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Abstract
In this study, we give well-posedness conditions for planar conewise linear systems where the vector field is not necessarily continuous. It is further

shown that, for a certain class of planar conewise linear systems, well posedness is independent of the conic partition of R2. More specifically, the sys-

tem is well posed for any conic partition of R2.
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Introduction

Conewise linear systems (CLS) are multimodal switched lin-

ear systems where the entire space R
n is divided into polyhe-

dral cones. This division is done by bounding matrices Ci’s. It

is known by Farkas-Minkowski-Weyl Theorem (Schrijver,

1986) that polyhedral cones can also be represented in terms

of the generators v1, v2, . . . vlf g that bound the cones. These

are called extreme rays in Polyhedral Combinatorics literature

(see Section III). As an alternative point of view, CLS can be

regarded as a special class of linear hybrid automata (Lygeros

et al., 2003; Shen et al., 2009) or more generally a piecewise

linear system.
CLS has been investigated from many different aspects in

recent years, like well posedness (Imura and Van der Schaft,

2000; Sxahan and Eldem, 2015; Thuan and Cxamlibel, 2014;

Xia, 2002); stability (Araposthatis and Broucke, 2007; Eldem

and Oner, 2015; Eldem and Sxahan, 2014, 2016; Pachter and

Jacobson, 1981; Shen et al., 2009; Zhendong and Shuzhi,

2011); control (Cxamlibel et al., 2008; Heemels et al., 2010)

and observability (Cxamlibel et al., 2006; Shen, 2010). Many

of these works assume that the system has a continuous vec-

tor field on the switching boundary, which resolves the issue

of well posedness.
Well posedness simply means the existence and uniqueness

of the solutions of CLS. For the interior of each cone, well

posedness is obvious. However, if we have a discontinuous

vector field on the switching boundary, then the existence and

uniqueness of the solutions are not so obvious. There are

many solution structures presented for the solutions of CLS:

Carathédory, Filippov, Krasovskii, Euler, and so forth, to

deal with the discontinuity problem on the switching bound-

ary. Among these, the most popular ones are Carathédory

and Filippov solutions; see Cortes (2008), Filippov (1998),

Pogromsky et.al. (2003) and Bacciotti (2003) and the

references therein. We use Carathedory solutions in this work

and check the directions that are pointed by the vector fields

of each mode sharing the switching boundary (the reader

may refer to Van der Schaft and Schumacher [2000: 57] for

details).
For the discontinuity problem of planar conewise linear

systems (PCLS), Pachter and Jacobson (1981) proposed ‘‘flow

continuation condition’’ for R
2. Araposthatis and Broucke

(2007) used this concept and gave results for stability of

PCLS. Imura and Van der Schaft (2000) imposed ‘‘the smooth

continuation sets’’ (Si) and the decomposition of the space

into distinct Si’s for bimodal systems. Xia (2002) improved

this result for multiple modes and multiple criteria piecewise

linear systems.
In this work, we give easily verifiable conditions for the

existence and uniqueness of the solutions of PCLS in

Theorem 1 in the paper. For this purpose, we make use of a

‘‘flow continuation condition’’ like statement which will be

helpful for the proofs of subsequent results. In this respect,

Theorem 1 in this paper is equivalent to well posedness result

given in Pachter and Jacobson (1981). The main results of

this work are given in Theorem 2 and Theorem 3. Conditions

we propose in Theorem 2 are related to some entries and

eigenvalues of the system matrices and thus they are easily

verifiable. Theorem 3 provides conditions for well posedness

that are valid for random choices of seperation matrices

(Ci’s).
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The paper is organized as follows. Section II defines the
class of systems that we considered and gives some details
about CLSs. We introduce the well posedness problem for

PCLS and give our main results in Section III.
Notation and Terminology: In the paper we refer to polyhe-

dral cones as modes. The notation sgn xð Þ is used to denote the
sign of the number x. Y :, :ð Þ is the angle between two vectors.
Oo is used to denote the interior of the set O and Ker xð Þ is used
to define the null space of x.

CLSs

A CLS is a switched linear system where the switching is state
dependent. In order to define the bounds of the polyhedral
cones, the null space of the matrices Ci’s are used. Hence, the
change of the sgn Cixð Þ can be considered as a switching sig-
nal. As a result, the trajectory enters that cone or not or stay
on the border. As the system already exhibits a nonlinear and
complex behavior, almost all of the works consider a continu-
ous crossing between cones (Cxamlıbel et al., 2006; Shen et al.,
2006). A formal definition of CLS can be given as follows.

Definition 1: Consider a finite set of real n 3 n constant

matrices A1,A2, . . . Al and a finite set of convex polyhedral
cones x1,x2, . . . xlf g with [l

i= 1xi =R
n and x0

i \ x0
j =[

for i 6¼ j: A conewise linear system is defined as follows.

_x= f xð Þ=Aix, x 2 xi ð1Þ

where

xi = x : Cix � 0f g, i= 1, 2, . . . , l andCi 2 R
lixn ð2Þ

and the notation Cix � 0 implies componentwise inequality.
Conventionally, it is assumed that li, the number of the
inequalities in the description, is minimum; in other words,
the description is not redundant.

Well posedness for CLSs

Unlike the complex structured higher dimensional CLS;
PCLS has a simple formation where the cones are bounded
by two lines, so li = 2 for 8i. We define the bounding matrices
Ci’s as follows

Ci =
ni

�ni+ 1

� �
, i= 1, 2, . . . l, 0 6¼ ni 2 R

1x2 ð3Þ

where nl+ 1[n1: This completes the loop and makes a formal
conic partition for R2: Using this partition, the bounds of the
polyhedral cones are rays v1, v2, . . . , vlf g directed counter
clockwise that lies in Kerni

0s. Although a formal definition as
(3) is not given in the literature, many of the examples given
obey this rule (see example 2 of Shen [2010] and example 3.47
of Zhendong and Shuzhi [2011]). At this point we assume that

nTi vi+1 � 0 and complete the loop as vl+ 1[v1. Here, the con-
dition nT

i vi+ 1 � 0 is equivalent to saying that Y vi, vi+ 1ð Þ�p

for i= 1, 2, . . . l. As a result, the modes are convex cones and
can be represented with a single criteria, that is, with only one

Ci for each mode. By this partition, the bounds of the polyhe-
dral cones can also be defined as vi =xi \xi�1 where

xl+ 1[x1. Hence, both of the neighborhood modes are active
on the bound vi and as a result existence and uniqueness of
the solution is not so trivial. Therefore, as mentioned in the
Introduction, it is generally assumed in the literature that the
vector field is continuous on each bound to handle the issue of
well posedness (Cxamlıbel et al., 2006; Shen, 2010; Shen et al.,
2009), or eqivalently

x 2 xi \ xj ) Aix=Ajx:

In order to resolve multiple conic subdivision problem for
CLS, (Shen, 2010) and (Iwatani and Hara, 2006) give the defi-
nitions for simple and memoryless system for continuous and
discontinuous CLSs, respectively. In order to give the defini-
tion of a memoryless system, ‘‘the smooth continuation sets’’

(Si
0s) of Imura and Van der Schaft (2000) are used. Recall that

Si
0s are the set of initial conditions from which the solutions

starts and continues into the ith cone. The system 1ð Þ � 2ð Þ is
said to be memoryless, if all the following conditions hold:

� Si 6¼ R
n, 8i,

� Sið Þo 6¼ [, 8i,
� [l

i= 1Si =R
n,

� Si \Sj

� �o
=[,8 i, jð Þ, i 6¼ jð Þ

As emphasized in Iwatani and Hara (2006), these are natu-
ral and not restrictive assumptions. Unless otherwise stated,

we assume that the conditions above hold. As the modes are
already linear, the theory of differential equations imply that

there exists a unique solution for initial conditions in xo
i . But

when we consider the initial conditions on the switching
boundaries which has a discontinuous right hand side, we
may have unique or non unique solutions or no solutions. We
define the well posedness formally as follows (Sxahan and
Eldem, 2015).

Definition 2: Consider a CLS (1)–(2). The system is well

posed if and only if smooth continuation is possible in
only one of the two modes from every initial state
x0 2 R

n:

If the existence and uniqueness of the solution is guaran-
teed for any initial condition, then the system is called well

posed. For the clarification of well posedness problem on the
border of a piecewise linear system, vector field of each mode
sharing the same boundary must point out the same mode
(Van der Schaft and Schumacher, 2000). This idea is used to
solve well posedness problem for bimodal piecewise affine
system in Sxahan and Eldem (2015). For CLS where l � 2 but
n= 2, Pachter and Jacobson (1981) imposed the ‘‘flow conti-

nuation’’ condition for CLS with dicontinuous vector field, as
follows

sgn v0i+ 1

0 1

�1 0

� �
Aivi+ 1

� �
= sgn v0i+ 1

0 1

�1 0

� �
Ai+ 1vi+ 1

� �
for each i= 1, 2, . . . l:

ð4Þ
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The main idea that lies under this condition is as explained

in van der Schaft and Schumacher (2000: 58). In this work, we
remove the continuity assumption for the vector field and try

to find the existence and uniqueness conditions for a solution
on the boundary vi for a not necessarily continuous PCLS.

We use a revised version of the ‘‘flow continuation’’ condition
and give a new condition for well posedness that will be help-
ful to prove the main results in this work and enable us to gen-

eralize them to n-dimensional space in the future works.
Now, let us see what kind of border problems we may

have.

Example 1 : Consider the following PCLS _x=Aix with
four modes where

Ai =
ai

11 ai
12

ai
21 ai

22

" #
for i= 1, 2, 3, 4;

C1 =
0 1

1 0

� �
,C2 =

�1 0

�1 1

� �
,C3 =

1 �1

�1 �1

� �
and

C4 =
1 1

0 �1

� �
:

Using our set-up

C1 =
n1

�n2

� �
,C2 =

n2

�n3

� �
,C3 =

n3

�n4

� �
andC4 =

n4

�n1

� �
:

The corresponding geometry is shown in the Figure 1.
For the initial conditions x0 2 v1, we have

x0 =
g1

0

� �
,g1 . 0 and note that here, both of the modes are

active, i.e. both C1x and C4x � 0. If we choose

A1 =
�1 3

1 3

� �
and A4 =

�1 3

1 3

� �
then A1x=A4x for

x 2 v1, so the system is continuous on v1. What are the condi-
tions for the existence and uniqueness of the solution if we

have A1x 6¼ A4x for x 2 x1 \x4?
In case of A1x 6¼ A4x for x 2 x1 \ x4, both vector fields

must point the same direction for well posedness. Choose

A1 =
�1 3

2 3

� �
and A4 =

�3 3

1 3

� �
: Then A1x 6¼ A4x, but

well posedness is guaranteed on this line. Morever, the choice

of A1 =
1 3

2 3

� �
and A4 =

�3 3

1 3

� �
also works. But when

it comes to v3 or v4, even if Aivi and Ai�1vi have same sign,

they may point out different modes or stay on the vi and be a

sliding mode. For example, let us revise the 4th system matrix

as A4 =
�2 1

�1 �2

� �
and also give A3 =

1 2

1 0

� �
. Then,

A3v4 =
�g1

g1

� �
and A4v4 =

�3g1

g1

� �
, the 3rd mode corre-

sponding entries have same sign. But while the solution with
respect to the 3rd mode stays on v4, the solution with respect

to the 4th mode points out the 3rd mode (see Figure 2). This is

true because v4 is an eigenvector for mode 3. But the absolute

amount of change of the 1st variable for the solution with

respect to the 4th mode is equal to three times the absolute

amount of change of the 2nd variable. That is why it flows

into the 3rd mode.
As depicted in the example above, if vi (or vi+ 1) which

bounds mode i as an eigenvector of the system matrix Ai, then
the trajectory stays on the border and becomes a sliding mode

since Aivi =lvi. In order to remedy this, we put forward the

following assumption.

Assumption 1: Neither vi nor vi+ 1 is not an eigenvector of
the system matrix Ai.

Throughout the paper, we assume that Assumption 1

holds, unless otherwise stated. This implies that the pairs
(ni,Ai) are observable. Now, we also define a+

i : = nT
i Aivi

and a�i�1 : = nT
i Ai�1vi as used in Araposthatis and Broucke

(2007) and give the following result on well posedness of

PCLS. This result is equivalent to the ‘‘flow continuation con-

dition’’ of Pachter and Jacobson (1981). Instead of flow conti-

nuation condition, we used a+
i and a�i both in the statement

and the proof of the following result. This approach leads us

to the main results of this paper (Theorem 2 and Theorem 3).

Theorem 1: Consider the planar conewise linear system
_x= f xð Þ=Aix, x 2 xi = x : Cix � 0f g where Ai, Ci 2 R

2x2,
i= 1, 2, . . . l (described by equations (1) and (2)). Assume
that the vector field is not necessarily continuous.

Then, PCLS is well posed if and only if a+
i a�i�1 . 0 for

i= 1, 2, . . . l:

Proof : Consider an initial condition 0 6¼ x0 2 vi. Both ith and
i� 1ð Þth modes are active on this line. Also note that the vec-

tors Aivi and Ai�1vi are the derivatives of ith and i� 1ð Þth
modes, respectively (see Figure 3). If the inner products

ni,Aivi and ni,Ai�1vi are both positive, then both derivatives

points into the ith mode. If the inner products

ni,Aivi and ni,Ai�1vi are both negative then, both derivatives

points out into the i� 1ð Þth mode. For the case where ni,Aivi

and ni,Ai�1vi have different signs either there are two solu-

tions (one of them continues smoothly in the ith mode and

the other smoothly continuing in the i� 1ð Þth mode), or thereFigure 1. Plane Geometry for Example 1.
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are no solutions in the sense of Carathédory. Thus,
a+

i a�i�1 . 0 guarantees the well posedness.
The sufficiency part can also be proved in a same way and

this completes the proof.
Now let us consider an extreme ray vi, corresponding vec-

tor ni, two active modes i and i� 1 and their matrices Ai. and

Ai�1.

a+
i = niAivi = x1 x2½ �

ai
11 ai

12

ai
21 ai

22

� �
x2

�x1

� �
= ai

21x2
2 + ai

11 � ai
22

� �
x1x2 � ai

12x2
1:

If x1 = 0, then a+
i = ai

21x2
1: So the sign of a+

i is determined
by the sign of ai

21. Assuming that x1 6¼ 0,

a+
i = x2

1 ai
21

x2

x1

� �2

+ ai
11 � ai

22

� � x2

x1

� ai
12

" #
: ð5Þ

In a similar fashion

a�i�1 = x2
1 ai�1

21

x2

x1

� �2

+ ai�1
11 � ai�1

22

� � x2

x1

� ai�1
12

" #
:

Note that this is a quadratic equation in terms of the ratio
x2

x1
. Then, a+

i . 0 \0ð Þ for every arbitrary choice of
ni = x1 x2½ � if and only if

Di = ai
11 � ai

22

� �2
+ 4ai

12ai
21\0

ai
21 . 0(\0)

�
ð6Þ

This is also true for a�i�1 and for the entries of Ai�1 as well
(in case of x1 = 0, we need the sign of ai

21 again). It is interest-
ing that although the coefficients of a+

i and the coefficients of
the characteristic equation pAi

lð Þ of the system matrix Ai are

different, Di (which plays a key role for determining the eigen-
values Ai) is the same. More precisely, if Di in (6) is negative,
then the eigenvalues of the matrix Ai are also complex as the
roots of a+

i .
Also note that if we assume that the eigenvalues of Ai are

complex and ai
21’s have the same sign for all modes, then it

follows that the sign of ai
12’s are the same for all modes,

because Di\0 implies that ai
12ai

21\0 as well. Now, we give

the following result.

Theorem 2: Consider a PCLS defined by equations (1)–(3).
Suppose that the system matrices Ai have either complex
or real, multiple eigenvalues. Then, the PCLS is well posed
if and only if

(i) ai
12

		 		+ ai
21

		 		 6¼ 0,

(ii) ai
12

� �
ai

21

� �
� 0 for 1� i� l and sgn ai

12

� �
is the same

for all matrices Ai if ai
12 6¼ 0:

Proof: Suppose that the hypothesis hold and the system is

well posed. Then, by Theorem 1, a+
i a�i�1 . 0 for any subse-

quent modes i� 1 and i.

Let x1 = 0. Then the sign of a+
i = ai

21x2
2 is determined by

the sign of ai
21. If also ai

21 = 0, then a+
i = 0 and it means that

vi : =
x2

0

� �
is the eigenvector of mode i that contradicts

Assumption 1. Then, ai
21 must be nonzero, which implies that

conditions (i) and (ii) of the Theorem hold.

Let x1 6¼ 0: Then a+
i can be written as

a+
i = x2

1 ai
21

x2

x1


 �2

+ ai
11 � ai

22

� �
x2

x1
� ai

12

� �
. If also ai

21 6¼ 0, then

the roots of the equation a+
i = 0 are

m1, 2 =
� ai

11
�ai

22ð Þ7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ai
11
�ai

22ð Þ2 + 4ai
12

ai
21

q
2ai

21

. Now, consider the char-

acteristic polynomial of the system matrix Ai: The roots are

defined by l1, 2 =
� ai

11
+ ai

22ð Þ7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ai
11
�ai

22ð Þ2 + 4ai
12

ai
21

q
2

.

Note that Di = ai
11 � ai

22

� �2
+ 4ai

12ai
21 is the same for each

equation. As a result, if Ai have complex eigenvalues, then

Di\0. Thus, the sgn a+
i

� �
is fixed and and determined by the

sgn ai
21

� �
for any number x2

x1
and for any choice of vi (It is true

even for the limit case x1 ! 0). Moreover, ai
12ai

21\0 as Di\0.

These imply that conditions (i) and (ii) of the Theorem hold.
Now suppose that Di = 0. Then the eigenvalues of Ai are

real, multiple and obviously ai
12ai

21� 0. Let us first assume

that ai
12ai

21\0. The equation a+
i = 0 also has real, multiple

roots: m1 =m2 = � ai
11
�ai

22

2ai
21

. If

� x2

x1
\� ai

11
�ai

22

2ai
21

or x2

x1
. � ai

11
�ai

22

2ai
21

(including x1 ! 0 )

) sgn a+
i

� �
= sgn ai

21

� �
� x2

x1
= � ai

11
�ai

22

2ai
21

) a+
i = 0. But in this case vi =

x2

�x1

� �
is an eigenvector of Ai that contradicts Assumption 1.

Consequently, we have sgn a+
i

� �
= sgn ai

21

� �
. Since

a+
i a�i�1 . 0 it follows that ai

21 and ai�1
21 have same sign as

well.

Also note that if ai
12ai

21 6¼ 0 and Di� 0 then

ai
11 � ai

22

� �2� � 4ai
12ai

21, which means sgn ai
12

� �
=� sgn ai

21

� �
.

As a result, sgn ai
21

� �
=sgn ai�1

21

� �
requires that sgn ai

12

� �
=

sgn ai�1
12

� �
. Therefore, conditions (i) and (ii) of the Theorem

hold again.

Figure 2. Directions of the trajectories starting on v4.
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The final case is x1 6¼ 0 and ai
12ai

21 = 0. Since the eigenva-

lues of Ai are multiple, it follows that Di = 0: Consequently,
ai

11 = ai
22. For ai

12ai
21 = 0, we have three options:

(1) If both ai
12, ai

21 = 0, then the geometric multiplicity

of l1 =l2 is 2 and vi is also an eigenvector that con-
tradicts Assumption 1. This implies that

ai
12

		 		+ ai
21

		 		 6¼ 0.

(2) If ai
12 = 0, but ai

21 6¼ 0, then a+
i = ai

21x2
2 and so the

sign is determined by ai
21. Since well posedness is

equivalent to saying that a+
i a�i�1 . 0, it follows that

sgn ai
21

� �
= sgn ai�1

21

� �
. What if ai�1

12 6¼ 0 ? In this case,

sgn ai�1
12

� �
= � sgn ai�1

21

� �
= � sgn ai

21

� �
. The same is

also true for i� 2ð Þth mode. That is, �sgn ai�1
21

� �
=

�sgn ai�2
21

� �
= sgn ai�2

12

� �
) sgn ai�1

12

� �
= sgn ai�2

12

� �
.

(3) If ai
21 = 0, but ai

12 6¼ 0, then a+
i = � ai

12x2
1 and so

the sign is determined by ai
12. If also x1 = 0, this con-

tradicts Assumption 1 again as vi =
x2

0

� �
is an eigen-

vector in this case. If ai�1
21 6¼ 0, the analysis done in

the previous case is again so conditions (i) and (ii) of
the Theorem 2 hold.

The proof for necessity follows the same lines.

It is important how we divide the whole space into polyhe-

dral cones as it is used in the stability analysis of CLS
(Iervolino et al., 2017). We see by the proof of Theorem 2
that the borders can be choosen arbitrarily when the eigenva-
lues are complex. Next the result gives the conditions for arbi-
trary polyhedral partition.

Theorem 3: Consider a PCLS defined by equations
1ð Þ � 3ð Þ. The system is well posed for any polyhedral
conic subdivision of R2, that is, for any choice of Ci’s, if
and only if

(i) The eigenvalues of Ai are complex for 1� i� l.
(ii) The entries ai

21’s (or ai
12’s) have same sign for all sys-

tem matrices Ai, 1� i� l.

Proof: Consider a PCLS whose ith mode is bordered by vi and
vi+ 1. If PCLS is well posed then for an initial condition on vi

the sign of a+
i and a�i�1 must be the same for any random

choice of vi. If the ith subsystem have real eigenvalues then vi

can be chosen as an eigenvector of this real eigenvalue. This
contradicts Assumption 1. Thus, well posedness may not be
achieved when the choice of the borders are random. On the
other hand, suppose that both subsystems that share vi have

complex eigenvalues, but the signs of ai
21 and ai�1

21 are differ-
ent. Then, one of the trajectories turns clockwise and the
other turns counter clockwise. This implies that either there
are two solutions starting from vi that smoothly continue into
seperate modes or there is a border collision on vi (equiva-

lently there are no solutions in the sense of Carathédory).
Since well posedness is not possible in both cases, it follows
that ai

21’s must have the same sign for 1� i� l. Finally, since
all Ai’s have complex eigenvalues, it follows that ai

12ai
21\0 for

1� i� l: This implies that ai
12’s must have the same sign for

1� i� l, which conludes the proof of necessity. The proof for
sufficiency follows along the similar lines.

Note that in case we have real and distinct eigenvalues, the
corresponding mode may include the eigenvectors. In this case
the sign of a+

i changes in mode when x2

x1
is equal to the slope

of the eigenvector. Therefore, the eigenvectors of Ai must be
outside of the cone bounded by vi and vi+ 1.

Example 2 : Consider _x=Aix with 3-modes where

A1 =
1 2

�2 1

� �
,A2 =

1 �6

1 0

� �
andA3 =

�4 �4

1 0

� �

C1 =
1 1

1 �1

� �
,C2 =

�1 1

0 1

� �
andC3 =

0 �1

�1 �1

� �

The regions are as in Figure 4.
The system 1 and 2 have complex eigenvalues while the 3rd

has real-multiple eigenvalues. The system is not well posed

since ai
21’s have different sign: a1

21\0 but a2
21 and a3

21 . 0. It

can be also checked that

x0 =
1

�1

� �
) For the solution with respect to the 1st

mode, we have A1x=
�1

�3

� �
(points out the 3rd mode). But

with respect to the 3rd mode, we have A3x=
0

1

� �
(points out

the 1st mode).

Figure 3. The derivative Aivi on the bound vi.

Figure 4. Geometry of the Plane for Example 2.
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It is originated from the difference signs of a1
21 and a3

21 .

The eigenvalues of the system matrix A1 is 162i. If we change

the entries as A1 =
1 �2

2 1

� �
, then the spectrum of A1 is still

162i. But as the sign of ai
21 is same for all i= 1, 2, 3, the sys-

tem is well posed.
Now, let us change n1, to emphasize the importance of

Assumption 1. Assume that C1 =
1 2

1 �1

� �
, C2 is the same

and C3 =
0 �1

�1 �2

� �
; A1 =

1 �2

2 1

� �
, and A2,A3 are the

same.

Note that v1 =
2

�1

� �
is the eigenvector of A3. If

x0 =
2

�1

� �
, then for the solution with respect to the 1st mode,

we have _x=
_x1

_x2

� �
=

4

3

� �
(points out the 1stmode). But with

respect to the 3rd mode, we have A3x=
�4

2

� �
(it is a sliding

mode). It shows that we need Assumption 1.

Example 3 : Consider _x=Aix with 3-modes where

A1 =
1 �2

2 1

� �
,A2 =

2 �8

1 0

� �
andA3 =

1 �1

1 5

� �

C1 =
1 1

1 �1

� �
,C2 =

�1 1

0 1

� �
andC3 =

0 �1

�1 �1

� �
:

It has same regions as example 2. The sign of ai
21 is the

same for all i= 1, 2, 3 and the sign of ai
12 is same for all

i= 1, 2, 3 but the system is not well posed.

If x0 =
1

�1

� �
then for the solution with respect to the 1st

mode, we have A1x=
3

1

� �
(points out the 1st mode). But with

respect to the 3rd mode, we have A3x=
2

�4

� �
(points the 3rd

mode). It is originated as A3 has real and distinct eigenvalues
and one of the eigenvectors lies in x3.

Remark 1: Note that the eigenvectors in the cone changes
the sign of the a

+ =�
i and causes ill posedness. Well posed

PCLS may be achieved by changing the borders of the
cone even if one of the modes has real and distinct eigen-
values. So there are no eigenvectors inside of the mode or
sometimes both are in it. But it is not possible to infer a
general conclusion as we did in Theorem 2 or 3.

Example 4: Consider _x=Aix with 3-modes where

A1 =
1 �2

0 1

� �
,A2 =

�2 0

1 �2

� �
andA3 =

1 �4

4 1

� �

C1 =
1 1

1 �1

� �
,C2 =

�1 1

0 1

� �
andC3 =

0 �1

�1 �1

� �
:

It has same regions with example 2 again. Although a1
21

and a2
12 are zero, sgn a2

21

� �
= sgn a3

21

� �
and sgn a1

12

� �
= sgn a3

12

� �
are the same. Consequently, the system is well posed.

For example, if x0 =
1

�1

� �
then for the solution with

respect to the 1st mode, we have A1x=
3

�1

� �
(points out the

1st mode). Similarly with respect to 3rd mode, we have

A3x=
5

3

� �
(points out the 1st mode too). Same computation

can be done for the other borders.

Conclusions and future works

This study includes some results about existence and uniqueness
of solutions for planar multimodal systems. We give the proper-
ties of the system matrices of a well posed PCLS. One of the

results is given for arbitrary conic subdivision as well. Well
posedness of PCLS is the first step to prove stability, controll-

ability or some other issues. It is quite important to investigate
the behaviour of the trajectories at the borders of the polyhedral
cones so to obtain a crossing condition. Thus, while some of the

works consider only well posedness conditions of PCLS, some
others investigate in the context of stability, controllability, and

so forth. Recent works also show the necessity of well posedness
conditions for the construction of the appropriate discontinuous
Lyapunov functions, (Iervolino et al., 2017). Therefore, the

results presented in this work are the first step towards the inves-
tigation of PCLS in the context of stability, or controllability.

The work Sxahan and Eldem (2015) uses these Si’s and gives

the well posedness conditions for bimodal piecewise linear sys-
tems in R

n. Sxahan and Eldem (2015) explain the structure of
the system matrices that a well posed bimodal system must

have. It defines which part of the seperating hyperplane of the
modes belongs to S1 or S2 using the subspaces where the 1st,

2nd, .nth order derivatives are equal to the zero. Because of
the geometry of R2, we do not encounter these kind of sub-
spaces in our work. If we reduce our main result to l= 2 and

consider the main result of Sxahan and Eldem (2015) for n= 2,
we all have ai

21 . 0. Thus, Theorem 2 and 3 generalizes this
result to multimodal case.

For the generalization of our work to higher dimensional

cases, the subspaces that are mentioned in Sxahan and Eldem
(2015) must be placed properly on seperating hyperplanes,

that is, on different dimensional faces, The placement of these
subspaces on different dimensional faces gives many different
variants. Thus, to give a necessary and sufficient condition

for the structure of a well posed system is quite an hard issue.
In our opinion, it will be easier to give just a necessary condi-

tion first or just for some special systems for these cases.
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