let f ∈ L1(R) . We
define the average of f over an interval of radius r ∈ R+ centered at x ∈ R by

Arf(x) :=
1

2r

∫ r

−r

f(x+ y)dy.

These averages can be regarded as a function of two variables (x, r) ∈ R× R+ , given by

Af(x, r) := Arf(x),

and this gives an extension of the function f to the upper half plane. The Hardy–Littlewood maximal function
is then given as

Mf(x) := sup
r∈R+

Ar|f |(x).

We aim to study the distribution of the values r for which Mf(x) = Ar|f |(x) . To this end, we define
the sets

Ef,x := {r > 0 : Mf(x) = Ar|f |(x)},

and the frequency function

T f(x) :=

{
infEf,x if the set is nonempty
0 otherwise.

∗Correspondence: faruktemur@iyte.edu.tr
2010 AMS Mathematics Subject Classification: Primary: 42B25; Secondary: 46E35

1755

https://orcid.org/0000-0003-1519-4082


TEMUR/Turk J Math

Clearly this function is well defined. Two properties emerge directly from this definition: if the infimum of the
set in the definition is greater than zero, then it belongs to the set, and if T f(x) = 0 , then there is a sequence
of radii {rn}n∈N such that rn → 0 and Arn |f |(x) → Mf(x) as n → ∞ . These two properties show that the
two cases in the definition are intimately connected. In the next section, we will prove these two properties, and
also illustrate the behavior of T f by calculating it for certain functions f . We will observe that although the
large scale behavior of T f is similar to the discrete case investigated in [11], the local behavior can be much
more complicated due to the possible fractal structure of f .

The motivation for our study of this frequency function comes from the works [4, 8, 9]. In [4], a
classification of the local maxima of Mf based on the values of T f was used to great effect. In that work, Kurka
answered in positive n = 1 case of the following question raised by Hajlasz and Onninen in [3]: is f 7→ ∇Mf a
bounded operator from W 1,p(Rn) to L1(Rn)? Indeed he obtains the stronger result that the variation of Mf

is at most a constant times the variation of f . In [8, 9], the set Ef,x and its variants are defined and used
to prove that f 7→ ∇Mf is a continuous operator on W 1,p(Rn) . In this vein, we also would like to point out
the work [13], which defines a function similar to our frequency function, and using it characterizes the sine
function.

Observing the values of T f is very much like expressing a function as its Fourier series, for if around
a point the function is more steep, then we expect T f to be small, if it is more dispersed then we expect
T f to be large, and this is the exact opposite of the Fourier case. This analogy is the reason we call T f the
frequency function. This analogy can be seen as a part of more general and well-known connections between
maximal functions and oscillatory integrals articulated in such works as [7, 12]. We hope that understanding
the frequency function will contribute to the study of such connections. Also, as a more immediate motivation,
we hope to extract information about the Hardy–Littlewood maximal function and the Lebesgue points using
the frequency function, and our last two theorems show that this actually is possible.

Our first result is that the images under the frequency function are measurable. This result is the key to
the others, as it allows us to investigate measure-theoretic properties further. It is very natural to expect the
frequency function to be measurable, since it is defined using other measurable functions; however, a rigorous
proof turns out to be difficult.

Theorem 1.1 Let f ∈ L1(R) . The function T f is Lebesgue measurable.

With this theorem at hand, we will move to further investigation, and prove level set estimates. As a
function, f ∈ L1(R) contains most of its mass in an interval of finite radius centered at the origin, for large |x|
it is most natural to expect T f(x) to be like |x| . If, however, the mass of the function is dispersed sparsely over
the real line, as is the case for the function we will introduce to prove Theorem 1.4, the frequency function can
deviate from |x| for some x . The next section supplies further examples illustrating both of these situations,
but how often can T f(x) deviate from |x| for an arbitrary function? The next three theorems explore this
issue.

Theorem 1.2 Let f ∈ L1(R) . Let C > 1 be a real number. Then the set

SC :=

{
x ∈ R :

|x|
2C

≤ T f(x) ≤ |x|
C

}
is bounded.
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Our next theorem is a deeper result that gives information about the density of level sets of a somewhat different
type. We note that in this theorem and for the rest of the paper, |E| will denote the Lebesgue measure of a
set E , and #E will denote its cardinality.

Theorem 1.3 Let f ∈ L1(R) be a function that is not almost everywhere zero. Let C > 1 be a real number,
and let N ∈ N . Then

lim
N→∞

∣∣∣{x ∈ R : |x| ≤ N, T f(x) ≤ |x|
C

}∣∣∣
N

= 0.

We have the following theorem that makes it clear that it is not possible to improve upon Theorem 1.3,
even by comparing T f(x) to a function other than |x|/C .

Theorem 1.4 For every ε > 0 , there exists a function f ∈ L1(R) such that

| {x ∈ R : |x| ≤ N, T f(x) = 0} | ≥ 1

8
N/ log1+ε N

for infinitely many values of N ∈ N .

With these facts about the frequency function at hand, we turn to its applications. Our next theorem
relates the points of discontinuity of Mf to the zero set of T f when f is a simple function. We thus extract
information about the formation of discontinuities of Mf . It may well be possible that this theorem is true
for a wider class of functions, but as our arguments rely crucially on the range of f being a finite set, such a
result is beyond our reach. Also, as Mf, T f are both nonlinear operators, classical approximation by simple
functions argument of measure theory does not work either.

Theorem 1.5 Let f ∈ L1(R) be a simple function. Let x be a point at which Mf is discontinuous. Then for
every r > 0 , there exists y ∈ (x− r, x+ r) such that T f(y) = 0 .

Let E ⊂ R . A point x is called a point of density for E if

lim
r→0

|E ∩ (x− r, x+ r)|
2r

= 1.

A point is called an exceptional point for E if it is not a density point for either E or its complement Ec . It
is well known that if both E,Ec have nonzero measure then E has an exceptional point, see [2, 5, 14].

A more general concept than that of density points is the concept of Lebesgue points. For f ∈ L1
loc(R)

we call x a Lebesgue point of f if there exists c(x) such that

lim
r→0

1

2r

∫ r

−r

|f(x+ t)− c(x)|dt = 0.

It is well known that for almost every x this equation is satisfied with c(x) = f(x) , see [1, 6]. We combine the
existence of exceptional points with Theorem 1.5 to prove the first part of the following theorem. As opposed
to Theorem 1.5, the phenomenon observed in this first part is peculiar to simple functions, a relatively easy
example showing this will be provided. Then we use topological arguments to prove the other direction of the
theorem. This other direction is not true even for simple functions, as we will show.
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Theorem 1.6 Let f ∈ L1(R) be a simple function. If x is a point of discontinuity for Mf , then for every
r > 0 there exists y ∈ (x − r, x + r) such that y is not a Lebesgue point of f . Conversely let f ∈ L1(R) be a
characteristic function. If x is a non-Lebesgue point for f , then for every r > 0 there exists y ∈ (x− r, x+ r)

such that Mf is discontinuous at y .

Even for characteristic functions it is possible for a point of discontinuity of Mf to be a Lebesgue point
of f , and Mf to be continuous at a non-Lebesgue point of f . Examples of both situations will be furnished.
Therefore, it is not possible to improve the theorem in this direction either.

In the next section, we include examples to show that the operator T is indeed very rough, and a small
change of the function f can lead to great changes in T f . Also included are functions f for which a small
change of x can lead to great changes in T f(x) . We will thus gain insight into the regularity properties of the
frequency function. After these examples, we will prove the basic properties of the frequency function mentioned
right after its definition. The rest of the article is devoted to proofs of our theorems: in the third section we
will prove our first theorem. To this end, we will introduce certain auxiliary functions and investigate their
properties. In the fourth section, we will prove the next three theorems that concern the size of the frequency
function. The final section is reserved for the last theorems.

As a last remark, we note that both the maximal function and the frequency function do not distinguish
between a function and its absolute value, and further, the Lebesgue points of a function are also Lebesgue
points for its absolute value. Therefore, it suffices to prove all our results in this work only for nonnegative
functions. Also if two functions are the same almost everywhere, then their images under both the maximal
function and the frequency function and their Lebesgue points are the same. Thus, if one of our results holds
for one of these functions, it also holds for the other.

2. Examples and certain basic properties
2.1. Examples
We will now compute the frequency function T f for certain functions f to get a sense of its behavior. We start
with considering the zero function: let f1(x) := 0 for almost every x . Clearly Mf1(x) = T f1(x) = 0 for every
x . Notice that both the maximal function and the frequency function remove whatever irregularities may occur
due to the behavior on measure zero sets. As our Theorem 1.3 shows, this is the only function for which the
image under the frequency function is not mostly greater than or similar to |x| .

We now consider the function f2(x) := χ[−1,1](x) . We have

Mf2(x) =

{
1 |x| < 1

1
|x|+1 |x| ≥ 1,

T f2(x) =

{
0 |x| ≤ 1

|x|+ 1 |x| > 1.

As is clear for |x| large, T f2(x) is always like |x| .
In our third example, we demonstrate that for some functions this is not so.

f3(x) :=

{
1
n2 2n ≤ x ≤ 2n + 1, n ∈ N
0 elsewhere.

Clearly this function is integrable, and yet T f3(x) = 0 whenever 2n < x < 2n + 1, for n large. This is simply
because the function f3(x) gets sparser and smaller as x gets larger. We thus see that there can be points
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x arbitrarily distant from the origin for which T f3(x) is not comparable to |x|. Our Theorem 1.3 says that
nonetheless the density of such points decrease to zero.

Our fourth example is actually a sequence of examples

f4,k(x) :=
1

k
χ[−1,1](x),

where k ∈ N . Observe that

Mf4,k(x) =

{
1/k |x| < 1

1
k|x|+k |x| ≥ 1,

T f4,k(x) =

{
0 |x| ≤ 1

|x|+ 1 |x| > 1.

Notice that whereas Mf4,k does depend on k , T f4,k is independent of it. As k → ∞ , the examples f4,k

converge to the zero function both pointwise and in L1 sense, yet T f4,k never changes. Thus, even when two
functions are close to each other pointwise or in L1 sense their frequency functions can be very different.

Our fifth example is of fractal type. Let

f5(x) := χ(−1,0)(x) +
∑
n∈N

χ(2−n+1−2−n−1,2−n+1)(x).

This function is the characteristic function of an open set. If x is in this set then T f5(x) = 0 . However, if
x = 2−n+1 − 2−n−1 for n ≥ 2 , then T f5(x) = 1 − x . Thus, we see that on the interval (0, ϵ) the function
T f5(x) switches from 0 to 1− x infinitely often. Thus, the behavior of the image under the frequency function
can be highly irregular even on arbitrarily small intervals, and it can show fractal type behavior.

2.2. Basic properties of the frequency function

Here we will demonstrate the two properties of the frequency function mentioned right after its definition. We
first observe that if f ∈ L1(R) then

|Arf(x)| ≤ ∥f∥1/2r, and lim
r→∞

Arf(x) = 0. (2.1)

Next we introduce a well-known result that will be repeatedly used in the rest of this work. This is Lemma 3.16
in [1], and a proof can be found there.

Lemma 2.1 Let f ∈ L1(R) . Then the function Af(x, r) : R× R+ → C is continuous.

We are now ready to obtain our properties. The proofs utilize (2.1), Lemma 2.1 and the least upper
bound property of R .

Proposition 2.2 Let f ∈ L1(R) . If T f(x) > 0 then T f(x) ∈ {r > 0 : Mf(x) = Ar|f |(x)} .

Proof This means Ef,x is nonempty and T f(x) = infEf,x , so there exists a sequence {rn}n∈N such that
T f(x) ≤ rn ≤ T f(x)+n−1 , and Mf(x) = Arn |f |(x) = A|f |(x, rn) . Then letting n → ∞ and applying Lemma
2.1 completes the proof. 2
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Proposition 2.3 Let f ∈ L1(R) . If T f(x) = 0 then there exists a sequence {rn}n∈N such that rn → 0 and
Arn |f |(x) → Mf(x) as n → ∞ .

Proof This is clear if f = 0 almost everywhere, or if Ef,x is nonempty. We thus assume otherwise, in which
case Mf(x) is either a positive real number or infinite. If it is infinite, there must be a sequence {rn}n∈N

with n∥f∥1 ≤ Arn |f |(x) , but then by (2.1) we have n∥f∥1 ≤ ∥f∥1/2rn , which in turn yields rn ≤ n−1 . Thus,
{rn}n∈N is a sequence with desired properties.

If, on the other hand, Mf(x) is a positive real number, we must have values rk such that (1 −
2−k)Mf(x) ≤ Ark |f |(x) ≤ ∥f∥1/2rk , with the last inequality coming from (2.1). This yields rk ≤ ∥f∥1/Mf(x).

Then by the Bolzano–Weierstrass theorem we must have a convergent subsequence {rkn}n∈N , with limit r in
[0, ∥f∥1/Mf(x)]. This r cannot be positive, for in that case by Lemma 2.1 we have Ar|f |(x) = Mf(x) , which
is a contradiction. Therefore, this subsequence converges to 0, and we have Arkn

|f |(x) → Mf(x) as n → ∞.

2

3. The measurability of the frequency function
In this section we prove Theorem 1.1. We recall that the measurability of Mf follows easily from the continuity
of averages. Indeed

Mf−1((α,∞]) =
∪
r>0

Ar|f |−1((α,∞)),

and since Ar|f | are continuous, Mf−1((α,∞]) is not only measurable but also open. Therefore, Mf is not
only measurable but also lower semicontinuous. Unfortunately, arguments of this type are not available for the
frequency function. Indeed, examples f2 and f5 of Section 2 clearly demonstrate that T f need not be lower
or upper semicontinuous. We therefore need a different method. We will write the frequency function as the
limit of a sequence of auxiliary functions for which measurability can be proved using countability arguments.
Let f ∈ L1(R) . We define for k, l ∈ N the sets

Ef,x,k,l := {r ∈ Q+ : r ≥ 2−l, Ar|f |(x) + 2−k ≥ Mf(x)},

and the operators

Tk,lf(x) :=

{
infEf,x,k,l if the set is nonempty
0 else.

Clearly Tk,lf : R → R are well defined. If Ef,x,k,l is nonempty, then its infimum Tk,lf(x) may not be rational,
but still satisfies

Tk,lf(x) ≥ 2−l, and ATk,lf(x)|f |(x) + 2−k ≥ Mf(x). (3.1)

If f is not zero almost everywhere, then Ef,x,k,l are bounded for k large enough. Indeed if we pick k such that
2−k < Mf(x)/2 , then by (2.1) for r ∈ Ef,x,k,l we have

r ≤ ∥f∥1/Mf(x). (3.2)

The next proposition will exploit the countability of Ef,x,k,l to show that Tk,lf are measurable.

Proposition 3.1 Let f ∈ L1(R) . The function Tk,lf is measurable for every k, l ∈ N .
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Proof We fix k, l ∈ N . It suffices to show that for any α the set Tk,lf−1([α,∞)) is measurable. When
α < 2−l this set is either R or Tk,lf−1([2−l,∞)). Therefore, we assume that α ≥ 2−l. We consider for every
r ∈ Q+ the set

Sr := {x ∈ R : Ar|f |(x) + 2−k ≥ Mf(x)}.

Clearly these sets are measurable. We claim that

Tk,lf−1([2−l,∞)) =
∪

r∈[2−l,∞)∩Q

Sr,

and for α > 2−l that
Tk,lf−1([α,∞)) =

( ∪
r∈[α,∞)∩Q

Sr

)
\
( ∪

s∈[2−l,α)∩Q

Ss

)
.

We will verify the second claim, the first follows from the same arguments with even less difficulty. Let
x ∈ Tk,lf−1([α,∞)) . Thus, there must be a rational r ≥ Tk,lf(x) ≥ α with Ar|f |(x) + 2−k ≥ Mf(x) ,
and there can be no rational 2−l ≤ s < α with As|f |(x) + 2−k ≥ Mf(x) . This proves inclusion in one
direction. Conversely let x be in the set on the right hand side. Then x ∈ Sr for some r ∈ [α,∞) ∩ Q, and
x /∈ Ss for any s ∈ [2−l, α) ∩Q. Thus, Ef,x,k,l is not empty, but can contain no element 2−l ≤ s < α , and this
means Tk,lf(x) = infEf,x,k,l ≥ α . This concludes the proof.

2

We now are ready to show the measurability of T f by writing it as a limit. For each fixed l , we prove
that {Tk,lf}k∈N converge to a real valued function Tlf . We then show that liml→∞ Tlf = T f.

Proof If f = 0 almost everywhere, then Tk,lf = 2−l , and therefore both the existence of Tlf and their
convergence to T f are clear. We therefore assume otherwise.

We first concentrate on the existence of Tlf , and therefore fix l ∈ N . We observe that for any x we have

Ef,x,1,l ⊇ Ef,x,2,l ⊇ Ef,x,3,l ⊇ . . . (3.3)

If for x , there exists kx ∈ N such that Ef,x,kx,l is empty, then so is Ef,x,k,l for all k ≥ kx , and therefore
Tk,lf(x) = 0 for such k . In this case limk→∞ Tk,lf(x) = 0. If for x all of Ef,x,k,l are nonempty, then
Tk,lf(x) = infEf,x,k,l , and we have the chains

infEf,x,1,l ≤ infEf,x,2,l ≤ infEf,x,3,l ≤ . . .

T1,lf(x) ≤ T2,lf(x) ≤ T3,lf(x) ≤ . . .

Thus, limk→∞ Tk,lf(x) exists. Moreover, since by (3.2) for large k the sets Ef,x,k,l are bounded above by a
common bound, this limit is finite.

Hence, we can define a real valued measurable function Tlf(x) := limk→∞ Tk,lf(x) , and reduce to proving
liml→∞ Tlf(x) = T f(x) for every real x . This we will do in cases. For any x exactly one of the following is
true:
I. The set Ef,x is empty, and thus T f(x) = 0 .
II. The set Ef,x is nonempty with T f(x) = infEf,x > 0 .
III. The set Ef,x is nonempty with T f(x) = infEf,x = 0 .
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Case I. We will see that for such x the sets in the chain (3.3) are empty after some point, and therefore
for any l ∈ N we have Tlf(x) = 0 . We fix l ∈ N. Owing to Lemma 2.1 and (2.1) the function A|f |(x, r) attains
its supremum on {x} × [2−l,∞) , at some (x, rx) . As Ef,x is empty we have Arx |f |(x) < Mf(x). For any k

with 2−k < Mf(x)−Arx |f |(x) the set Ef,x,k,l is empty, and we are done.
Case II. We will see that Tlf(x) = T f(x) for any l with 2−l < T f(x)/2 . Fix one such l . By

Proposition 2.2 we have T f(x) ∈ Ef,x . Then by Lemma 2.1, the sets Ef,x,k,l are nonempty for every k ∈ N ,
and actually contain elements smaller than T f(x) for every k . Thus Tk,lf(x) = infEf,x,k,l ≤ T f(x) , and
therefore 2−l ≤ Tlf(x) ≤ T f(x) , but (3.1) together with Lemma 2.1 yields ATlf(x)|f |(x) ≥ Mf(x) if we take
the limit k → ∞. This requires Tlf(x) ≥ T f(x) and we are done.

Case III. Since Ef,x is nonempty but infEf,x = 0 , there must be a sequence {rn}n∈N ⊆ Ef,x converging
to zero. Fix n ∈ N , and let l be such that 2−l ≤ rn/2 . By Lemma 2.1 for each k , the set Ef,x,k,l must contain
an element less than rn , and thus Tk,lf(x) = infEf,x,k,l ≤ rn . Taking limits we deduce that Tlf(x) ≤ rn,

which in turn leads to lim supl→∞ Tlf(x) ≤ rn . Letting n → ∞ , this means lim supl→∞ Tlf(x) = 0. Therefore,
liml→∞ Tlf(x) = 0.

2

4. The size of the frequency function
4.1. Proof of Theorem 1.2
We use the same idea as in the proof of the analogous theorem in [11] that if the set was unbounded, we
could extract a sequence of points around each of which the integral of |f | would be comparable to ∥f∥1.
The analogous result in [11] proves finiteness, while here finiteness is wrong, and we have to make do with
boundedness.

Proof The result is clear if f is almost everywhere zero. Therefore, we will assume otherwise. Assume to
the contrary that the set is not bounded. Then at least one of SC ∩R+, SC ∩R− must be unbounded: we will
assume SC ∩ R+ is unbounded, the other case follows from the same arguments. Let

A :=
C + 1

C − 1
, B :=

C + 1

C
, D :=

C − 1

C
.

Since f ∈ L1(R) there must be some m ∈ N with∫ m

−m

|f(x)|dx ≥ ∥f∥1
2

.

Owing to our unboundedness assumption on SC ∩ R+ we can find an element x1 ∈ SC with x1 > m . Again
by the same assumption there exists x2 ∈ SC with x2 > 2Ax1 . Proceeding thus we extract a sequence
{xi}i∈N ⊆ SC with xi+1 > 2Axi for each natural number i . Then from Proposition 2.2 we have

Mf(xi) = AT f(xi)|f |(xi) ≤
1

2T f(xi)

∫
[Dxi,Bxi]

|f(x)|dx.

This implies
xi

C
· Mf(xi) ≤

∫
[Dxi,Bxi]

|f(x)|dx.
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We observe that since A = B/D , we have Dxi+1 > 2Bxi , and thus the intervals [Dxi, Bxi] never intersect.
Hence, we must have ∑

i∈N

xi

C
· Mf(xi) ≤

∑
i∈N

∫
[Dxi,Bxi]

|f(x)|dx ≤ ∥f∥1. (4.1)

On the other hand, as xi > m we have

Mf(xi) ≥ A2xi
|f |(xi) =

1

4xi

∫ 2xi

−2xi

|f(xi + x)|dx =
1

4xi

∫ 3xi

−xi

|f(x)|dx ≥ ∥f∥1
8xi

.

Then from (4.1) we obtain the contradiction

∑
i∈N

∥f∥1
8C

≤ ∥f∥1.

Therefore, SC ∩ R+ must be bounded. 2

4.2. Proof of Theorem 1.3
The proof of Theorem 1.3 uses the ideas introduced in its analogue in [11], but also accounts for the difference
that now the maximal function may be infinite for some points in the domain. We will again use the Vitali
covering lemma, which we state below.

Lemma 4.1 (Vitali covering lemma) Let {Bi}mi=1 be a finite collection of open intervals with finite length.
Let E ⊆ R be a subset covered by these intervals. Then we can find a disjoint subcollection {Bik}nk=1 of {Bi}mi=1

such that
n∑

k=1

|Bik | ≥
|E|
3

.

A proof can be found in [10]. We now prove Theorem 1.3.

Proof The classical weak boundedness result for the maximal function states

|{x : Mf(x) > λ}| ≤ 3

λ
∥f∥1,

and this implies the set S∞ of points x where Mf(x) = ∞ has zero Lebesgue measure. Therefore, in any set
of positive measure we can find points at which Mf is finite.

We define A,B,D exactly as in the proof of Theorem 1.2. We will use the notations

KN =

{
x ∈ R : |x| ≤ N, T f(x) ≤ |x|

C

}
\ S∞, K+

N = KN ∩ R+, K−
N = KN ∩ R−.

We will prove

lim
N→∞

|K+
N |

N
= 0, (4.2)

and the same arguments give the analogous result for K−
N . The theorem clearly follows from these two results.
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We assume to the contrary that (4.2) is wrong, that there exists a small ϵ > 0 such that |K+
Ni

|/Ni ≥ ϵ

for a strictly increasing sequence {Ni}i∈N ⊆ N . We pick a natural number M such that

∫ M

−M

|f(x)|dx ≥ ∥f∥1
2

.

We extract a subsequence from {Ni}i∈N as follows. Let Ni1 be such that Ni1 ≥ M , and let Nik+1
≥ 10Aϵ−1Nik

for every k ≥ 1 . We fix k ≥ 1 . We have

|K+
Ni2k

\K+
Ni2k−1

| ≥ 9ϵNi2k

10
≥ 9Ni2k−1

.

For x ∈ K+
Ni2k

\ K+
Ni2k−1

, we can find positive real numbers rx ≤ x/C satisfying Arx |f |(x) ≥ Mf(x)/2 , by

taking rx = T f(x) if T f(x) is positive, and by using Proposition 2.3 if T f(x) = 0 . Also, since x > M

Mf(x) ≥ A2x|f |(x) =
1

4x

∫ 2x

−2x

|f(x+ t)|dt = 1

4x

∫ 3x

−x

|f(t)|dt ≥ ∥f∥1
8x

.

We combine these two to obtain

2rxArx |f |(x) =
∫ rx

−rx

|f(x+ t)|dt ≥ rx
8x

∥f∥1. (4.3)

The intervals (x− rx, x+ rx) cover the set K+
Ni2k

\K+
Ni2k−1

. By the inner regularity of the Lebesgue measure,

we can find a compact subset K of this set with at least half its measure, and there exists a finite subcover
of K consisting of intervals (x− rx, x+ rx) . By the Vitali covering lemma we have a subset x1, x2, . . . xpk

for
which the intervals (xi − rxi , xi + rxi), 1 ≤ i ≤ pk are disjoint, and

pk∑
i=1

2rxi
≥ 1

3
|K| ≥ 1

6
|K+

Ni2k
\K+

Ni2k−1
| ≥ 9ϵNi2k

60
.

Combining with (4.3) yields
pk∑
i=1

∫ rxi

−rxi

|f(xi + t)|dt ≥
pk∑
i=1

rxi

8xi
∥f∥1

≥ ∥f∥1
8Ni2k

pk∑
i=1

rxi

≥ ∥f∥1
8Ni2k

9ϵNi2k

120

≥ ϵ∥f∥1
120

.

However, the intervals (xi − rxi
, xi + rxi

) are disjoint, so we have

∫ BNi2k

DNi2k−1

|f(t)|dt ≥
pk∑
i=1

∫ rxi

−rxi

|f(xi + t)|dt ≥ ϵ∥f∥1
120

.
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As [DNi2k−1
, BNi2k ], k ∈ N are disjoint, summing over k we have

∥f∥1 ≥
∑
k∈N

∫ BNi2k

DNi2k−1

|f(t)|dt ≥
∑
k∈N

ϵ∥f∥1
120

which is a contradiction.
2

4.3. Proof of Theorem 1.4
The function we provide is analogous to the one in [11]. We make use of the sparsity of the function to show
that the frequency function vanishes.

Proof We may assume ε is much smaller than 1. Let Ar,sf denote the average of f over [r, s] . For any

integer m ≥ 10 we denote m′ := m log1+ε/2 m , and m′′ := m log1+ε m. We define

f(x) :=

∞∑
m=10

1

m′χ(m′′,m′′+1)(x).

Let M > 1010
10ε−10

be a natural number, and let N be the smallest integer not less than M ′′ . Consider
m ∈ [M/2,M ] ∩ N and values x ∈ (m′′,m′′ + 1) . For δ > 0 small enough we of course have Aδf(x) = f(x) =

1/m′. We will show that Arf(x) cannot be larger than this for any r . We have ∥f∥1 = Cε ≤ 2/ε ; therefore,
if r ≥ x − 10 , then (2.1) leads to Arf(x) ≤ ∥f∥1/x ≤ 2/εm′′. Considering our choice of M , this is less than
1/m′ . Clearly the case r ≤ 10 is also impossible. Thus remains the case 10 < r < x− 10 . In this case, observe
that

Arf(x) =
1

2r

∫ r

−r

f(x+ t)dt ≤ 1

r

∫ m′′+1

m′′−r

f(t)dt ≤ 1

10m′ +Am′′−r,m′′f.

A moment’s consideration makes it clear that to maximize the last expression it is most advantageous to choose
r such that m′′−r = k′′ for some 10 ≤ k < m . Furthermore, it is best to choose k = 10 , for the nonzero values
of f get smaller and also sparser. Thus, the last average is not greater than A10′′,m′′f , which in turn is bounded
by 4/εm′′. Therefore, we can conclude that Aδf(x) = Mf(x) for any δ small enough, and T f(x) = 0. Hence,
we have

| {x : |x| ≤ N, T f(x) = 0} | ≥ M

4
≥ 1

8
N/ log1+ε N.

2

5. Connections and applications
In this section we prove our last two theorems and thereby establish connections of the frequency function with
various other concepts of harmonic analysis.

5.1. Proof of Theorem 1.5
The proof relies crucially on the range of f being finite. Starting from the highest value f takes, which since
we may assume f to be nonnegative makes sense, we iterate two arguments: that if the average of f over a set
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is equal to its maximum on that set, then f must have that value almost everywhere on that set, and that a
discontinuity of Mf cannot be approached by a sequence of points over which Mf is greater than its value at
the discontinuity and T f is bounded below by a positive constant. While the first of these arguments is clear,
the second requires a more rigorous expression which we provide below.

Lemma 5.1 Let f ∈ L1(R) ∩ L∞(R) , and let ϵ > 0 . If {xn}n∈N is a sequence converging to x with
Mf(xn) ≥ Mf(x) + ϵ for all n ∈ N , then the set {T f(xn) : n ∈ N} cannot be bounded below by a positive
constant.

Proof Suppose r > 0 is such a lower bound. By Proposition 2.2, and (2.1), for each n ∈ N we have

ϵ ≤ Mf(xn) = AT f(xn)|f |(xn) ≤ ∥f∥1/2T f(xn),

which implies T f(xn) ∈ [r, ∥f∥1/2ϵ] for each n ∈ N . By the Bolzano–Weierstrass theorem there is a subsequence
{xnk

}k∈N for which T f(xnk
) converges to r′ ∈ [r, ∥f∥1/2ϵ]. Then by Lemma 2.1 we have as k → ∞

Mf(x) + ϵ ≤ Mf(xnk
) = AT f(xnk

)|f |(xnk
) → Ar′ |f |(x) ≤ Mf(x),

a contradiction. 2

We now present the proof of our theorem.

Proof If f is zero almost everywhere, then Mf is never discontinuous; therefore, we assume otherwise.
Owing to this and our remarks at the end of the introduction, we may write

f =

n∑
i=1

aiχAi ,

where 0 < a1 < a2 < . . . < an , and Ai are disjoint sets that have positive finite measure.
Assume to the contrary that there exists an interval (x − r, x + r) of positive radius r in which the

frequency function is never zero. Since Mf is lower semicontinuous, there exists ϵ > 0 and a sequence of points
{xk}k∈N ⊂ (x− r, x+ r) converging to x with Mf(xk) ≥ Mf(x) + ϵ .

Let z ∈ (x − r, x + r) be a point with Asf(z) → f(z) as s → 0 . If f(z) = an , that an is the greatest
value f can attain leads first to the equality AT f(z)f(z) = Mf(z) = an , and then further to the conclusion that
within (z−T f(z), z+T f(z)) the function f must be an almost everywhere. However, this implies T f(z) = 0 ,
a contradiction. Thus, |An ∩ (x− r, x+ r)| = 0.

We must therefore have Mf(x) < an−1 , for otherwise the elements of our sequence {xk}k∈N would satisfy
Mf(xk) ≥ an−1+ϵ , which implies, by the conclusion of the last paragraph, for k large enough T f(xk) ≥ 2r/3 ,
and this contradicts Lemma 5.1.

If |An−1 ∩ (x − r/3i, x + r/3i)| > 0 for every i ∈ N , we can extract a point zi from each of these sets
satisfying Asf(zi) → f(zi) = an−1 as s → 0. Therefore, AT f(zi)f(zi) = Mf(zi) ≥ an−1 . If for a natural
number i we have T f(zi) ≤ 2r/3 , then f = an−1 almost everywhere in (zi − T f(zi), zi + T f(zi)) , and this
contradicts our assumption that the frequency function is never zero in (x− r, x+ r) . Therefore T f(zi) > 2r/3

for all i ∈ N. However, this in its turn contradicts Lemma 5.1. Hence, there must be a natural number i1 for
which |An−1 ∩ (x− r/3i1 , x+ r/3i1)| = 0 .
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We now repeat the arguments of the last two paragraphs for each 1 < m < n to first show that
Mf(x) < an−m , and then that |An−m ∩ (x − r/3im , x + r/3im)| = 0 with i1 < i2 . . . < in−1 . Then for large
enough k the elements of the sequence {xk}k∈N must satisfy T f(xk) > r/3in−1+1 , and this contradicts Lemma
5.1. Thus, our assumption that the frequency function is never zero in (x− r, x+ r) must be wrong.

2

5.2. Proof of Theorem 1.6
For the existence of non-Lebesgue points we rely on Lemma 5.1 and the existence of exceptional points. We will
assume the existence of a radius r > 0 for which all points in (x− r, x+ r) are Lebesgue points, and proceed to
obtain a contradiction by locating an exceptional point in this interval, and proving that it cannot be a Lebesgue
point. For the existence of discontinuities of Mf , we assume the existence of a radius r > 0 for which Mf

is continuous in (x − r, x + r) , and use topological arguments. After the proof we give an example showing
that it is not possible to extend this theorem to nonsimple functions. Then along with a heuristic explanation
we give another example making clear that it is not possible to obtain a full converse in this theorem. Finally,
to show the impossibility of improving upon this theorem in another direction, we provide two more examples
demonstrating that even for characteristic functions a point of discontinuity of Mf may well be a Lebesgue
point of f , and at a non-Lebesgue point of f , we may have Mf continuous.

Proof If f is zero almost everywhere, then Mf is never discontinuous. Therefore, we may assume otherwise.
Owing to this and our remarks at the end of the introduction we may write

f =

n∑
i=0

aiχAi
,

where 0 = a0 < a1 < a2 < . . . < an , the sets Ai form a partition of R , and when i > 0 have finite positive
measure. We let b be the minimum distance between any two of these coefficients. Since Mf is discontinuous
at x , there exists an ϵ > 0 and a sequence {xk}k∈N converging to x with Mf(xk) ≥ Mf(x) + ϵ.

We observe that if y is a Lebesgue point for this function, that is if

lim
s→0

1

2s

∫ y+s

y−s

|f(t)− c|dt = 0,

then c = aj for some j. For we have

1

2s

∫ y+s

y−s

|f(t)− c|dt =
n∑

i=0

|ai − c| |Ai ∩ [y − s, y + s]|
2s

≥ min
i

|ai − c|,

from which our observation is immediate. We further observe from this that y is a point of density for Aj if
c = aj .

We assume to the contrary that there exists a radius r > 0 for which all points in (x − r, x + r) are
Lebesgue points of f . Thus, in particular x is a Lebesgue point, which as we observed above means it is a point
of density for Aj for some j . Therefore, Mf(x) ≥ aj , and |Aj ∩ (x − s, x + s)| > 0 for any positive s . If we
have |Aj ∩ (x− s, x+ s)| = 2s some s , then Mf(xk) ≥ aj + ϵ implies that for k large enough T f(xk) ≥ s/2 ,
and this contradicts Lemma 5.1. Therefore, 0 < |Aj ∩ (x− s, x+ s)| < 2s for any positive s .
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As x is a point of density for Aj we can find a radius r′ < r , such that |Aj ∩ (x − r′, x + r′)| > 3r′/2 .
Therefore, Aj ∩ (x − r′, x) and Aj ∩ (x, x + r′) both have measure at least r′/2 , and thus both of them have
density points, let u ∈ Aj ∩ (x − r′, x) and v ∈ Aj ∩ (x, x + r′) be such points. The set Ac

j ∩ (u, v) has
positive measure by the conclusion of the last paragraph. Therefore, it has an exceptional point y , and as
(−∞, u] ∪ [v,∞) are density points for (Ac

j ∩ (u, v))c we must have y ∈ (u, v) . Owing to this y is also an
exceptional point for Aj .

However, as we assumed all points in (x − r, x + r) to be Lebesgue points for f , this y must also be a
Lebesgue point, from which it follows that it is a point of density for some Al . Clearly l = j is not possible.
To see that l ̸= j is also not possible, observe that in this case Al ⊆ Ac

j ; therefore, y is a point of density for
Ac

j . Thus, our assumption must be wrong, and (x− r, x+ r) contains a non-Lebesgue point.

We now turn our attention to the other direction. If f is zero almost everywhere, then all points are
Lebesgue, so we may write f = χA where 0 < |A| < ∞.

Assume to the contrary that there exists an r > 0 such that Mf is continuous in (x−r, x+r). We observe
that as x is a non-Lebesgue point 0 < |A∩ (x− s, x+ s)| < 2s for every s > 0 . Let U = {z ∈ R : Mf(z) = 1} .
Clearly if z is a point of density for A , then it is in U . On the other hand, if z is a point of density for Ac , it
cannot be in U. Hence, we have |(A \U)∪ (U \A)| = 0 . As we assumed Mf to be continuous on (x− r, x+ r),

the set (x− r, x+ r) ∩ U c is open. It can neither be empty, nor all of (x− r, x+ r) , for this would contradict
0 < |A ∩ (x − r, x + r)| < 2r . Therefore, it is the union of an at most countable collection of disjoint open
intervals, one (a, b) of which is such that either a ̸= x− r or b ̸= x+ r . We let y to be the endpoint for which
this is true. This means Mf(y) < 1 . However, as y ∈ U this is a contradiction.

2

We now show that Theorem 1.6 is not valid for nonsimple functions. We let ϕ(x) := (−|x|+1)χ[−1,1](x),

and

f6(x) :=

∞∑
k=1

ϕ(24kx− 23k).

This function is a sequence of isosceles triangles of height 1 and base length 2−4k+1 . It is continuous everywhere
except at the origin. Since continuity at x implies that x is a Lebesgue point, all points in R − {0} must be
Lebesgue points. Furthermore, as the triangles get thinner very fast, the origin is also a Lebesgue point, but
clearly, Mf6 is discontinuous at the origin.

The maximal function is calculated by taking supremum over averages of all positive radii, and is of global
nature, whereas the Lebesgue points are determined via a limit of averages of radii converging to zero, and is
local. Obtaining information regarding global phenomena from local phenomena is of course much harder than
doing the converse, and most of the time impossible. A full converse in our theorem is not possible exactly due
to this reason, as the following example makes clear. Let

f7(x) := χ(−1,0) + 100χ(1,2).

Clearly, 0 is a non-Lebesgue point of f7 , but Mf7 is continuous around 0 . However, when we restrict ourselves
to characteristic functions we obtain global control over values the function can take, and this allowed us to
prove the partial converse.
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Let us consider the following function

f8(x) :=
∑
k∈N

χ(2−k−2−2k−1,2−k)(x).

Heuristically this amounts to considering the intervals (2−k−1, 2−k), dividing them into 2k pieces and taking
the rightmost piece. Therefore, from each dyadic interval we are taking less and less, and this makes 0 a
Lebesgue point. However, clearly Mf8 is discontinuous at 0 .

The last example is more interesting. Let a0 = 0, a1 = 1 and then ak+1 := ak + 2−k(k+1)/2 . This
sequence clearly converges to a limit a < 2 . Let bk := (ak + ak+1)/2 , and define

f9(x) := χ(a,a+1)(x) +

∞∑
k=0

χ(bk,ak+1)(x).

Essentially, this means taking the right halves of the intervals (ak, ak+1) , the lengths of which decrease at an
ever increasing pace. We have Aa−ak

f9(a) = 3/4 for each k ≥ 1 , showing that a is not a Lebesgue point, while
the averages Aa−bkf9(a) increase to 1 as k increases, implying Mf9(a) = 1 . This, by lower semicontinuity of
Mf9 and f9 being a characteristic function, implies the continuity of Mf9 at the point a .
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