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ARTICLE INFO ABSTRACT

Keywords: The work aimed to detect and quantify adulteration of fresh olive oils with old olive oils from the previous
Olive oil harvest year by using different spectroscopic approaches in combination with chemometrics. Adulterated
Adulteration

samples prepared in varying concentrations (10-50%(v/v)) were analyzed with fluorescence, Fourier transform-
infrared (FT-IR), and ultraviolet-visible (UV-vis) spectroscopic methods. Orthogonal partial least square-dis-
criminant analysis (OPLS-DA) and partial least squares (PLS) regression techniques were used for the differ-
entiation of adulterated oils from the pure oils and prediction of adulteration levels, respectively. After the
application of various pre-treatment methods, all of the OPLS-DA classification models generated for every
spectroscopic technique successfully differentiated adulterated and non-adulterated oils with over 90% correct
classification rate. FT-IR + UV-vis and fluorescence spectral data were also successfully used to predict adul-
teration levels with high coefficient of determinations for both calibration (0.94 and 0.98) and prediction (0.91
and 0.97) models and low error values for calibration (4.22% and 2.68%), and prediction (5.20% and 2.82%),
compared to individual FT-IR and UV-vis spectroscopy were obtained. Therefore, FT-IR + UV-vis and fluor-
escence spectroscopy as being fast and environmentally friendly tools have great potential for both classification

FT-IR spectroscopy
UV-vis spectroscopy
Fluorescence spectroscopy
Chemometrics

and quantification of adulteration practices involving old olive oil.

1. Introduction

Olive oil is a highly demanded product by the consumers in global
scale due to its unique sensory characteristics, high nutritional value as
well as its proven health benefits. These positive characteristics are
mainly associated with the unique chemistry of olive oil which is
mainly composed of monounsaturated fatty acids (mainly oleic acid)
and minor components (phenolic compounds, a-tocopherol and car-
otenoids) (Li & Wang, 2018). Some of these constituents in olive oil are
present in the highest level immediately after the extraction and there
could be dramatic changes in their quantity during the storage mostly
due to oxidative processes. As a result, “best before” date is critical for
the quality of olive oil (Tena, Aparicio, & Garcia-Gonzalez, 2018). An
update in European Union regulation was done about olive oil labelling
requirements in 2012 (EU, 2012). According to this regulation, harvest
year can be placed on the label only if 100% of the product was ob-
tained from the olives harvested in the same year. Therefore, mixing of
the olive oils from the previous harvest with freshly extracted olive oils
is regarded as an adulteration if the label indicates harvest year and a
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need arises to determine this type of adulteration to prevent unfair
profit and to protect the consumers. However, detection methods which
aim to differentiate old oils in fresh oils have not been thoroughly
studied in the literature.

Detection of lower price seed and/or vegetable oils such as corn,
sunflower and soybean oils (Jiménez-Carvelo, Osorio, Koidis, Gonzélez-
Casado, & Cuadros-Rodriguez, 2017; Sun, Lin, Li, Shen, & Luo, 2015)
and lower quality olive oils (refined or pomace olive oil) (Merés,
Manzano, Rodriguez, & de la Pefia, 2018) in high quality olive oils have
already been investigated by non-targeted fingerprinting techniques. In
addition, classical targeted approaches which are based on wet chro-
matographic techniques of mainly gas chromatography (GC) (Jabeur,
Drira, Rebai, & Bouaziz, 2017; Jabeur, Zribi, & Bouaziz, 2016) and
high-performance liquid chromatography (HPLC) (Carranco, Farrés-
Cebrién, Saurina, & Ntnez, 2018) and their combination (Jabeur et al.,
2014) have been also used for the determination of these adulterants.
Main disadvantages of these wet methods are their time consuming and
waste producing nature. Rapid, simple, environmentally friendly and
relatively cheap spectroscopic methods have been commonly used as
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alternatives to wet chemical methods in adulteration detection studies
(Valli et al., 2016).

There is a growing interest of olive oil analysis by using fluorescence
spectroscopy since it has comparably low detection limits with respect
to other spectroscopic methods (Danezis, Tsagkaris, Camin, Brusic, &
Georgiou, 2016). Recently, this technique was used in the detection of
different types of adulterants such as sunflower oil, (Ali et al., 2018),
corn oil (Oztiirk, Ankan, & Ozdemir, 2010), soybean oil (Tan et al.,
2018), and lower quality olive oil (Dankowska & Matecka, 2009; Meras
et al., 2018) in extra virgin olive oil.

Fourier-transform infrared (FT-IR) spectroscopy was also used suc-
cessfully along with chemometric methods in many different adul-
teration studies such as differentiation of olive oils from soybean oil,
sunflower oil, rapeseed (canola) oil, corn oil, peanut oil, sesame oils,
camellia oil, walnut oil and grapeseed oils (Jiménez-Carvelo et al.,
2017; Sun et al., 2015; Rohman, Che Man, Ismail, & Hashim, 2017).

Ultraviolet-visible (UV-vis) spectroscopy comes forward as a quite
easy to use technique. However, there are relatively few studies in the
literature about the detection of adulteration with UV-vis spectroscopy.
This technique was used to quantify lower grade olive oil in extra virgin
olive oil (Torrecilla, Rojo, Dominguez, & Rodriguez, 2010) as well as
different blends of olive oil with corn, soybean, and sunflower oils
(Jiang, Zheng, & Lu, 2015).

Although there are several successful examples of olive oil adul-
teration detection studies using different spectroscopic methods, dif-
ferentiation of mixtures of olive oils such as mixtures from different
olive varieties, mixtures of refined and extra virgin olive oils or mix-
tures of fresh and old olive oils is generally a more challenging task.
Therefore, it is important to test the capabilities of these techniques for
these cases. To the best of our knowledge there is a few preliminary
studies in the literature about the detection of adulteration concerning
mixing of old olive oils with fresh olive oils. FT-IR was used to detect
limited number of adulterated samples in one study (Hirri et al., 2015)
and laser diode-based fluorescence spectroscopy was also used in an-
other research (Torreblanca-Zanca et al., 2019). In addition, a recent
study employed different classification methods in analyzing fluores-
cence spectra to determine freshness of olive oils as expired or non-
expired (Dankowska & Kowalewski, 2019). However, there is not any
study which compares the performances of different spectroscopic ap-
proaches about this emerging issue.

Hypothesis of this research is that fresh olive oil could be differ-
entiated from old olive oil in a mixture by using fluorescence, FT-IR and
UV-vis and the combination of FT-IR and UV-vis spectroscopies;
moreover, quantification of different levels of adulterant is also possible
with these spectroscopic methods when they are used along with
multivariate statistical approaches. Therefore, it was aimed to in-
vestigate the effectiveness of different spectroscopic techniques in-
dividually and also in combination to detect this type of fraud in a fast
way with minimal chemical waste.

2. Materials and methods
2.1. Olive oil samples

Fresh olive oil samples obtained in 2016 harvest year were analyzed
immediately after the production whereas olive oils from 2015 harvest
year were used as old olive oil samples after one year of storage. Olive
oils were from the different regions (14 different locations for fresh
olive oils and 5 different locations for old olive oils) of Turkey. Twenty
different fresh and 5 different old oils were used in the analyses and 4
fresh and 5 old olive oils were mixed with each other in cross combi-
nations and the rest of the fresh samples (16 samples) were in-
dependently used. As a result, 100 adulterated samples in five different
concentrations from 10% to 50% level with 10% increments (20 sam-
ples for each level) were prepared with a total volume of 10 mL by
mixing samples with a vortex.
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2.2. Determination of free fatty acid content, K values and fatty acid profile

Basic quality parameters, free fatty acid (FFA) and specific extinc-
tion coefficients (K232 and K270) as well as fatty acid profile of the
olive oil samples were determined according to European Official
Methods of Analysis (EEC, 1991).

FFA value was determined by titrating dissolved 20 g of olive oil
sample in 150 mL diethyl ether-ethanol solution (1:1) with standar-
dized 0.1 molL.™! solution of potassium hydroxide until a change in
indicator color (phenolphthalein). Results were expressed in terms of %
oleic acid.

Absorbance values of 0.25 g of the olive oil samples diluted to 25 mL
with cyclohexane were measured at 232 and 270 nm with a spectro-
photometer (Shimadzu UV-2450 Spectrophotometer, Japan) using the
pure cyclohexane as the blank.

Fatty acid profile of the methyl esterified olive oil samples was
determined by a GC with flame-ionization detector (FID) (Agilent 6890,
Agilent Technologies, USA) possessing an auto-sampler (Agilent 7863)
with a split/splitless inlet. As a capillary column, HP-88 with dimen-
sions of 100m x 0.25mm ID x 0.2mm (Agilent, USA) was used.
Experimental conditions were as follows; 1 mL eluent were injected
with a split ratio 1/50, helium was used as a carrier gas at constant
2mLm™" flow, injection and detector temperature were set to 250 °C
and 280 °C, respectively. Temperature program of oven was kept at
120 °C for 10 min and then increased to 220 °C with a rate of 3°C m ™!
and maintained at the same temperature for 5 min. The sample chro-
matogram peaks were compared with the retention times of fatty acid
methyl ester (FAME) mix standards. The results including major in-
dividual fatty acids, total saturated fatty acids (SFA), total mono-
unsaturated fatty acids (MUFA), and total polyunsaturated fatty acids
(PUFA) were given as the relative percentage of FAME. Three replicates
of each measurement were recorded.

2.3. Spectroscopic methods

2.3.1. FT-IR spectroscopy

Mid-infrared spectra between 4000 and 650 cm ™! of the olive oil
samples were recorded by using PerkinElmer Spectrum 100 FT-IR
spectrometer (PerkinElmer Inc., USA) equipped with a deuterated tri-
glycine sulphate detector (DTGS). As a sampling technique horizontal
attenuated total reflectance (HATR) accessory with ZnSe crystal was
used. Scan speed, resolution, and number of scans for each spectrum
were adjusted as 1 cms ™!, 4cm ™!, and 64 respectively. The spectra for
each sample was taken twice. After each analysis, the sampling crystal
was cleaned with hexane, ethanol and deionized water.

2.3.2. UV-vis spectroscopy

UV-visible spectrophotometer (Shimadzu UV-2450
Spectrophotometer, Japan) was used to obtain the spectra of olive oil
samples between 200 and 800 nm. Absorbance was measured with fast
scan speed in a macro type polystyrene cuvette (12.5 x 12.5 X 45 mm)
having 10 mm light path by using air as the blank. Sampling interval
and slit width were set to 2.0 nm and 5.0 nm, respectively. Duplicated
spectra were obtained for each olive oil sample.

2.3.3. Fluorescence spectroscopy

Fluorescence spectra of the olive oil samples were acquired with the
LS-55 fluorescence spectrometer (PerkinElmer Inc., USA) equipped
with a pulsed xenon lamp. The slit width was adjusted to 5 nm for both
excitation and emission. Data interval for scan and integration time was
set to 0.5nm and 0.2 s, respectively. These parameters were selected to
obtain the best resolution with optimal signal-to-noise ratio.

For each excitation wavelength (320, 330, 340 and 350 nm) fluor-
escence emission spectra were recorded twice for each sample between
300 and 800 nm simultaneously by using a quartz cell. An excitation
wavelength at 350 nm was selected both in the construction of
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classification and prediction models.

2.4. Multivariate statistical analysis

In order to handle the large data clusters obtained from the spec-
troscopic measurements, multivariate statistical tools were utilized in
both classification and prediction. SIMCA 14.0 software (Umetrics,
Sweden) was used for the data analyses. The whole spectra from FT-IR
(4000-650 cm™ 1), UV-vis (200-800nm), and fluorescence (300-
800 nm) spectroscopy measurements were used in the analyses. In ad-
dition, low level data fusion was applied to FT-IR and UV-vis spectro-
scopic data to obtain a single matrix and this combined form was also
used in both classification and prediction models. Low level data fusion
is a basic combination method relied on concatenating data sets ob-
tained from different instruments into a large single matrix and could
be used in generating classification or prediction models. Rows and
colons of the matrix correspond to samples and signals (variables), re-
spectively (Borras et al., 2015).

Prior to the model development, replicated spectroscopic data were
averaged and then appropriate pre-processing techniques were used to
remove the undesirable instrumental and experimental variations
(Engel et al., 2013). Pre-processing techniques could be divided into
two main categories as signal enhancement and signal correction
methods (Moros, Garrigues, & de la Guardia, 2010). Mean-centering
and unit variance scaling were applied as a signal enhancement strategy
in the construction of all models. Advanced signal correction algorithms
such as first derivative (FD), second derivative (SD), Savitzky-Golay (S-
G), wavelet denoising techniques (WDTs), multiplicative scatter cor-
rection (MSC), and orthogonal signal correction (OSC) were used in-
dividually and in appropriate combinations (S-G:MSC, FD:S-G:MSC, and
WDTs:0SC) for the development of the specific models. FD and SD of
the spectroscopic data were calculated from moving quadratic sub-
models with 15 data point long and the distance between each data
point is set to 1 excluding the edge effects. As a wavelet function
Daubechies-10 was chosen, and confidence interval was selected as
99.5%. Selection of the suitable pre-processing technique was accom-
plished with the trial and error method. For this purpose, different pre-
processing techniques were applied and the best performing one was
selected with respect to their classification and prediction efficiencies in
terms of the statistical parameters provided in Tables 1 and 2, respec-
tively (Engel et al., 2013).

For the classification and quantification, pre-treated data set of each
spectroscopic technique was randomly divided into calibration and
validation sets comprising 2/3 and 1/3 number of the data set,

Table 1
OPLS-DA models of different spectroscopic methods in classification of adult-
erated and fresh samples (the number of samples are shown in parenthesis).

Method Pre-treatment’ LVs RZ, R%.  %CCea” %CCpred.”
(n = 80) (n = 40)
FD 1+3 098 053 100 93
FT-IR WDTs:FD 1+3 097 058 100 85
SD 1+2 097 042 100 90
FD 1+3 098 098 100 83
UV-vis WDTs:FD 1+3 098 097 100 83
SD 1+4 099 098 100 100
FD 1+4 099 0.66 100 98
FT-IR + UV-vis WDTs:FD 1+3 098 0.65 100 85
SD 1+2 097 058 100 88
FD 1+8 095 070 100 90
Fluorescence WDTs:FD 1+8 098 071 100 95
SD 1+7 09 0.68 100 89

2 FD: first derivative, SD: second derivative, WDTs:FD combination of wa-
velet denoising techniques and first derivative.

b Average correct classification rate for calibration.

¢ Average correct classification rate for prediction (external validation).
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respectively. The calibration data set was used to generate the corre-
sponding model. An optimal model with respect to the latent variables
(LVs) was chosen by internal validation (cross validation) which was
applied as leave-one-out cross validation (LOO-CV) to avoid over and/
or under fitting of the model (Riedl, Esslinger, & Fauhl-Hassek, 2015).
The optimal number of LVs obtained from 7-fold cross validation re-
vealed the model complexity and the percentage of correct classifica-
tion for the optimized number of LVs provides the classification accu-
racy (Engel et al., 2013).

In classification studies, orthogonal partial least square-discriminant
analysis (OPLS-DA) was used to visualize the separation of adulterated
and fresh olive oil samples by using pre-treated data. In OPLS-DA
analysis, a dummy Y matrix (variable vector) consisting of class 1 and
class 2 (adulterated and non-adulterated (fresh) samples, respectively)
was correlated with X matrix (spectral data) (Sen & Tokatli, 2016). The
results of the OPLS-DA analysis are given in the form of a mis-
classification table. Both cross and external validation techniques were
used to determine correct classification and misclassification (known as
rejection or error) rate (Riedl et al., 2015). The correct classification
rate (%CC) was determined when an examined oil sample from a de-
fined olive oil class (as adulterated or non-adulterated) have a predic-
tion value between 0.5 and 1.5; otherwise, it was considered as a
misclassification (Hirri, Bassbasi, Platikanov, Tauler, & Oussama,
2016). In addition, other performance parameters such as number of
latent variables (LVs), coefficient of determination for calibration (R2,)
and goodness of prediction Q> (RZ,) were determined for each classi-
fication model constructed with different spectroscopic data. These
values were evaluated by automatic fitting function available in the
SIMCA software.

Prediction for the quantification of the varying levels of adulteration
(0-50% v/v) were conducted with partial least squares (PLS) regres-
sion. Basically, PLS regression was used to correlate spectroscopic ab-
sorbance of each adulterated and non-adulterated sample (X block)
with the percentages of adulterant and non-adulterant olive oil (Y
block) (Gurdeniz & Ozen, 2009). The prediction ability of the generated
PLS models were investigated with several performance parameters
such as RZ, for calibration, RZ, for cross validation, R3eq for external
validation. Error values as root mean square error of prediction
(RMSEP), root mean square error of calibration (RMSEC), root mean
square value of cross-validation (RMSECV) were also used in the per-
formance evaluation. R? values should be close to 1 while error values
should be small and close to each other in order to minimize error as
low as possible by sustaining balance between generated error values in
terms of magnitude and to obtain a robust prediction model (Uncu &
Ozen, 2015). Additional parameters such as residual predictive devia-
tion (RPD) for external validation and slope of the calibration models
were also used to evaluate the model. The RPD value stands for the
ratio of standard deviation of predicted values to RMSEP values re-
vealing the predictive ability of the corresponding model (Riedl et al.,
2015). The RPD values were calculated according to formula provided
in the literature (Ozturk, Yucesoy, & Ozen, 2012). In RPD evaluation,
values lower than 2.0 are considered to be insufficient for prediction
while values between 2.0 and 2.5 are used for approximate quantitative
predictions. Values between 2.5 and 3.0 and values higher than 3.0, on
the other hand, indicate good and excellent predictions, respectively
(Tamaki & Mazza, 2011).

3. Results and discussion
3.1. Chemical characteristics of olive oil

Free fatty acid and specific extinction (K232 and K270) values of the
olive oil samples were determined to evaluate the general quality of the
samples. Average acidity (%), K232, and K270 values of fresh olive oil
samples used in mixing studies were 0.40 * 0.12, 2.18 = 0.21, and
0.20 + 0.01, respectively while the same parameters for the old olive
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Table 2
Statistical parameters of PLS regression models for prediction of adulteration by different spectroscopic methods.
Method Pre-treatment” LVs R? cal. R? cv. R? pred. RMSEC RMSECV RMSEP RPD Slope
FTIR FD 3 0.90 0.58 0.54 5.44 12.02 11.53 1.5 0.90
S-G:MSC 4 0.67 0.45 0.46 10.14 12.62 13.34 1.3 0.67
FD:S-G:MSC 4 0.97 0.48 0.57 2.97 13.95 11.64 1.5 0.97
WDTs:0SC 9 0.96 0.77 0.84 3.45 10.19 7.01 2.5 0.96
UV-vis FD 6 0.73 0.61 0.66 9.35 10.56 10.06 1.7 0.73
S-G:MSC 5 0.69 0.59 0.60 9.93 10.89 11.03 1.5 0.69
FD:S-G:MSC 4 0.72 0.62 0.57 9.30 10.36 11.44 1.6 0.72
WDTs:0SC 6 0.86 0.80 0.80 6.78 8.02 7.76 2.2 0.86
FTIR + UV-vis FD 3 0.92 0.63 0.62 5.10 11.33 10.56 1.6 0.92
S-G:MSC 5 0.77 0.49 0.64 8.57 12.45 10.29 1.7 0.77
FD:S-G:MSC 6 0.99 0.70 0.61 1.49 10.91 10.70 1.6 0.99
WDTs:0SC 5 0.94 0.85 0.91 4.22 6.96 5.20 3.2 0.94
Fluorescence FD 4 0.73 0.32 0.37 9.15 16.61 13.61 1.3 0.73
S-G:MSC 10 0.79 0.44 0.49 8.31 13.07 12.28 1.4 0.79
FD:S-G:MSC 5 0.72 0.40 0.29 9.43 13.82 15.05 1.1 0.72
WDTs:0SC 9 0.98 0.95 0.97 2.68 6.52 2.82 6.2 0.98

2 FD first derivative, S-G:MSC combination of Savitzky-Golay and multiplicative scatter correction, FD:S-G:MSC combination of first derivative with Savitzky-
Golay and multiplicative scatter correction, WDTs:OSC combination of wavelet denoising techniques and orthogonal signal correction.

oil samples were 0.92 * 0.29, 2.30 * 0.32, and 0.19 * 0.10, or-
derly.

Average major fatty acids values (%) of fresh olive oil samples were
determined as follows; palmitic acid 13.79 * 0.97, stearic acid
3.04 = 0.34, oleic acid 69.63 = 1.83, linoleic acid 10.74 + 1.46, li-
nolenic acid 0.76 + 0.11, SFA 17.56 = 1.46, MUFA 70.94 = 2.10,
and PUFA 11.50 + 1.57. While the same parameters for old olive oil

samples were determined as 14.09 * 2.05% palmitic acid,
2.68 = 0.13%  stearic acid, 68.94 + 3.16% oleic acid,
11.56 + 3.24% linoleic acid, 0.74 * 0.07% linolenic acid,
17.41 + 2.30% SFA, 70.29 *= 3.39% MUFA, and 12.30 * 3.31%

PUFA.

All the studied samples were in the limits of quality standards of
European Union regulation on olive oil (EU, 2016). Fresh olive oil
samples were graded as extra virgin olive oils while old olive oil sam-
ples were at lower grades.

3.2. Spectral evaluation

Typical spectra of all the studied olive oil samples obtained with
different spectroscopic techniques are shown in Fig. 1. The FT-IR
spectra of the samples (Fig. 1a) are dominated by the peaks at distinct
wavelengths of 2924, 2852, 1743, 1463, 1377, 1238, 1163, 1114, 1099
and 721 cm ™! (Sinelli, Cosio, Gigliotti, & Casiraghi, 2007). Absor-
bances at 2924 and 2852 cm~! wavelengths are due to -CH, asym-
metric and symmetric stretching vibrations, respectively. The major
peaks at 1743 cm ! followed by 1463 and 1377 cm ™' are associated
with C=0 stretching, CH, and CHj; scissoring vibrations, respectively.
The rest of the peaks at 1238, 1163, 1114, 1099 cm ! are relevant with
C-O stretching vibration while a small peak at 721 cm ™! are correlated
with CH» rocking mode (Sinelli et al., 2007).

UV-vis spectra of the olive oil samples are shown in Fig. 1b. Ab-
sorption spectra of the olive oil samples have specific peaks around
230-270 nm indicating the presence of conjugated dienes and trienes of
unsaturated fatty acids. Moreover, 300-400 nm band was correlated
with a variety of polyphenols (Mignani, Ciaccheri, Mencaglia, &
Cimato, 2012). A shift in the positions of the peaks and/or the absence
of the peaks in the current study compared to above assignments could
be related to differences in the quality, varietal and geographical dif-
ferences of olive oil samples with respect to investigated samples in the
literature as well as measurement parameters. In addition, carotenoids
as one of the color pigments are responsible for the absorption between
430 and 460 nm and peak at 670 nm is attributed to chlorophylls and
their derivatives (Mignani et al., 2012).

Fluorescence emission spectra of the olive oil samples are shown in
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Fig. 1c and these spectra reveal three regions of interest around 350 nm
due to specific excitation together with 400-600 nm, and 650-750 nm.
Bands between 600 and 700 nm in emission possessed well known re-
lationship with chlorophylls a and b and pheophytins a and b. Bands at
250-400 nm are correlated with a-tocopherol and phenolic compounds
while 400-600 nm emission spectral range could be attributed to vi-
tamin B, and carotenoids as well as oxidation products of fatty acids,
especially conjugated hydroperoxides, are found in the range of
440-470 nm (Ali et al., 2018; Dupuy et al., 2005).

Spectra obtained from each of these spectroscopic methods were
further investigated to observe for any visual differences between a
fresh sample and adulterated ones. The differences in FT-IR spectra
were not easy to recognize visually. On the other hand, visual inspec-
tion revealed noticeable differences between the spectra of adulterated
and fresh olive oil samples obtained with UV-vis and fluorescence
spectroscopy.

Main differences in UV-spectra are observed in the peaks attributed
to carotenoids (400-500 nm) and chlorophylls (670 nm) (Fig. 1b). Both
chlorophylls and carotenoids are pigments which are affected from
environmental conditions such as light and temperature and are con-
verted into other forms and/or degraded during storage. Therefore,
differences in UV-spectra of old oil containing samples could be asso-
ciated with the changes in the pigment composition of the samples. The
changes in pigment composition could be attributed to the oxidation of
these compounds during storage (Ali et al., 2018).

Fluorescence emission spectra of the olive oil samples at varying
adulteration levels are provided in Fig. 1c. Fluorescence intensity at
distinct wavelengths (400-500 nm) increased with increasing adul-
teration level and this could be correlated with the formation of oxi-
dation products of fatty acids such as hydroperoxides emitted around
450 nm (Lled, Hernandez-Sanchez, Ammari, & Roger, 2016). However,
fresh olive oil samples have higher intensity at 650-750 nm compared
to adulterated ones and this difference could be attributed to change in
chlorophyll content having negative linear relationship with oxidation
products (Herndndez-Sdnchez, Lle6, Ammari, Cuadrado, & Roger,
2017).

3.3. Discrimination of fresh olive oils from adulterated oils

OPLS-DA models were created with the data from each spectro-
scopic technique and with the combination of FT-IR and UV-vis spec-
tral data and Table 1 shows the results of statistical parameters for the
models obtained with the application of various spectral pre-treat-
ments. Best models were obtained with FD of FTIR, FTIR + UV-vis and
fluorescence spectroscopy while SD of UV-vis spectral data resulted in
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Fig. 1. (a) FT-IR, (b) UV-vis and (c) fluorescence spectra of the olive oil samples.
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Fig. 2. Score plots of OPLS-DA models built with (a) FT-IR, (b) UV-vis, (¢) FT-IR + UV-vis, and (d) fluorescence spectroscopy for discrimination of adulterated (@1)

and fresh olive oil samples (Il2).

the most successful differentiation. Each model was comprising a cali-
bration and external validation set and the number of the samples in
calibration and validation is 80 and 40 out of total 120 samples (100
adulterated and 20 fresh samples), respectively (Table 1). Although it
might look like there is an unbalance between the numbers of adult-
erated (100) and non-adulterated (20) samples there is still enough
number of non-adulterated samples to form a class in OPLS-DA model.
Classification could be also performed by using each adulteration per-
centages as a different class. However, it was thought that assigning all
adulteration levels to a single class is a more realistic approach. This is
because of that it is generally impossible to know the adulteration
concentrations of external samples that are brought to the control la-
boratories and constructed model allows detection of mixing regardless
of adulteration percentages. OPLS-DA score plots of each calibration
model are provided in Fig. 2 which shows the scattering of two classes
as adulterated and fresh samples (non-adulterated).

As it could be seen from Table 1, OPLS-DA model of FD of FT-IR
spectra provided the best differentiation of fresh olive oil samples from
adulterated ones with the average correct classification rate of 100%
and 93% (out of 40 sample; 1 sample misclassified as adulterated and 2
samples misclassified as fresh samples) in calibration and validation
sets, respectively. The OPLS-DA model was built with 1 predictive and 3
orthogonal components. Other statistical parameters such as high R®
values for calibration and cross validation sets further confirm the
classification ability of the model (Table 1). According to score plot
(Fig. 2a), fresh samples located on the right side of the score plot are
separated from adulterated samples with respect to the first latent
variable (LV1) explaining 49% of the total variation. Furthermore,
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variable importance for the projection (VIP) values are also evaluated
to determine the most significant wavelengths in differentiation of
adulteration. VIP parameter is increasingly preferred in the model
evaluation since it provides the most compact model interpretation
compared to loading weights and regression coefficients (Galindo-
Prieto, Eriksson, & Trygg, 2015). VIP values greater or close to 1 are
considered as influential in the explanation of classification and pre-
diction models (Uncu & Ozen, 2015). The highest VIP values are ob-
tained at around 1723 cm ™! which could be associated with stretching
of C=0 (free fatty acids) groups (Hirri et al., 2016) as well as finger-
print region (1464-983 ecm~ ) and around 723 cm”! (Jolayemi,
Tokatli, Buratti, & Alamprese, 2017). In the literature, there is only one
study in which limited number of old olive oil samples (lampante) were
separated from fresh (extra virgin) samples by using discriminant
analysis (PLS-DA) of FT-IR data (Hirri et al., 2015).

Score plot of OPLS-DA model constructed with SD of UV-vis ab-
sorbance spectra is shown in Fig. 2b. A clear separation was obtained
between fresh and adulterated samples in the calibration set (100%) as
well as in the external validation set with correct prediction rate of
100% (Table 1). LV1 was effective in classification by separating each
class of olive oil samples to the left and the right of the score plot
(Fig. 2b). The highest VIP values for the constructed model are found as
around 260-290, 470 and 680 nm and these values correspond to the
presence of conjugated dienes and trienes (oxidation products), car-
otenoids and chlorophyll derivatives, respectively. To the best of our
knowledge, there is no comparable literature about the differentiation
of old and fresh olive oil samples by using UV-vis spectroscopy. Until so
far, studies with UV-vis spectroscopy have been based on the
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quantification of the adulteration of extra virgin olive oil with lower
grade olive oils (Torrecilla et al., 2010) as well as binary and ternary
mixtures of monovarietal extra virgin olive oils (Aroca-Santos, Cancilla,
Pérez-Pérez, Moral, & Torrecilla, 2016).

Combination of two spectroscopic methods as FT-IR + UV-vis is
also investigated for any improvement that could be attributable to the
data fusion in the classification of the samples. Prior to combining the
data, first derivative of both spectra were taken individually and then
they were fused. The fused data set provided the best OPLS-DA model
and score plot of this model is shown in Fig. 2c. According to statistical
results listed in Table 1, combined data have higher classification power
than the model of FT-IR spectroscopic data and also have comparable
success with UV-vis data. The model was built with 1 predictive and 4
orthogonal components explaining 56% of the overall model according
to LV1. The measure of fit for calibration and cross validation are 99%
and 66%, respectively. The OPLS-DA model correctly separated all
samples from two classes in the calibration set (100%) and also cor-
rectly predicted all samples for each class in the external validation set
except one misclassified sample from the adulterated set (98%)
(Table 1).

Fluorescence spectroscopy was also used in the differentiation of
adulterated samples. De-noised fluorescence spectra were further pre-
treated with FD transformation prior to model construction. The OPLS-
DA score plots (Fig. 2d) revealed a good separation between adulterated
and fresh olive oil samples which are scattered in the negative and
positive sides of the LV1, respectively. The correct classification rates
for both calibration and validation sets are satisfactorily high as 100%
and 95% (2 samples misclassified as fresh samples), respectively. Cer-
tain wavenumbers around 435-500 nm and 670 nm could be correlated
with higher VIP values in comparison to the rest of the wavelengths.
These bands could be attributed to conjugated hydroperoxides and
chlorophyll content, respectively (Ali et al., 2018); therefore, these
compounds are most likely responsible for the differentiation of fresh
olive oil from adulterated ones. As far as we know, there was only two
very recent study in the literature using laser diode induced excitation
to differentiate fresh and old olive oil samples successfully
(Torreblanca-Zanca et al., 2019; Lastra-Mejias et al., 2019). Most of the
fluorescence studies have been focused on the detection of lower grade
olive oil (Meras et al., 2018) and authenticity confirmation and geo-
graphical origin determination (Jiménez-Carvelo, Lozano, & Olivieri,
2019).

To sum up, all of the studied models are found to be quite successful
in differentiation of adulteration with old olive oil samples. All the
calibration models built with different spectroscopic techniques are
100% successful in adulteration detection while external validation
models are also promising with decreasing order of correct classifica-
tion rate for UV-vis, FT-IR + UV-vis, fluorescence, and FT-IR as 100%,
98%, 95%, and 93%, respectively. Presence of oxidation products and
change in pigment content caused differentiation of fresh olive oils
adulterated with old olive oil from fresh olive oils.

3.4. Prediction studies

Quantification of adulterant level (0-50% v/v) in fresh olive oil
samples was conducted by applying PLS algorithm to the calibration
and external validation data sets from each spectroscopic technique.
Statistical results of each spectroscopic method as well as the combi-
nation of FT-IR and UV-vis are provided in Table 2. Different pre-
processing techniques and appropriate combinations were used in
model development and it was found out that OSC:WDTs provided
better results compared with the rest of the transformations (Table 2).
OSC was also reported as a more successful pre-processing technique
compared to other methods in the literature (Cen & He, 2007). There-
fore, models developed by the OSC in combination with WDTs will be
explained in more detail. Prediction performance of the models were
evaluated by some critical internal and external as well as cross
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validation parameters such as regression coefficients (R%) and error
values (RMSE) (Table 2). A model must have high R? values and low
RMSE values to have high predictive ability (Gurdeniz & Ozen, 2009).

First approach was using FT-IR data set to quantify adulteration
level. The model was constructed using 9 LVs with relatively high R?
values for calibration (0.96), cross validation (0.77) and prediction,
(0.84) and comparably low error values of 3.45% for calibration,
10.19% for cross validation, and 7.01% for prediction as well as robust
RPD value of 2.5 were also obtained for this model (Table 2). There is
only one preliminary study in the literature predicting limited number
of lower quality olive oil (lampante) in fresh olive oil by FT-IR spec-
troscopy successfully with R? of 0.999 and error values lower than 1%
(Hirri et al., 2015). Results of the present study have lower performance
due to higher prediction error compared to the previous study. In the
former study, smaller number of samples (n = 45) were used and the
old olive oil samples were in a more degraded condition as lampante
virgin oil with free fatty acidity of 3.28% compared to the samples
having an average 0.92% of free fatty acid value in the present study.

PLS model of UV-vis spectra have moderate prediction power in-
cluding 6 LVs along with acceptable R*> = 0.80 and close error values
with approximate RPD value of 2.2 (levels of RPD are defined section
2.4) (Table 2). UV-vis spectroscopy had similar prediction power with
FT-IR spectroscopy. In the literature, there is not any study which used
UV-vis spectral data in prediction of this type of adulteration. UV-vis
studies were performed for determining the level of adulteration of
extra virgin olive oil with refined olive oil and refined olive-pomace oil
(Torrecilla et al., 2010) and also for the quantification of binary and
ternary mixtures of monovarietal extra virgin olive oils (Aroca-Santos
et al., 2016).

FT-IR + UV-vis data are quite successful in the prediction of
varying levels of old olive oil samples in fresh ones with robust statis-
tical parameters (RZ,; = 0.94, RZeq=0.91, RMSE-C = 4.22%,
RMSEP = 5.20%, and RPD = 3.2) (Table 2). For better visualization of
the prediction model, PLS regression plot is presented in Fig. 3a. It is
clear that the data fusion approach is more successful in the quantifi-
cation of adulteration compared to individual methods (FT-IR or
UV-vis) (Table 2). In a recent study, it was also reached to a similar
conclusion about the prominent improvement in the model prediction
power for the quantification of rapeseed oil in olive oil blends by near
infrared (NIR) and mid infrared (MIR) spectroscopy (Li, Xiong, & Min,
2019).

PLS regression plot of fluorescence spectroscopic data for the pre-
diction model built with 9 LVs was presented in Fig. 3b. High R? values
for both calibration (0.98) and external validation (0.97) sets as well as
lower error values for the same data sets (2.68% and 2.82%, respec-
tively) showed that fluorescence spectroscopy is a promising tool in the
detection of old olive oils mixed with fresh olive oils (Table 2). Results
of the present study is in accordance with two very recent study, both of
which used laser diode induced excitation. These studies were able to
detect expired extra virgin olive oil with error values around 1.5% and
lower than 10% by using different statistical approaches of intelligent
non-linear model based on a supervised artificial neural network
(Torreblanca-Zanca et al., 2019) and a linear model relying on chaotic
parameters (Lastra-Mejias et al., 2019), respectively.

In summary, fluorescence and combination of FT-IR and UV-vis
spectroscopic data provided better results in the quantification of
adulteration than two other individual spectroscopic data. Therefore, it
is recommended to use combined data rather than individual UV-vis
and FT-IR methods alone to determine this type of adulteration. In
addition, fluorescence spectroscopic data also resulted in robust pre-
diction models with similar statistical parameters as fused data.
Detection errors for both techniques were lower than 10%. Moreover,
fluorescence spectroscopy performed slightly better than combined
spectroscopy in terms of determination limit as well as other statistical
parameters. It was found that 10% detection limit is satisfactory for this
type of adulteration since fraudsters could make little profit lower than
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Fig. 3. Actual versus predicted percentages of old olive oil adulteration (0% to 50% v/v) determined by (a) FT-IR + UV-vis and (b) fluorescence spectroscopy.

that ratio as also indicated in a different type of adulteration study (Li,
Wang, Zhao, Ouyang, & Wu, 2015).

4. Conclusion

In the present study, it was aimed to develop reliable analytical
tools to detect and quantify adulteration made with mixing fresh olive
oils with old olive oil samples. Different spectroscopic approaches in-
dividually and as a combination are compared with each other using
multivariate statistical techniques. The results indicated that both
fluorescence and combination of FT-IR and UV-vis spectral data are
better than FT-IR and UV-vis spectroscopy alone in the determination
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of adulteration due to their lower error values for prediction (2.82%
and 5.20%, respectively) as well as their higher regression coefficients
of prediction (0.97 and 0.91, orderly). Both UV-vis and FT-IR are rapid
methods; however, collecting and analyzing the data statistically would
require a longer time. However, even in this condition, using combined
spectroscopy would have advantages over wet chemical analysis
methods due to its minimal waste generating, no sample preparation
and easy to use nature. Differentiation of adulterated samples are due to
the presence of oxidation products and change in the pigment con-
centration of the oils. These methods could be used as reliable, fast,
non-destructive, and environmentally friendly tools in both detection
and quantification of adulteration as well as screening of olive oil
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quality, simultaneously.
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