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Abstract
One of the difficult tasks in quantum computation is inventing efficient exact quantum
algorithms, which are the quantum algorithms that output the correct answer with cer-
tainty on any input. We improve and generalize the semidefinite programming (SDP)
method of Montanaro et al. (Algorithmica 71:775–796, 2015) in order to evaluate
exact quantum query complexities of partial functions. We present a more system-
atical approach to achieve the “inspired” result by Montanaro et al. for the function
EXACT4

2, which is the Boolean function of 4 bits that output only when 2 of the input
bits are equal to 1. The same approach also allows us to reduce the size of the ancilla
space used by the algorithms that evaluate symmetric functions like EXACT6

3. We
employ the generalized SDP to verify the complexities of the earliest and best known
quantum algorithms in the literature, namely, Deutsch–Jozsa and Grover algorithms
for a small number of input bits. We utilized the method to solve the weight decision
problem of bit strings with lengths up to 10 bits and observed that the generalized
SDP gives better exact quantum query complexities than the known methods. Finally,
we test the method on some selected functions and demonstrate that they all exhibit
quantum speedup.

Keywords Quantum algorithms · Semidefinite programming · Exact query
complexity

1 Introduction

Query model of quantum computation is the quantum version of the classical decision
tree model. Unlike the Turing machine model where we can only make conjectures
about the resources needed for the computation, simplicity of this model allows us to
go beyond that and prove such conjectures. In this model, the complexity is given as
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the minimum number of queries to a black box implementation of a finite function
f : S ⊆ {0, 1}N → {0, 1}M . In most of the cases we have M = 1, and in that case
f is called a decision function (see [1] for more details). We can view f as a map
that reveals a property of its input x = x1x2 . . . xN which can be thought of a string
of N independent bits. Most of the well-known quantum algorithms can be naturally
represented in the query complexity model, such as Deutsch–Jozsa algorithm [2],
Grover’s algorithm [3], quantum walks [4].

The quantum query model is either in the bounded-error setting, in which, the
algorithm is allowed to have a limited probability of error or in the exact setting,
meaning that the algorithm is always expected to give the correct output. Note that,
the term “exact quantum algorithm” refers to the fact that quantum algorithm itself
runs with zero probability of error, not to be confused with the task of computing
the query complexity of the quantum algorithm. The more general bounded-error
version is relatively well established. For total functions, where the domain of the
function f is equal to the whole set S = {0, 1}N , the quantum lower bound was
proved to be O(

√
N ) [5] for the unstructured search algorithm [3]. Allowing for partial

functions (i.e., choosing a domain which is a strict subset S � {0, 1}N ) can even lead
to exponential separations [6,7]. In contrast, the development of the techniques for
designing exact quantum algorithms fell behind in comparison with the bounded-
error scheme. For example, for quite a long time, the best separation between classical
and exact quantum algorithms for total Boolean functions was known to be by a factor
of 2 [8], until Ambainis showed that there exists a superlinear advantage of exact
quantum algorithms [9,10].

There are two main methods that proved to be useful for finding lower bounds
on quantum query complexities; the polynomial method by Beals et al. [11] and the
adversarial method by Ambainis [12] originated from the hybrid method by Bennett et
al. [5] andVazirani [13]. The polynomialmethod is based on the idea of showing that an
algorithm A computing some Boolean function f can be represented or approximated
by some real-valued polynomial pA. Adversarial methods are based on the observation
that the calls to the oracle that represents the function f can give us only limited amount
of information about that function.We refer to the survey ofHøyer and Spalek formore
on these methods [14]. The method of Barnum et al. [15], which exactly characterizes
the quantumquery complexity can be considered as one of the variants of the adversary
method. Although it is an effective method, it has its own disadvantages: since all
adversary methods are essentially equivalent [16], it would not give lower bounds
better than the ones that has been found fromothermethods.Also, it is hard to utilize the
method for analytical proofs. Nevertheless, Montanaro et al. showed that the method
can be quite useful. Being inspired by the numerical results, they have obtained by
implementing Barnum et al.’s semidefinite programming method [15], they were able
to design a slightly more general form of the Deutsch–Jozsa algorithm [17]. Thanks to
their (numerical) work, we also know that AND3 and AND4 are the only total Boolean
functions that show no quantum speedups, up to isomorphisms.

There is a growing interest in the exact computation of Boolean functions. Exact
quantum algorithms have potential applications in communication complexity [9,18],
finite automata [19] and cryptography [20–22]. In Montanaro et al.’s paper, they only
consider the exact query complexities of the total Boolean functions up to a few
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number of input bits. In this work, we shift our focus to the promise problems (partial
functions) and apply the samemethod to some of thewell-known problems in quantum
computation, such as Deutsch–Jozsa, and Grover’s problems. Our primary intent in
doing so is to show the power and generalizability of the SDPmethod. For this reason,
we start with well-established algorithms but later on we extend our work to the
problems that are relatively less studied. In this category, first, we apply the method
to the weight decision problem of Boolean functions of several bits and compare our
results with previous works and we continue with numerically analyzing the exact
query complexity of some selected functions. We also show that with some minor
improvements to the SDP method, it can output the algorithm for the evaluation of
EXACT4

2 problem without guessing any solutions. That enabled us to significantly
reduce the number of ancilla qubits needed to evaluate some functions that exhibit
certain symmetries.

The paper is organized as follows. In Sect. 2, we give the necessary definitions and
establish the formal structure needed for the rest of the paper. In Sect. 3, we briefly
review the SDPmethod ofBarnumet al. and continue in Sect. 4withmainlyMontanaro
et al.’s implementation of the method. In Sect. 5, we present our first modification to
the SDP method which enabled us to numerically evaluate the compact quantum
algorithm in [17] for the function EXACT4

2. We continue in Sect. 6, by presenting our
generalization to the SDP implementation which allowed us to easily verify the query
complexities of some well-known problems. In Sect. 6, we also apply the generalized
SDP to the weight decision problem and evaluate exact query complexities of some
selected functions such as And–Or trees andmaximum deviation. In Sect. 7, we briefly
conclude our results and discuss some open problems.

2 Definitions and notation

We start with following a similar notation to Barnum et al.’s [15]. Consider the finite
function f : S −→ T , where the input domain of the function is S ⊆ χn and χ and
T are finite sets with n, a positive integer. Throughout this paper, all the functions f
will be Boolean functions, that is, the variable domain is limited to χ = {0, 1}. f is
called a total function if S = χn , otherwise it is called a partial function(or evaluation
of f is called a promise problem). f is called a decision function when T = {0, 1}.
An arbitrary element in the domain of a Boolean function can be described by an N-bit
string x = x1x2 . . . xN (the i th bit of x is denoted by xi ), therefore evaluation of a
Boolean function f can be thought as determining some property of the bit string x . A
very common example is the PARITY(x) � |x | (mod 2) function, where |x | denotes
the Hamming weight of the bit string x . Another Boolean function we will frequently
use is EXACTn

k (x), which outputs 1 if and only if |x | = k and n is the length of the
input bit string x .

In the conventional quantum computational models, the quantum information is
stored in the memory registers. Like the classical registers, each quantum register
can have a finite number of values. We associate a d-dimensional complex vector
space HR to a register R that has d possible values. Most of the time we work in
the computational basis, which means that we label the basis vectors as kets |i〉,
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where i ∈ {0, 1, 2, . . . , d − 1}. Actually, this is also a short notation: we write an
arbitrary vector |v〉 as the short for the tensor product of two-dimensional vectors
|v〉 = |vN−1〉⊗|vN−2〉⊗. . .⊗|v0〉where each vector |vi 〉 holds the value of the i’th bit
of v = vN−1vN−2 . . . v0. We can group as many registers as we need to form a virtual
register. Even the entirememory is formed in this way inmost of the cases. Let a virtual
register R be composed of m independent registers R = R1, . . . , Rm . Naturally, the
associated Hilbert space is the tensor product spaceHR = HR1 ⊗. . .⊗HRm which has
the tensor product basis |i1i2 . . . im〉, which is the short notation of |i1〉 |i2〉 . . . |im〉 =
|i1〉 ⊗ |i2〉 ⊗ . . . ⊗ |im〉.

In the quantumquerymodel, we need three registers.We start with the input register.
It holds the value of the input bit string x = x1, . . . , xn . Next, we have the query
register. It can have values between 0 and n for a bit string of length n. Finally, we
may need an ancillary work register whose dimension has no upper limit. For the
input x , the query i and the value of the work register w, we denote the standard basis
vectors of associated vector space H with |x, i, w〉 = |x〉 ⊗ |i〉 ⊗ |w〉. During the
computation, the memory can be in the arbitrary superposition state

|Ψ 〉 =
∑

x,i,w

αx,i,w |x, i, w〉 ,

where the amplitude squares of the complex coefficients αx,i,w add up to 1. It is
customary to define the query and working memory registers as accessible memory
as its reasons will shortly become clear.

The other crucial part of the computational model are the unitary operators that act
onH. An algorithm with t queries to the individual bits of the input x is defined with
an oracle operator O and a sequence of t + 1 unitary operators Ut . The intermediary
unitaries Ut do not depend on the input and act only on the query and work registers.

Therefore, our notation is in fact a short notation for Ut = 1X ⊗
(
Ũt

)

IW
where

1X denotes the identity operator on the inaccessible input space. The last part to the
algorithm are the orthogonal projection operators Pz , which correspond to the final
measurement step. The execution of the algorithm can be divided into three parts:

– initialization,where the state of the computer is initialized to |Ψi 〉 = |x〉X |0〉I |0〉W
= |x〉 |0〉 |0〉,

– evolution, where the unitary sequenceU0,U1, . . . ,Ut and oracle calls O are alter-
natingly applied to the current state of the computer and

– measurement, where a single measurement specified by the complete set of
orthogonal projectors Pz is made on the final state of the computer

∣∣Ψ f
〉 =

Ut OUt−1O · · ·U1OU0 |0〉 |0, 0〉 and output the result z.

Before we proceed, let us take a closer look at the oracle operator O . We model the
query to any input x with the operator O whose action on the standard basis is given
as

O |x, i, w〉 = (−1)xi |x, i, w〉 . (1)
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Let us consider the i > 0 and i = 0 cases separately. When i > 0, depending on the
value of i , we access the i th bit xi of the input x and only the state |x, i, w〉 pick up a
phase accordingly. On the other hand, when i = 0, no phase is introduced regardless
of x . Another way of thinking the i = 0 case is attaching an x0 = 0 as a zeroth element
to any given string x . This way, the oracle operator can be switched off and become a
“null query” when necessary. Null queries are needed to preserve compatibility to the
alternative models of query complexity [23]. Notice that neither the oracle O , nor the
unitaries Uj change the state of the input register. Therefore, the state of the memory
can be given in the form |x〉 |ψx 〉 throughout the computation. Alternatively, instead of
defining the oracle as in (1), for each input x , we can specify the algorithm with a cor-
responding oracle Ox , whose action can now be written as Ox |i, w〉 = (−1)xi |i, w〉.
This notation is sometimes more useful. The completeness and orthogonality of pro-
jectors Pz and normalization of the total state of the memory at all times ensures that
the total probability of obtaining possible outputs is

∑
z∈T

∣∣〈Ψ f Pz
∣∣PzΨ f

〉∣∣2 = 1.
Consider a quantum query algorithm A that computes a given a function f : S −→

T . We say that A computes f within an error ε if A outputs f (x) = z with a success
probability greater than 1 − ε for all possible inputs x :

∥∥PzΨ f
∥∥2 ≥ 1 − ε .

Among all the possible quantum algorithms, if the minimum number of calls to the
oracle is t while the error is still within ε, then we say that the quantum query complex-
ity of the function f is QQCε( f ) = t . If the error is zero, i.e., ε = 0, the algorithm
is called an exact quantum algorithm and we say that the exact query complexity of
f is QQC0( f ) = t .
Let us have a set of vectors {|φ1〉 , |φ2〉 , . . . , |φm〉}which are not necessarily orthog-

onal lying in the Hilbert space H. We define the Gram matrix M with the following
entries:

(M)i j �
〈
φi

∣∣φ j
〉

,

where we denote the matrix elements of a matrix B with (B)i j . It can be
shown that Gram matrices are Hermitian, positive semidefinite and rank (M) =
dim (span {|φ1〉 , |φ2〉 , . . . , |φm〉}). Conversely, every positive semidefinite matrix M
is a Gram matrix of a set of vectors that lies in a Hilbert spaceH of dimension at least
rank (M) [24].

3 Semidefinite programs for calculating query complexities

In this section, we review the method of Barnum et al. [15], specifically how quantum
query algorithms can be represented by semidefinite programs. We denote a t-step
quantum query algorithm that evaluates a partial function f : S → T within error ε

with QQAε,t ( f ), where t is a positive integer and 0 ≤ ε < 1/2. Let us fix the input
x ∈ S. The state of the memory at step j can be written as the sum
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∣∣∣ψ( j)
x

〉
=

n∑

i=0

|i〉
∣∣∣ψ( j)

x,i

〉
, (2)

since the accessible space can be decomposed naturally into mutually orthogonal sub-
spaces (|i〉 ⊗ Hw, 0 ≤ i ≤ n) . The states defined in (2) generate a sequence which
are interlinked by application of two successive unitaries: the oracle Ox that corre-
sponds to the input x , and the input independent unitary operator Uj . The final step
of the algorithm (measurement) is specified by the orthonormal projections Pz , each
of which corresponds to a different output z ∈ T .

We define the following real symmetric matrices M ( j), M ( j)
i and Γz with the fol-

lowing matrix elements

(
M ( j)

)

xy
�

〈
ψ

( j)
x

∣∣∣ψ( j)
y

〉
,

(
M ( j)

i

)

xy
�

〈
ψ

( j)
x,i

∣∣∣ψ( j)
y,i

〉
,

(Γz)xy �
〈
ψ

( j)
x P†

z

∣∣∣Pzψ( j)
y

〉
.

To express the semidefinite program in a compact manner, we continue using the
notation in [15] by defining the fixed matrices

(E)xy � 1 ,

(Ei )xy � (−1)xi+yi ,

(Δz)xx � δ f (x),z .

We define the semidefinite program SDP ( f , t, ε) for a function f , an integer t and a
nonnegative real number ε : (0 ≤ ε < 1/2), with a system of s = dim S dimensional
real symmetric matrices M (t), M ( j)

i and Γz (0 ≤ j ≤ t − 1 and 0 ≤ i ≤ n) which
satisfy the following conditions:

n∑

i=0

M (0)
i = E , (3)

n∑

i=0

M ( j)
i =

n∑

i=0

Ei ∗ M ( j−1)
i

for 1 ≤ j ≤ t − 1 , (4)

M (t) =
n∑

i=0

Ei ∗ M (t−1)
i , (5)

M (t) =
n∑

z∈T
Γz , (6)

Δz ∗ Γz ≥ (1 − ε) Δz , (7)
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where ∗ denotes the Hadamard (entrywise) product of matrices. The main result of
[15] is summarized in Theorem 1:

Theorem 1 Let f : S ⊆ {0, 1}N → {0, 1}M be a partial function. There exists a t-
query QQAε,t ( f ) that computes function f within error ε if and only if SDP ( f , t, ε)

with conditions (3), (4), (5), (6) and (7) is feasible.Moreover, let r = max
(
rank M ( j)

i

)

be the maximum of the ranks over the indices (0 ≤ j ≤ t − 1) and (0 ≤ i ≤ n). Then,
the number of qubits needed for the working space of the memory is at most �log |r |� .

4 Exact quantum query complexity

The method of Barnum et al. which is summarized in Theorem 1 provides a way of
showing the existence of a quantum algorithm that makes a fixed number of queries to
compute a given (mostly a decision) function. However, sometimes we actually want
the algorithm itself, i.e., the unitaries in between. Montanaro et al. offers a method
to find the unitary operators Uj thus a quantum algorithm for the given parameters
can be explicitly constructed [17]. Also, they modified the feasibility condition of the
SDP to a minimization condition on the error parameter ε. By checking whether this
minimized error is below a certain threshold or not, they were able to obtain the exact
quantum query complexity of the problem. Here, we review their prescription which
generates query algorithms out of the solutions of SDPs.

Suppose we are given a set of matrices M ( j)
i , M (t), and Γz which satisfies the

constraints (3), (4), (5), (6) and (7). Let us not restrict the dimension ofHw and take it
as large as dim (S) for the moment. For input x, we represent the state of the memory

just after the j th oracle call with the kets
∣∣∣φ( j)

x

〉
. In a sense,

∣∣∣φ( j)
x

〉
’s define half of the

intermediate states of computation. We define the other half by
∣∣∣ψ( j)

x

〉
, which denote

the state of the computer just after the application of the unitary Uj and just before
the j + 1’ st oracle call. The flow is shown in (8) for 0 ≤ j ≤ t − 1:

· · · Ox−→
∣∣∣φ( j)

x

〉 Uj−→
∣∣∣ψ( j)

x

〉
Ox−→

∣∣∣φ( j+1)
x

〉 Uj+1−−−→ · · · . (8)

Now, we define
∣∣∣ψ( j)

i

〉
as the sum

∑n
i=0 |i〉

∣∣∣ψ( j)
x,i

〉
and taking the action of the oracle

Ox into account , we can use the same states to define
∣∣∣φ( j)

x

〉
as

∣∣∣φ( j)
x

〉
=

n∑

i=0

(−1)xi |i〉
∣∣∣ψ( j)

x,i

〉
.

Finally, set
∣∣∣φ(0)

x

〉
= |0〉 |0〉 and the sequence of states that we observe during the

computation depends only on the unspecified states
∣∣∣ψ( j)

x,i

〉
of the work space. Now,

there are many alternatives for
∣∣∣ψ( j)

x,i

〉
that result in a valid quantum query algorithm;

however, we first start with the simple choice of [17] by setting
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∣∣∣ψ( j)
x,i

〉
=

√
M ( j)

i |x〉 , (9)

where
√
M ( j)

i are the positive semidefinite square root of M ( j)
i .

There remains a few steps before we explicitly define an exact quantum query
algorithm (QQA). First, we have to show that the choice in (9) would produce at least
one series of unitariesUj that defines the algorithm. Also, we have to give an explicit
method describing how to obtain them. Let us define the matrices

Y ( j) �
∑

x∈S

∣∣∣ψ( j)
x

〉
〈x | and F ( j) �

∑

x∈S

∣∣∣φ( j)
x

〉
〈x |

where each column of matrices Y ( j)
(
F ( j)

)
is one of the vectors

∣∣∣ψ( j)
x

〉 (∣∣∣φ( j)
x

〉)
. We

will use the following lemma [24]:

Lemma 1 Let {|ψi 〉} and
{∣∣φ j

〉}
be two sequences of m vectors of the same dimension.

Define Y ( j) �
∑

x∈S
∣∣∣ψ( j)

x

〉
〈x | and F ( j) �

∑
x∈S

∣∣∣φ( j)
x

〉
〈x |. Then, there exists a uni-

tary U such that U |φi 〉 = |ψi 〉 for all i if and only if Y †Y = F†F. The unitary U is
constructed as follows. Let Y = V

√
Y †Y and F = W

√
F†F be the polar decompo-

sitions of Y and F, respectively. Complete the angular parts of decompositions V and
W to unitary matrices V ′ and W ′ . Finally, define U � V ′ (W ′)†.

Lemma 1 guarantees the existence of a unitary sequence U0, . . . ,Ut−1 of (8) for all
x if and only if

(
Y ( j)

)†
Y ( j) =

(
F ( j)

)†
F ( j) . (10)

And the choice in (9) allows us to write the LHS of 10 each 0 ≤ j < t as

〈
x

∣∣∣∣
(
Y ( j)

)†
Y ( j)

∣∣∣∣y
〉

=
〈
ψ

( j)
x

∣∣∣ψ( j)
y

〉

=
n∑

i=0

〈
ψ

( j)
x,i

∣∣∣ψ( j)
y,i

〉

=
n∑

i=0

〈
x
∣∣∣M ( j)

i

∣∣∣y
〉

,

thus,

(
Y ( j)

)†
Y ( j) =

n∑

i=0

M ( j)
i .
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Similarly, for each 1 ≤ j < t , we have

〈x |
(
F ( j)

)†
F ( j)|y〉 =

〈
φ

( j)
x

∣∣∣φ( j)
y

〉

=
n∑

i=0

(−1)xi+yi
〈
ψ

( j−1)
x,i

∣∣∣ψ( j−1)
y,i

〉

=
n∑

i=0

(−1)xi+yi 〈x |M ( j−1)
i |y〉

= 〈x |
(

n∑

i=0

Ei ∗ M ( j−1)
i

)
|y〉 .

Connecting the two results by the second constraint given in (4) for all 1 ≤ j ≤ t − 1,
Lemma 1 ensures that for any 1 ≤ j ≤ t − 1 and for all x , a unitary Uj that satisfy
Uj |φx 〉 = |ψx 〉 can be explicitly constructed. For the initial value of j = 0, there exists

a U0 such that U0 |φ0〉 = |ψ0〉 by a similar reasoning, but since
(
F ( j)

)†
F ( j) = E0,

the existence of U0 is guaranteed by the constraint given in (3).
Up to now, we exactly followed the method by Montanaro et al. to determine the

unitaries between the oracle calls. The only remaining part that is not specified is
the complete set of orthonormal projection operators Pz . However, their derivation is
rather straightforward using the same idea above and for most of our work, we will
not be interested in the projectors themselves, so we refer to [17] for the final part
of the proof. While the easiest choice given by Eq. (9) always result in a QQA that
works, but results in M ( j)

i ’s with maximal ranks. As noted in [17], carefully selected

M ( j)
i ’s which have ranks that are upper bounded by some limit r would result in r−

dimensional states
∣∣∣ψ( j)

x,i

〉
. Therefore, �log r� qubits would be enough to represent the

states in the work register. Moreover, without loss of generality, all the states and
unitaries can be taken to be real.

4.1 EXACT42

In [17], Montanaro et al. listed all the functions on n bits for n ≤ 4 and all symmetric
functions for n ≤ 6. For each such function, they evaluated the success probability of
a quantum algorithm computing that function and making t (1 ≤ t < n) queries using
the semidefinite method of Barnum et al.When they achieved a sufficiently small error
like ε < 0.001, they reported it as a candidate for an exact query algorithm. In their
numerical calculations, Montanaro et al. used the convex optimization package CVX
[25,26] for MATLAB to implement the SDP method. CVX is a convex optimization
package written for MATLAB. It allows the user to translate optimization problems to
a compact and easily comprehensible MATLAB code using a strict ruleset checking
convexity of the operations and variables. Currently, CVX supports two free solvers,
SeDuMi and SDPT3 and two commercial solvers, Gurobi and Mosek.
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Among those functions, EXACT4
2, which outputs 1 if and only if its input has a

Hamming weight 2 is shown to have a quantum query complexity of 2. We can also
interpret this function as the simplest example of distinguishing balanced (n-bit)inputs
and inputs with weights {0, 1, n − 1, n}. Compare it with the single query Deutsch–
Jozsa problem, where balanced inputs are distinguished from the sets with weights 0
or n.

Here, we will briefly summarize the exact QQA for EXACT4
2 since one of our

contributions is related to how the special algorithms that computes functions like
EXACT4

2 can be systematically generated. We begin with the standard initial state

|ψ〉 = 1

2

4∑

i=1

|i〉 ,

wherewe only use an input register with basis states {|0〉 , . . . , |4〉}. This is theminimal
configuration because we need a basis state for each input bit; therefore, we have |1〉
to |4〉 and the |0〉 state is there for the null query. We don’t need a work space. The
unitary that is key to the algorithm for evaluating EXACT4

2 is the following 5 × 5
matrix:

U = 1

2

⎛

⎜⎜⎜⎜⎝

0 1 1 1 1
1 0 1 ω ω2

1 1 0 ω2 ω

1 ω ω2 0 1
1 ω2 ω 1 0

⎞

⎟⎟⎟⎟⎠
, (11)

whereω = e2π i/3 is a complex root of 1. For each input x , we apply the corresponding
oracle Ox ,U and apply Ox one more time. Finally, we apply an operator that projects
the final state onto the one-dimensional subspace spanned by the state |ψ〉 or to the
subspace orthogonal to |ψ〉. It can be shown that the sequence of operations OxUOx

may bring only a phase factor in front of the initial state |ψ〉when |x | = 2, but it maps
|ψ〉 onto the ortogonal subspace when |x | �= 2.

5 Improvements on the SDPmethod

In this work, we utilized the code given in the archive version of [17] and made our
modifications and improvements on top of their code.We run ourCVXprograms on the
solvers Mosek, SDPT3 and SeDuMi, yet sometimes SDPT3 gave results inconsistent
with the other solvers or caused an error. In such instances, we report the results that
are obtained using the other two solvers.

5.1 EXACT42

The method in Sect. 4 explicitly describes how a QQA with a fixed number of queries
that solves a totalBoolean function computation problemcan be constructed.However,
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the default choice given in (9), often does not lead to optimal algorithms in terms of
the dimension of the work space. Since the quantum resources are limited, we want
a work space as small as possible. The solution to the EXACT4

2 problem given in
Sect. 4 is a clear example of this. In a closer inspection, we observe that the numerical
evaluation with CVX results in rank 1 M (0)

i and rank 3 M (1)
i matrices. That leads

to 15 × 15 real-valued unitary transformations instead of the more compact 5 × 5
complex-valued unitary matrix U given in (11). In Montanaro et al.’s paper, U was
found by the inspiration from the numerical results. As our first contribution, we
show that U in (11) can be constructed numerically, therefore an exact QQA can be
constructed more systematically using a work space with the smallest dimension.

The first issue is that the choice in Eq. (9) leads to s = dimS dimensional vectors
in general; therefore, the memory register might be unnecessarily large even for the
algorithms computing highly symmetrical functions. In our approach, we first run the
code given in [17] (see arXiv ver.) for the EXACT4

2 problem. For this problem, we
need at least 2 queries and if we make an error minimization, we obtain matrices
M ( j)

i with a maximum rank rmax = 3, and a sufficiently small error ε < 0.001(or
sufficiently high success probability, pS > 0.999 ). Accepting this as a good evidence
for the existence of an exact solution with rank 3 matrices, we now make two changes
to the program. First, instead of the trivial choice given in (9), we evaluate the singular
value decompositions

V ( j)
i Σ

( j)
i

(
W ( j)

i

)† = M ( j)
i , (12)

for each matrix M ( j)
i , where Σ

( j)
i are diagonal matrices with the nonnegative singular

values on the diagonal. Since M ( j)
i are symmetric, the unitary parts of the decompo-

sition, V ( j)
i and W ( j)

i are always the same matrices. Now, we make the choice

∣∣∣ψ( j)
x,i

〉
= V ( j)

i

√
Σ

( j)
i |x〉 , (13)

and obtain the states of the memory
∣∣∣ψ( j)

i

〉
and

∣∣∣φ( j)
i

〉
at each time step j one more

time. With this choice, we reduce the dimension of the work space from dim S to

max
(
rankM ( j)

i

)
. For the EXACT4

2 problem, since error minimization gives matrices

M ( j)
i with a rank at most 3, a minimum of 3 real dimensional work space is sufficient.

However, as we have seen in Montanaro et al.’s example, a better solution exists. In
the following, we explain how to achieve such a configuration.

The second issue is that the minimization of error in the SDP formulation of query
complexity does not always lead to matrices M ( j)

i with the lowest rank. It would be
very nice if we could add a rank constraint to the SDP, however rank constraint is not
convex in general [27]. Therefore, we tried minimizing a quantity that is convex and
compatible with the CVX ruleset. We observe that the function EXACT4

2 is symmetric
on its input bits, so we expect to see some kind of indirect effect of this symmetry
in the matrices corresponding to the queried bits within the same step. Thus, instead
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of minimizing the error, we changed the inequality constraint in (7) to an equality
constraint and minimized the sum

τ = min

(
n∑

i=1

trM (1)
i

)
, (14)

where we take the sum only over the j = 1’st step because the j = 0 corresponds
to the trivial step of application of a Hadamard transform that takes place in the
beginning of all the algorithms. In a t-step algorithm, we have another sum over the
values 1 ≤ j ≤ t . We also did not include trM ( j)

0 in the sum. That is partly because

we observe that we can already obtain rank-1 M ( j)
0 with the error minimization. In

addition, we believe that null queries can be treated differently since the query bit
symmetry does not cover the null queries.

When we run the CVX code with the trace minimization condition, we saw that
we were able to obtain rank-2 matrices. In general, we obtain low rank solutions
for symmetric problems like EXACTn

k , although those solutions may not as optimal
as EXACT4

2. Before coming up with the solution of Montanaro et al. that does not
use any work space, we need one final step. We make use of the observation that
for the EXACT4

2 problem, trace minimization leads to two repeated nonzero singular
values. Therefore, we have an extra unitary degree of freedom in our choice of the
unitary matrices of the singular value decomposition [24]. Using this extra freedom,

the amplitudes that corresponds to two-dimensional work space part of
∣∣∣ψ( j)

x,i

〉
can be

further rotated to a configuration that it can be rewritten as real and imaginary parts
of a complex vector. Therefore, the work space part can altogether be discarded and
described as relative phases of the complex-valued state vectors that lie only on the
input and query subspaces.

5.2 EXACT63 and EXACT
6
2,4

Weapplied traceminimization to the functions EXACT6
3 andEXACT

6
2,4. Computation

of both functions requires 3 queries, therefore we minimize the sum

τ =
2∑

j=1

n∑

i=1

trM ( j)
i , (15)

where this time we also sum over j . In general, we want to minimize the trace of
M ( j)

i that correspond to all the non-trivial steps of the computation. Since there
are 3 queries, there are 2 non-trivial steps defined by the constraint given in 4. We
achieved a maximum rank of r t .m.

max = max rankM ( j)
i = 6 for the computation of

EXACT6
3 using the trace minimization condition. Compare it with the maximum rank

re.m.
max = max rankM ( j)

i = 12, which is obtained using error minimization. Although
we can not totally discard the work space like we did for EXACT4

2, replacing error
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minimization with trace minimization enabled us to show the existence of an exact
quantum algorithm with �log 6� = 3 qubits instead of �log 12� = 4 qubits. Also note
that we would need 6 ancilla qubits if we implemented the trivial choice given in
Eq. (9).

Similarly, we expect a decent reduction in the number of work qubits for the com-
putation of EXACT6

2,4. As its name would imply, EXACT6
2,4 outputs 1 only when

Hamming weight of its input equals to 2 or 4, otherwise the output is 0. Like EXACT6
3,

the number of qubits needed for the work space can be fairly reduced, as we observed
an even smaller maximum rank re.m.

max = 10. However, trace minimization is not as
effective this time, as we can only reduce the maximum rank to r t .m.

max = 9 resulting in
no further change in the work space.

6 Application of SDPmethod to promise problems

In Barnum et al.’s definition of the SDP method, the function f is given as general
as possible, i.e., f neither needs to be total nor restricted to be a decision function.
Montanaro et al. used this method to obtain exact query complexities of total functions
of few bits. Here, we aim to show that the SDP method can be used in a broader sense
in such a way that it can also be utilized to obtain query complexities of the exact
versions of promise problems (if not already) and non-decision functions. In this part,
our primary goal is not to find better query complexities for the well-known problems,
but to show that the method’s applicability to a more general class of problems in a
practical sense. In particular, we applied the generalized SDP method to Deutsch–
Jozsa, and Grover’s problems. In addition, we employed the method to the weight
decision problem for several bits and were able improve a previous result [28].

Since each problem needs a slightly different formulation of SDP, we added a
“wrapper” code in MATLAB around the original CVX code of Montanaro et al. and
made the necessary modifications to incorporate the original formulation of Barnum
et al. Extending the method to functions with more than two outputs is rather trivial.
Adding extra Γ matrices to cover all possible outputs of the function (i.e., the number
of elements of the codomain T ) to implement the 4th and 5th conditions given in
Eqs. (6) and (7) is enough. In order to deal with promise problems, we administered
several additional modifications. First, we introduced an index set I in order tomanage
domains S � {0, 1}n that are strict subsets of the corresponding Boolean domain
and extended the definition of Ei matrices to their index-set-limited versions. As a
comparison, the index set were hard-coded to the set {1, . . . , 2n} and the matrices Ei

were always 2n × 2n in [17]. We also made error minimization the default option but
added a trace minimization option for the post-optimized evaluation of the functions
like EXACT4

2. The typical execution of our program is as follows:

1. Initialize the program for the desired choice of the problem.For each problem, extra
options(if necessary) and parameters are recorded to a structure via a configuration
step. This may also be implemented using a configuration file.
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2. Using the configuration structure in step 1, generate a new file that consists of
the core CVX part of the solution. Then, execute this new program with error
minimization and allow for M ( j)

i matrices with maximal rank.

3. Evaluate the maximum rank of the M ( j)
i matrices that are found in Step 2, and

run the optimization for a second time with setting maximum rank to this newly
obtained value. Repeat this step unless the maximum rank is the same as value
that was found in the previous optimization.

4. If trace minimization is needed, optimize using trace minimization for one last
time.

5. Perform the post-processing steps of Sect. 5. These include calculation of the state
vectors of the memory at each time step and evaluation of the unitary matrices that
link them. If any real to complex conversion is needed that is carried out in this
step.

Up to now, we have drawn a general picture of how we improved the SDP method and
how we implemented our modified version. Let us see how we can apply it to promise
problems.

6.1 Deutsch–Jozsa algorithm

Deutsch–Jozsa algorithm distinguishes the balanced n-bit long strings of Hamming
weight |x | = n/2 and constant bit strings of Hamming weights |x | = 0 or |x | = n.
For n > 2, it is a promise problem. Although Deutsch–Jozsa problem is the easiest
to adapt in our setting, it is not the ideal problem to see the full power of the method.
We already know that only a single quantum query is enough to distinguish balanced
and constant strings; therefore, there is not much room for improvement that could be
hidden between the intermediate steps of computation. The method can at best give
the original Deutsch–Jozsa algorithm. We run the program for several times and for
n = 2, 4, 6 and 8, we verified that exact quantum query complexity is 1 for each of
those values of n. For larger values, the computation becomes intractable on an Intel
i7-6700 3.40 GHz×4cores desktop computer with 32GB RAM. The method gives

some asymmetric solutions
∣∣∣ψ1

x,i

〉
that satisfy the no-extra-work-space and zero-error

conditions; however, they do not lead to the known Deutsch–Jozsa algorithm. We
believe that with further modifications, it may be possible to recreate Deutsch–Jozsa
algorithm, only using the numerical methods but our motivation is to show the wide
range of applicability of the SDP method rather than recreating specific algorithms.
Therefore, we move on to other examples.

6.2 Grover’s algorithm

Like Deutsch–Jozsa problem, we define Grover’s problem in terms of bit strings as
the following: we are given a bit string xω = 0 . . . 010 . . . 0 with length n and the only
nonzero bit is at the ω’th position. We wish to distinguish all the strings xω and xω′
from each other for any 1 ≤ ω < ω′ ≤ n. This formulation yields a definition with
a partial function f , because we prohibited strings with Hamming weight other than
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Table 1 Comparison of query
complexities for Grover’s
algorithm in the literature and
the those found by the SDP
method

n Original SDP

2–4 1 1

5–10 2 2

11–20 3 3

21–25 4 4

1. However, as far as the query complexity is concerned, our numerical evaluation of
query complexity should be compatible with the original Grover’s algorithm. Think
of this adaptation as an extra step of demultiplexing

⌈
log2 n

⌉
bits into n bits. This may

cause a constant memory overhead but it will not change the query complexity. In this
problem, we see the first advantage of the SDP method, that is, we can easily obtain
exact query complexities with minimal modification. Compare it with the well-known
fact that the original Grover’s algorithm being a bounded-error algorithm except for
the case of discriminating 4 different oracles, although there are several ways to make
it exact [29–31].

Using the modification above, we run the SDP algorithm for n = 2 to n = 25 bit
inputs. Classically, one needs to make O (n) checks to find the only nonzero output.
First, we give a quick analysis for the original Grover’s algorithm with a suitable
modification in the last step such that it outputs the results with no error. To do this, we
apply the Grover operator until the state of the computer overshoots the solution state
(see [32] for a geometric interpretation of the Grover’s algorithm).We assume that it is
possible to design an exact Grover’s algorithm with the known methods that uses the
same number of queries for the first overshoot. The query complexities of the original
exact Grover’s algorithm are shown in the second column in Table 1. We list the exact
query complexities that we have found with the SDPmethod on the third column. Like
Montanaro et al, we first run our modified program for t = 1 queries and increased
the number of queries by one and run again until we reach a zero-error algorithm.
For the practical purposes, we accept errors ε < 10−6 as zero error in this analysis.
As Table 1 indicates, our results fully agree on the exact query complexity for the
strings with lengths varying between 2 and 25. Unfortunately, numerical optimization
becomes computationally impractical for problems with n >∼ 25 with the current
typical desktop computers.

6.3 Weight decision

In this problem, we are guaranteed that a bit string with a Hamming weight equal to
either ω1 or ω2 is given to us but we do not know which one is given. Any string
with either one of those weights is equally probable. We are tasked with determining
the weight of the input making minimal quantum queries. Clearly, this is a promise
problem. As an example, let us consider that wewant to discriminate the n = 8 bit long
strings with weights ω1 = 0 and ω1 = 4. We know that this can be done with only one
query because Deutsch–Jozsa algorithm already discriminates strings with weights
ω1 ∈ {0, 8} from the strings with ω2 = 4 making a single query. Although one can use
quantum counting [33] to differentiate bit strings of any different weights, algorithms
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Fig. 1 Exact query complexities for the weight decision problem. The filling colors indicate the query
complexities given in [28]. It should be understood that each time a region is filled with a darker shade,
a weight combination in that region requires one more query. Current results are shown with 4 different
markers (•, ×, �,�) that indicate query complexities from 1 to 4 (Color figure online)

that use slightly less resources exist [28,34] for the special problem of discriminating
only two weights. All of these quantum algorithms are based on Grover’s algorithm;
therefore, they all exhibit a square root speedup for the weight decision problem. It
turns out that the SDP method is quite suitable for discriminating short bit strings.

Following similar steps, we investigated the exact query complexity of weight
decision of bit strings of lengths up to n = 10. Using a simple heuristic, we estimated
the complexity of computation of doing this task on a computer and we sorted the
weight decision problems from the least complex to themost complex using this rough
estimate. Then, we run the optimization code for each of these weight combinations.
We run the code for this problem on an Intel Xeon 20×core server with a 64 GB
RAM. Clearly, for small n, (e.g., n ≤ 5) the optimization does not take too much time.
However, near the other end of the sorted list, all of three solvers cause a computational
error because of the size of the optimization problem. Thus, we were not able to obtain
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a complete list of weight decision complexities for strings with lengths up to n = 10.
Even so, our results show that there is a room for improvement over the existing
methods.

Our current results are shown in Fig. 1. In order to make a comparison with the
previous works, we plot our current results on top of the symmetrized results from a
previous work [28]. The newly evaluated number of queries needed for the discrimi-
nation of weight combinations are indicated by the 4 different types of markers. It is
clear that current results are consistent with the previous ones as one would expect.
See for example, except for a few instances, the area where (blue×)’s are dense mostly
overlap with the area with the lightest shade of gray. Those two different indicators
both show that 2 queries are required in the current analysis and the analysis in [28].
However, for the decision problems that require more than 2 queries, the superiority
of the results found by the SDP method becomes more apparent as it can be seen
from the graph that the 3-query points (red�) and the 4-query points (green �) further
penetrate into the territories with darker shades (up to 6 queries with the method in
[28]). There are a few points indicated with more than one value that is because some
weight combinations are integer multiples of already evaluated combinations. As an
example, consider the decision problem of x1 and x2 with lengths n = 4 with |x1| = 1
and |x2| = 2 and strings with |x1| = 2 and |x2| = 4 of length n = 8. They both
correspond to the same point on the graph but may have different query complexities.

6.4 Other algorithms

Finally, we computed the exact query complexity of some selected functions. Specif-
ically, we applied the SDP method to the computation of

– And–Or trees,
– Kushilevitz function, which is first mentioned in [35] and also discussed in [36]
and [37],

– maximum deviation, and
– sorted input bits, which is also known as Ambainis function [36].

The collection of our results for these selected functions are given in an arranged
form in Table 2. In order to avoid uncertainty that may be caused by the numerical
errors, we tried to set the optimal error probability limit as low as possible. Ideally, this
error should reduce to 0. Fortunately, for all the problemswe considered, at some point,
when we add one more query, the optimized error decreases significantly. Therefore, it
was easy to set a point of threshold to accept the computation as an exact computation.
In the following analyses, we did not change the error limitation ε < 10−6 in order to
make it compatible with the other algorithms that we studied. If necessary, the limit
can be easily made orders of magnitude tighter as it can be seen from Table 2. Still,
we must emphasize that the exact queries we provide here should rather be accepted
as a strong evidence for the existence of exact query algorithms. The algorithms found
by the SDP method must be further analyzed and a decision regarding the exactness
of the algorithm should be made after a careful theoretical consideration. Also, we
should mention that in Table 2, we included only the errors that contributed to the
decision of the exactness of the algorithm.
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Due to the rapidly increasing computational complexity of convexoptimizationwith
the number of input bits n, we could evaluate query complexities for only a few bits
of inputs. Concerning And–Or trees, we were able to obtain complexities only for the
functions f (x1, x2, x3, x4) = (x1 ∧ x2) ∨ (x3 ∧ x4) and f (x1, x2, x3, x4, x5, x6) =
(x1 ∧ x2)∨ (x3 ∧ x4)∨ (x5 ∧ x6). Next, we evaluated both versions of the Kushilevitz
function. We first evaluate the query complexity of the partially defined version whose
output is given as

– f (x) = 0 if |x | = 3 and x is one of the following: 111000, 011100, 001110,
100110, 110010, 101001, 010101, 010011, 001011.

– f (x) = 1 if |x | = 3 and x is one of the following: 110100, 110001, 101100,
101010, 100011, 011010, 011001, 010110, 000111.

Including the partial version of the Kushilevitz function, we indicate the partial func-
tions with a symbol (∗) in Table 2. The total version of Kushilevitz function accepts
all 26 = 64 possible inputs and it is additionally defined to be 0 on inputs x with
|x | = 0, 4 or 5 and it is defined to be 1 on inputs with |x | = 1, 2 or 6. See also
[36,37] for more details about the Kushilevitz function.

Another partial function we analyzed is the maximum deviation function which we
define as follows: given an even number n, we promise that the n-bit input bit string
x is balanced, that is it has equal number of 0’s and 1’s. On input x , the maximum
deviation function f outputs an integer between 1 and n/2, which is the maximum
cyclic length of consecutive 0’s or consecutive 1’s. For example f (01010101) = 1
and f (01110010) = 3. Classically, we have to wait until the one before the last bit
for inputs longer than n = 4. If the inputs had been further restricted to the perfectly
periodic series of 0’s and 1’s, a single query and a quantum Fourier transformwould be
enough. However, our definition is sitting somewhere between a completely random
function and a perfectly periodic function, therefore we expect a modest speedup in
the exact evolution of f . As we see in Table 2, we verify this conjecture at least for
inputs with lengths 4, 6 and 8 bits. Lastly, we evaluated the exact QQC of the sorted
input bits function [36,38]. Its output is defined to be 1 only when input bits are sorted
(reverse order is also accepted) and it is defined to be 0 otherwise. The 4 bit version
of the function was crucial in proving the maximal separations using the adversary
bounds [37]. It is clear from Table 2 that, for strings with 4–7 bits, there is a 2 query
difference between quantum and classical exact query complexities.

7 Conclusions and further study

We have shown that the SDP method by Barnum et al. [15] is a powerful and versatile
tool for calculating exact query complexities of partial Boolean functions. We have
demonstrated that minimizing total of the traces instead of optimizing error and using
the singular value decomposition of the overlapmatrices instead of the trivial choice in
(9) can give better results once we are sure that an exact QQA exists for a given prob-
lem. For EXACT4

2, in addition to those modifications, using the symmetry of repeated
singular values, we were able to reproduce the efficient algorithm in [17], thus achiev-
ing the same design in a more systematic way. An immediate open problem is whether
these improvements would enable us to design more efficient quantum algorithms (in
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terms of memory) for computing more general functions like EXACTn
n/2. We have

already shown that using singular value decomposition, we were able to reduce the
number of necessary ancilla qubits for EXACT6

3 and EXACT6
2,4.

Next, we applied the SDPmethod to promise problems and showed that the method
can be easily applied to these problems once they were properly identified with evalu-
ation of (mostly) a Boolean function in the query complexity model. We successfully
verified the exact query complexities of Deutsch–Jozsa and Grover’s problems. Then,
we employed the method for the weight decision problem of bit strings with lengths
up to 10-bits and showed that the known complexities [28,34] for the problem can be
further improved. Finally, we tested the SDPmethod with four more special functions,
some of which were already shown to exhibit quantum speedup with other methods
and we saw that the quantum speedup can clearly be achieved for small-input-size
versions of these functions.

Although the numerical evaluation based on the SDP method cannot replace other
methods like the polynomial method or the adversary methods, it can be quickly
adapted to any given problem and can be used as preliminary test before one would
continue with a more detailed analysis. An exhaustive search for exact QQA’s for
all partial functions like the one for total functions which was given in [17] would
evidently be an important work since it could lead us to new classical to quantum
separations. The biggest obstacle to doing so is the obvious huge size of the search
space. A further task along this direction could be finding heuristics such as utilizing
symmetries in such functions to make the problem more manageable.
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