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ABSTRACT
Gas transport in micropores/nanopores deviates from classical continuum calculations due to nonequilibrium in gas dynamics. In such a
case, transport can be classified by the Knudsen number (Kn) as the ratio of gas mean free path and characteristic flow diameter. The well-
known Klinkenberg correction and its successors estimate deviation from existing permeability values as a function of Kn through a vast
number of modeling attempts. However, the nonequilibrium in a porous system cannot be simply modeled using the classical definition of
the Kn number calculated from Darcy’s definition of the pore size or hydraulic diameter. Instead, a proper flow dimension should consider
pore connectivity in order to characterize the rarefaction level. This study performs a wide range of pore-level analysis of gas dynamics
with different porosities, pore sizes, and pore throat sizes at different Kn values in the slip flow regime. First, intrinsic permeability values
were calculated without any rarefaction effect and an extended Kozeny-Carman model was developed by formulating the Kozeny-Carman
constant by porosity and pore to throat size ratio. Permeability increased by increasing the porosity and decreasing the pore to throat size
ratio. Next, velocity slip was applied on pore surfaces to calculate apparent permeability values. Permeability increased by increasing Kn
at different rates depending on the pore parameters. While the characterization by the Kn value calculated with pore height or hydraulic
diameter did not display unified behavior, relating permeability values with the Kn number calculated from the equivalent height definition
created a general characterization based on the porosity independent from the pore to throat size ratio. Next, we extended the Klinkenberg
equation by calculating unknown Klinkenberg coefficients which were found as a simple first order function of porosity regardless of the
corresponding pore connectivity. The extended model as a combination of Kozeny-Carman for intrinsic permeability and Klinkenberg for
apparent permeability correction yielded successful results.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5125434., s

INTRODUCTION

Gas flows in microscale and nanoscale porous media are
observed in several industrial and environmental applications. For
example, gas separation using micromembranes/nanomembranes
can remove carbon dioxide from flue gases to combat global climate
change with low capital costs, low energy requirements, and ease
in operation.1,2 Under pressure differences or concentration gradi-
ents, composite membranes allow species selective migration of gas
molecules through their micropores/nanopores. Another example
is the use of carbon-based microcomposite/nanocomposite mate-
rials designed to capture hydrogen from the earth’s atmosphere
or combustion products.3,4 Alternatively, these micropore/nanopore

systems can provide solid-state hydrogen storage by packing larger
quantities of hydrogen into smaller volumes by adsorption.5,6

Another interesting application is in gas recovery from microp-
orous/nanoporous oil reservoirs.7 All these applications require an
accurate description of gas transport through microscale/nanoscale
porous systems.

Volume Average Methods (VAMs) are frequently used to
describe the transport in porous systems composed of complex flow
patterns from a simpler perspective based on permeability. Perme-
ability is a material property and is frequently determined through
experiments and/or pore level fluid dynamic analysis. Due to the
limited availability of permeability, there are numerous modeling
attempts to provide simpler empirical prediction tools correlating
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permeability with the porous system parameters. Various forms
of extended Kozeny-Carman (KC) models have created success-
ful results as presented in the literature.8–10 However, these models
fail to describe gas transport through microscale/nanoscale systems.
Different than liquid flows, with decreasing system size, noncontin-
uum effects develop in gas dynamics due to (i) molecular surface
force field and (ii) rarefaction. While the first one is mostly negligible
for confinement sizes larger than 20 nm, the latter is dominant when
the surface-gas collisions become comparable to gas-gas collisions
in case of low gas pressures and/or small confinements. Character-
ized by the Knudsen number (Kn = λ/H), rarefaction effects result in
the divergence of gas permeability from its classical literature values.
This discrepancy was first observed by Klinkenberg and later stud-
ied by many others as a function of Kn in various forms. Although
many of these studies have been found accurate at various rarefac-
tion levels, there is a discrepancy in the definition of Kn in a porous
system. Most of these studies employed characteristic height defini-
tion from Darcy, while some used classical hydraulic diameter calcu-
lations; neither of them can characterize a complex porous network
consisting of pore throats and pore voids in between.

Alternatively, a characteristic flow dimension can be defined
by calculating the size of regularly placed bundle of tubes or plates
allowing an equivalent flow rate at the corresponding pressure gra-
dient. Called as equivalent H (Heq), this was first defined by Kozeny
and Carman11 decades ago, but did not grab any attention until its
capability to directly represent flow characteristics. However, discus-
sion about such concept is still open since calculation of Heq requires
the permeability value of the corresponding porous system which is
unknown and expected to be estimated based on the Heq at the first
place. For such a case, modeling gas permeability based on the Kn
number calculated from Heq is not a trivial task.

The present study performs pore scale analyses of gas dynam-
ics and calculates volume averaged properties of the correspond-
ing microscale/nanoscale porous systems. The Kozeny-Carman the-
ory will be employed to model equilibrium gas dynamics, while
nonequilibrium will be incorporated by using Klinkenberg theory
in the slip flow regime. For such a case, Klinkenberg constants will
be described based on the pore properties (porosity and pore con-
nectivity) and Heq is calculated from Hagen-Poiseuille and Darcy
formulations for the first time in the literature.

LITERATURE ON POROUS TRANSPORT

The mechanism of fluid transport through the pores is very
complex such that determining the velocity and pressure fields is a
challenging task. One of the main approaches to overcome the dif-
ficulty of solving equations of motion in a porous system is to use
the Volume Average Method (VAM).12 While VAM equations are
simple, they require preknowledge of certain material properties.
Specific for mass transport, the measure of corresponding porous
media to allow the flow of fluids through its pores, the so-called
permeability (K), is needed to be defined and known to calculate
transport using VAM. In general, permeability of a porous material
is measured by experiments. Modeling the variation of permeabil-
ity by porous characteristics has been attempted by many.13–17 The
most well-known one, the Kozeny-Carman theory, aims to calcu-
late the permeability as a function of porosity (ε) and hydraulic

diameter (dh) of the corresponding porous system with an empir-
ically determined constant CKC. There are many studies in the lit-
erature dedicated to numerical and experimental determination of
CKC. In the original study of Carman, CKC was given as 4.8 ± 0.3
for packed beds with uniform spheres.11 There are many other stud-
ies from the literature also suggesting a constant value for CKC,18–23

while most of the others tried to define CKC as a function of porous
system parameters such as porosity and pore connectivity9,24,25 For
instance, different CKC values were found as 2.79, 3.62, and 3.80 for
the different sphere radius of 2.5, 3.5, and 4.5, respectively, while
the corresponding permeability values were validated by the experi-
mental measurements.26 Similarly, different CKC values were calcu-
lated at different porosity values for the staggered arranged porous
systems; an inverse relationship between CKC and porosity varying
between 0.4 and 0.88 was observed.27 Details and various forms of
proposed models for CKC can be found elsewhere.8–10,19,28,29

Permeability experiments are mostly performed using liquids
to keep the experimental setup simple. Assuming incompressible
flow, permeability of gas and liquid in a given porous system is the
same. However, the distance between gas molecules is much longer
than the molecular spacing of liquids such that confinement size
directly affects gas dynamics. When the spacing becomes compa-
rable with the characteristic confinement size, nonequilibrium gas
dynamics develops. For such a case, gas permeability of correspond-
ing material becomes different than its liquid permeability. First
time this problem was observed and examined by Klinkenberg, who
proved that nonequilibrium greatly impacts the permeability val-
ues.30 Klinkenberg relates the gas permeability of a material to its
liquid permeability as

Ka = K∞(1 +
bK

P̄
), (1)

where Ka is the apparent gas permeability calculated from the intrin-
sic permeability value (K∞) as a function of the gas mean pressure
(P̄) and coefficient bK known as the Klinkenberg slip factor or the
Klinkenberg coefficient. In his original work, bK is suggested as

bK = P̄
4cλ

r
, (2)

where c is a constant approximated to unity, λ is the mean free
path of the gas at the mean pressure, and r is the effective pore
radius. Equation (1) is very practical and easy to use, but the required
bk value approximated by Eq. (2) is incapable of describing vari-
ous porous systems.31 Hence, subsequent researchers mostly focused
on developing a better model to calculate the Klinkenberg constant
for a general definition of nonequilibrium effects. First, researchers
determined the Klinkenberg slip factor bK from permeability val-
ues estimated from real field results and lab experiments. Alternative
to experiments, theoretical calculations of fluid dynamics inside the
porous system, namely, Pore Scale Methods (PSMs), can find perme-
ability directly from numerical solution of gas dynamics in a control
volume representing the porous system [Representative Elementary
Volume (REV)]. Recent studies follow such a systematic approach
to estimate the Klinkenberg constant. The most well-known and
cited works proposing a Klinkenberg slippage factor are summarized
and tabulated in Table I. Researchers targeted to develop the most
accurate, yet simplest and most general description. For example,
the value of effective pore radius in a porous media (r) is difficult
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TABLE I. Proposed models for the calculation of the Klinkenberg constant in the literature.

Author Correlation Comments/units

Klinkenberg30 bK = 4cλP̄
r , c ≈ 1 Field data

Heid et al.32 bK = 0.777(K∞)−0.39 Field data
Florence et al.33 bK = β(K∞/ε)−0.5 Field data
Jones34 bK(psi) = 6.9(K∞)−0.36 Experimental study
Sampath and Keighin35 bK = 0.0955(K∞/ε)−0.53 Experimental study

Wu36 bK = − Pn+Pi
2 − μqm

4πhk∞β(Pn+Pi)
Ei( r2

w
4αtn
) Experimental study

Tanikawa et al.37 bK = (0.15 ± 0.06)(K∞)(−0.37±0.038) Experimental study

Darabi et al.38 bK = ( 8πRT
M )

0.5 μ
Ravg
( 2
α − 1) Experimental study

Duan and Yang39 bK = 0.2 × 10−3K∞−0.557 Experimental study
Civan40 bK = 0.0094(K∞/ε)−0.5 Analytical study

Zheng et al.41 bK = 8μ(3+Dt−Dp)
√

32τ̄(4−
Dp
2 −Dp)(1−ε)(2+Dt−Dp)

√
πRg T
2M (

K∞
ε )
−1/2 Analytical study

Moghadam and bK = b − a
P̄ , m = cμ

√
πRT
2M Analytical study

Chalaturnyk42 b = 4m
r0

, a = b2

4

Wang et al.43

Constant effective stress

Analytical study (model verified by field data)bKME = ε0
ε0−εL

P
PL+P

. μMe
μHe

√
MMe
MHe

bHe

For coal: bK = 32cμ
aε

√
2RT
πM

Hooman et al.44
bK = 2−σ

σ
7.9ε

√

2Γ(1−ε)
kBT
πd2

1
√

Kno−slip Analytical study (model verified by
Kno−slip =

ε2D2
h

Γ(1−ε) and Dh = 2s
tan( π

m )
experimental data from literature)

Li et al.45 bK = (3+DT−Df )

(2+DT−Df )
( 32πRg T

M )
1/2
( ε

1−ε)
1/2 Analytical and numerical study

(validate by experimental study)
Zhu et al.46 bK = 0.251(K∞)−0.36 Numerical study
Tao et al.47 Permeability module coupled to the Klinkenberg effect Numerical and experimental study
Li and Sultan31 bK = 18.5 × 104 Pa Numerical study

to estimate. Following Klinkenberg’s work, Heid et al. proposed a
power law relation correlating gas slippage factor (bK) and liquid
permeability (K∞) as a function of α and β constants as32

bK = α(K∞)β. (3)

Later, Sampath and Keighind included porosity as a third
parameter as35

bK = α(
K∞
ε
)
β
. (4)

The above two forms of relation are frequently used in the
literature by many researchers to investigate gas permeability in
rock, coal, sandstone, shale, etc. Some of these works determin-
ing the Klinkenberg slippage factor experimentally, analytically, and
numerically are given in Table I.

The following group of researchers continued the work of Heid
et al.32 described in Eq. (3). A wide experimental work was done
by Jones34 where Klinkenberg permeabilities, Klinkenberg slip fac-
tors, and Forchheimer turbulence factors were calculated using more
than 100 core plugs in an unsteady-state condition based on the
model of Heid et al.32 Wu36 used analytical methods and developed a
new model for the Klinkenberg constant which can be used for tran-
sient and steady state gas flow through various geometries in porous
media. Tanikawa et al.37 proposed a correlation based on the work of
Heid et al.,32 and found the relationship between the bK parameter
and water permeability such that nitrogen gas permeability of a given
porous specimen is 2–10 times that of its water permeability. The
model of Darabi et al.,38 known as an apparent permeability func-
tion (APF), describes gas flow through an interconnected network
of tortuous micropores and nanopores. Their APF models which are
valid for a wide range of Knudsen numbers can be used in slip flow,
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Knudsen diffusion, and surface pore roughness. The results of Duan
and Yang39 showed that a power law relationship describes the
Klinkenberg constant best as proposed by Heid et al.32 They con-
cluded that the Klinkenberg effect on the fault rocks, both breccia
and gouge, is uniform. Moghadam and Chalaturnyk42 presented a
new analytical approach to predict and explain the gas slip effect.
They proposed a new simple equation to expand the applicabil-
ity of Klinkenberg’s slip theory to low permeability porous media.
Zhu et al.46 used numerical simulation to solve the gas flow equa-
tion with the Klinkenberg effect for solid deformation and gas flow
in coal seams and then validated by comparing with available ana-
lytical solutions. Tao et al.47 established a coal permeability model
considering the gas flow in isotropic and porous coal components
that included the Klinkenberg effect. The model is strain-based,
and the Klinkenberg effect is treated as a dynamic parameter (not
an empirical parameter), which is affected by the deformation and
effective stress changes in the coal matrix. Li and Sultan31 stud-
ied the Klinkenberg slippage effect by applying the Monte Carlo
molecular simulation method in the pore-scale level. They used data
fitting formula to increase the accuracy of their equation in the per-
meability computation, which made the results of their proposed
model consistent with the experimental observations of real rock
samples.

On the other hand, the following group of researchers included
porosity dependence into the Klinkenberg slippage constant as an
extension of Sampath and Keighin.35 Florence et al.33 used a second-
order correction for gas slippage to find permeability for low and
ultralow permeability core samples. Similarly, Civan40 proposed an
equation for the Klinkenberg gas slippage factor to describe the
gas flow in tight porous media as a function of intrinsic perme-
ability, porosity, and tortuosity. Civan demonstrated the effect of
these parameters on the apparent gas permeability, rarefaction coef-
ficient, and Klinkenberg gas slippage factor by verifying the pro-
posed correlation with experimental data. Zheng et al.41 proposed
a model based on fractal theory for the gas slippage factor in micro-
porous media with low permeability in the slip flow regime. They
predicted the gas slippage factor as a function of structural param-
eters of the media which make the results of the gas slippage factor
similar with experimental data trend. Wang et al.43 proposed two
modified models to predict gas permeability on the bundled match-
stick conceptual model of coal. They showed that under constant
effective stress, Klinkenberg coefficient changes are in a significant
range. Also, the result of the second model was verified by the field
data which was held under the assumption of uniaxial strain and
constant high stress during the coalbed methane recovery. Hooman
et al.44 obtained Klinkenberg’s slip factor as a function of matrix
porosity and no-slip permeability as well as gas properties. Their
results were compared to existing experimental data in the literature
and observed to be in good agreement. Li et al.45 offered an analytical
expression for gas effective permeability with the Klinkenberg effect
which was assumed as a function of structural parameters of porous
media (porosity, fractal dimensions, and pore diameter) and gas
property (mean free path of gas molecule). The model was derived
based on the microflow model and the fractal capillary model.

However, the proposed models still could not provide a gen-
eral characterization and remain mostly case specific. Regardless
of the vast number of studies, there is still a need for improved
fundamental understanding and proper quantification.

In general, the Knudsen number (Kn = λ/H) calculated as the
ratio of gas mean free path (λ) to the characteristic height of confine-
ment (H) provides an understanding of nonequilibrium gas dynam-
ics, while the B parameter (B = Lf /H) calculated as the ratio of surface
molecular force penetration depth to characteristic height of con-
finement considers the effect of surface forces which are dominant
at nanoscales.48–56 For system sizes larger than 20 nm, surface force
effects are mostly negligible that gas dynamics are governed by the
so-called rarefaction effects. The Kn number characterizes the flow
into four regimes: the continuum domain (Kn < 0.001), slip flow
regime (0.001 < Kn < 0.1), transition flow regime (0.1 < Kn < 10),
and free molecular flow regime (Kn > 10).57 In such a perspective,
gas dynamics is a coupled function of the pore size and gas pressure.
For example, a 5 MPa reservoir pressure inside a 20 nm pore or a
0.2 MPa reservoir pressure inside a 500 nm pore develop flows in
the slip flow regime. The correlation between the characteristic pore
size, the mean gas pressure, and the resulted Kn value is described
in Fig. 1. For a certain confinement size, the Knudsen number
decreases by the increasing pressure of gas. At a constant gas pres-
sure, a decrease in the confinement size increases the Knudsen num-
ber. Depending on the regime, various forms of kinetic theory-based
solutions provide accurate results.57 A very large number of exist-
ing applications lies in the slip flow regime where the Naiver-Stokes
can be applicable with an appropriate velocity slip defined on the
surface as practiced by many to resolve microporous/nanoporous
transport.58–60

While the characterization of gas dynamics using Kn is sim-
ple, describing a characteristic pore size for the complex structures
of the porous systems is not trivial. Specific for PSM, almost all
of the existing studies use the height of the corresponding REV to
define the Kn number.62,63 Such a perspective will result in incor-
rect Kn values and gas dynamic characterization. In the general
fluid dynamics, hydraulic diameter (dh) concept is devoted for the
estimation of an appropriate flow height for an ambiguous flow
shape. Hydraulic diameter is defined as the ratio of four times the
cross-sectional area of flow to wetted perimeter of cross section

FIG. 1. Variation of the Knudsen number with reservoir gas pressure.61
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(dh = (4 × Ac)/P). Kozeny simplified dh for a porous system as dh
= (4 × ε)/((1 − ε) × A0), where ε is the porosity and A0 is the
ratio of the interfacial area between fluid and solid phases (Afs)
to solid volume (Vs) as A0 = Afs/Vs. Many studies adapted sim-
ilar dh calculations to predict an accurate Kn value for porous
systems.44,64 However, dh was also found incapable to provide a gen-
eral characterization as it cannot consider pore connectivity. Sim-
ply, two different pore structures at the same porosity will have
the same dh but can have a different ratio of pore size to pore
throat size creating very different flow characteristics. Hence, using
dh will not yield a correct Kn number and characterization of gas
dynamics.

THEORETICAL BACKGROUND

A porous system composed of solids and voids is considered
by a representative volume, as shown in Fig. 2. The size of REV is
defined as HDarcy, while the size of square solid parts is denoted as
D. The ratio of pore size (HDarcy) to throat size between solid parts
(a) is given as Rpt (HDarcy/a) defining the pore connectivity inside the
REV.

Air is flowing through the porous media with the dynamic
viscosity of 18.21 × 10−6 kg/ms. For different rarefaction levels,
the air density was varied to obtain different Kn values. Low Re
flows were studied to remain in the Darcy flow region with neg-
ligible inertial effects. The flow in the voids between the particles
is assumed incompressible and steady. The air is assumed to have
constant thermophysical properties. Steady forms of the continu-
ity and momentum equations given in Eqs. (5)–(7) are solved to
determine the velocity and pressure fields for the fluid flow using
the Fluent finite volume code. Symmetry boundary conditions were
applied on top and bottom, and periodicity conditions were applied
on left and right boundaries of REV. The current system neglected
the “end effects” might be developing in case of short channels.
The slip velocity given in Eqs. (8) and (9) was applied on solid sur-
faces with a unity momentum accommodation coefficient, assuming
diffuse reflections.65

∂u
∂x

+
∂v
∂y
= 0, (5)

u
∂u
∂x

+ v
∂u
∂y
= −1

ρ
∂p
∂x

+ ν(∂
2u

∂x2 +
∂2u
∂y2 ), (6)

u
∂v
∂x

+ v
∂v
∂y
= −1

ρ
∂p
∂y

+ ν(∂
2v

∂x2 +
∂2v
∂y2 ), (7)

un = −λ
∂u
∂y
∣
wall

, v = 0, (8)

vn = −λ
∂v
∂x
∣
wall

, u = 0. (9)

The fully developed velocity profiles were obtained by an iter-
ative procedure and applied at both inlet and outlet boundaries.
The Darcy velocity and pressure gradient in the x direction for flow
through the REV is calculated by the following relation:

⟨u⟩ = 1
H2 ∫

H

0
∫

H

0
udxdy, (10)

d⟨p⟩f

dx
= − 1

H(H −D)

⎡⎢⎢⎢⎢⎢⎣

H−D

∫
D/2

p∣x=0 − p∣x=Hdy
⎤⎥⎥⎥⎥⎥⎦

. (11)

Permeability is a tensor quantity and based on Darcy’s law for
a two-dimensional flow in the Cartesian coordinate, and it can be
defined as

(
⟨u⟩
⟨v⟩
) = 1

μ
(

Kxx Kyx

Kxy Kyy
)
⎛
⎜⎜⎜⎜
⎝

∂p
∂x
∂p
∂y

⎞
⎟⎟⎟⎟
⎠

, (12)

where Kxx, Kyx, Kxy, and Kyy are components of the permeability ten-
sor. In the present problem, the permeability is calculated only for
the x direction since the structure of porous media is symmetrical
not only in x and y directions but also with respect to xy and yx diag-
onals. The permeability is calculated based on velocity and pressure
fields obtained from the continuity and momentum equations.

Hence, the permeability for the x direction can be obtained
from the following Darcy equation:

⟨uf ⟩ = −
Kxx

μ
d⟨p⟩f

dx
. (13)

The validation of the numerical procedure is done by compar-
ing the result with the literature. As shown in Fig. 3, there is a good

FIG. 2. The illustration of a porous
medium and considered representative
elementary volume (REV).
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FIG. 3. (a) Variation of dimensionless
pressure drop by increasing Re and (b)
resulted permeability values at different
porosities. Current results were com-
pared with the values from the litera-
ture.14,66,67

agreement between the computational result for dimensionless pres-
sure drop and dimensionless permeability between the present work
and selected studies in the literature.

In order to calculate the numerical result with high accuracy,
the mesh independency test is performed. Several mesh sizes were
employed through which optimum mesh sizes were selected when
the error between consecutive mesh results became less than 10−6.
As shown in Fig. S1, results converged and stopped changing at
the mesh density of 2.3 × 1011 no. of nodes/m2, which was selected
to be used for all computations in this study. All simulations were
performed at the Reynolds number (Re = [ρ × ⟨VDarcy⟩ ×HDarcy]/μ)
less than 1 in Darcy’s law applicable range, where a linear relation
between nondimensional pressure drop and inverse of nondimen-
sional permeability value develops.

RESULTS AND DISCUSSIONS

We started by calculating permeability values at different
porosities, pore to throat size ratios, and rarefaction levels. Results
normalized with an area of REV (H2

Darcy) were given in Fig. 4(a).
Depending on the porosity, Rpt varies between 2 and 11. At a

constant Rpt, throat size denoted by a was kept constant while dif-
ferent porosities are obtained by varying the connectivity size b. As
illustrated in the inset of Fig. 4(a), low Rpt cases cannot go below
certain porosity values that the possible porosity range for each Rpt
is listed in Table II. The lowest value of porosity for each Rpt rep-
resents the case where b becomes zero and REV becomes a straight
channel. Overall, a decrease in Rpt increases the permeability due
to the decreased tortuosity effects. At a constant Rpt, permeability
increases by the increase in porosity.

Next, we visited Kozeny-Carman theory in order to devise a
model which can predict the calculated no-slip permeabilities, the
so-called intrinsic permeability or liquid permeability. The Kozeny-
Carman equation relating permeability to porosity (ε) and hydraulic
diameter (dh) is given in Eq. (14) as

Kintrinsic =
εd2

h

16CKC
, (14)

where CKC is the proportionality factor known as the Kozeny Con-
stant. CKC values for each case were calculated and plotted in
Fig. 4(b). There are multiple studies suggesting various forms of
equations to describe the variation of CKC as a function of porous

FIG. 4. (a) Variations of permeability by porosity at different pore to throat size ratio values. (b) Kozeny Carman constants calculated for the corresponding intrinsic permeability
values.
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TABLE II. Lower and upper limits of porosity values at a certain pore to throat size
ratio.

Pore to throat size ratio Porosity range

11 0.09–0.9
9 0.11–0.9
7 0.14–0.9
5 0.2–0.9

3.33 0.3–0.9
2.5 0.4–0.9
2 0.5–0.9

systems’ parameters. Detailed discussions can be found in Refs. 9, 24,
and 25. Similar to our earlier experiences,13,14 a power law relation
with porosity combined with the constants defined by the pore to
throat size ratio [given in Eq. (15)] was found best to describe the
behavior observed in Fig. 4(b),

CKC = AεB, (15)

while the constants were determined as

A = 6.56Rpt
1.98 and B = 5.56Rpt

−1.6. (16)

By using the description of dh by ε, Rpt, and HDarcy [Eq. (17)],
the Kozeny-Carman equation extended to calculate intrinsic perme-
ability as a function of porosity and Rpt reaches to the final form
given in Eq. (18),

dh =
2εHDarcy

(2 − 1
Rpt
− εRpt − 1

Rpt − 1
)

, (17)

Kintrinsic

H2
Darcy

= ε(3−6.56Rpt
−1.98
)

26.24 × Rpt
1.98 × (2 − 1

Rpt
− εRpt − 1

Rpt − 1
)

. (18)

FIG. 5. Velocity contours and stream-
lines of the 0.5 porosity cases at different
pore to throat size ratios and rarefaction
levels.
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Equation (18) can successfully predict the permeability values
presented in Fig. 4(a) with an error less than 5%. Next, we investi-
gated the similar ε and Rpt set at various levels of rarefaction with
an aim to extent the devised Kozeny-Carman based model using
Klinkenberg theory in the slip flow regime. First, local Kn num-
bers at the pore throat and pore connectivity (Kna and Knb) were
calculated based on the corresponding size of pore throat and pore
connection (a and b) of each Rpt and porosity cases. If any of the local
Kn value exceeds the applicability limit of slip velocity boundary
conditions given in Eqs. (6) and (7) (Kn ∼ 0.3 ± 0.157), correspond-
ing REV geometry is removed from considerations. We should also
mention here that the velocity slip boundary condition is calculated
based on the local velocity gradient and gas mean free path only. For
a beginning, Kn numbers were defined using HDarcy similar to the
existing literature and denoted these as KnDarcy (KnDarcy = λ/HDarcy).
Keeping the porosity constant at ε = 0.5, we varied the rarefaction
level at different Rpt values. Velocity contours measured through
two-dimensional REVs are shown in Fig. 5. Velocity values were
normalized by the average velocity measured at the correspond-
ing case. First, low Rpt cases develop straight streamlines similar to
a straight channel case. With the increase in Rpt, secondary flow

patterns increase as the pore voids grow in these constant porosity
cases. These secondary flows disturb the main flow pattern, which
becomes more diffused into pore voids by the increase in Rpt. High
Rpt values representing tight porous systems undergoes large veloc-
ity differences between pore throats and voids. This effect becomes
more profound for tighter pores by increasing Rpt. Results clearly
show that very different flows develop regardless of the constant
porosity and that the flow characterization solely based on the poros-
ity is incomplete. Next, rarefaction effects growing with increasing
Kn yields smaller velocity gradients and more uniform velocity dis-
tributions in pore throats. Due to the gas slippage on the pore sur-
faces, gas velocity at pore throat center increases while the secondary
flows in the voids lessen.

The permeability values calculated from Darcy’s law [Eq. (13)]
were normalized by HDarcy and plotted in Fig. 6. Figure 6 is a com-
bination of nine figures of nine porosity values ranging 0.1–0.9. At
a constant porosity, Kn was varied for different pore to throat size
ratios. At first glance, permeability values increase by increasing Kn.
For instance, if we compare the specific case of Rpt = 5, ε = 0.5 at two
rarefaction levels (KnDarcy = 0 and KnDarcy = 0.04), 87% of increase
in permeability was observed which shows the significance of slip

FIG. 6. Permeability values of different porosity and pore to throat size ratio values at different rarefaction levels described by Kn calculated from the Darcy height.
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effects in gas flows. Overall, an increase in porosity yields higher per-
meabilities, while an increase in Rpt decreases permeability values
at every case. In order to see the comparable behavior, we nor-
malized K values with the intrinsic K value of the corresponding
case at the given ε and Rpt. Figure S2 presents these results. On the
order of the KnDarcy, higher Kn effects develop at higher Rpt cases
representing tighter systems. This outcome is very much similar
to the conclusions of the existing studies; however, it is question-
able since the Darcy height is an average representative size for a
porous system and cannot describe the size of confinement as a mea-
sure for rarefaction. Instead, we focused on a proper Kn calculation
for the correct characterization of rarefaction effects on permeabil-
ity. First, we implemented another well-known concept, hydraulic
diameter. Figure S3 presents the same results as a function of Kndh

calculated from the corresponding dh of each case. Even though
Kndh provided successful rarefaction characterization for the case
of straight tubes in complex shapes (square, triangular, etc.),64 such
definition could not create a general normalization for rarefied flow
data.

Instead, a porous confinement requires characterization of sec-
ondary flow sites such as pore voids between pore throats. This can
only be possible by defining an equivalent diameter from the cor-
responding permeability value. For such a case, by equalizing the

velocity calculated from the Hagen-Poiseuille equation for the bun-
dle of tubes at the porosity ε to the velocity from Darcy’s equation as
given in Eq. (19), an equivalent diameter of the porous system can
be defined by Eq. (20), 68

ε
d2

eq

32μ
dP
dx
= Kapparent

μ
dP
dx

, (19)

deq =
√

32
Kapparent

ε
. (20)

By using the above equation, Kn can be calculated as

KnEq =
λ

deq
. (21)

Permeability results of Fig. 6 normalized with the correspond-
ing intrinsic permeability values calculated from the KC relation
were plotted in Fig. 7 as a function of newly defined KnEq. Dif-
ferent than the other two failed Kn based normalization attempts
using HDarcy and dh, this time results of various Rpt structures of
a certain porosity were lined up and showed a collective behavior.
Basically, permeability showed an almost universal linear variation
by the change of KnEq independent of Rpt. Next, we applied linear

FIG. 7. Normalized permeability values of different porosity and pore to throat size ratio values at different rarefaction levels described by Kn calculated from equivalent
diameter.
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FIG. 8. Klinkenberg constants at different porosities.

mathematical fits on the results to characterize the variation.
Resulted functions were given on each figure with the correspond-
ing R-squared value for regression. Linear fits showed perfect match
with data except the very high porosity case of ε = 0.9.

The current observed behavior is very similar to linear Kn
dependence estimated by the Klinkenberg. Hence, the following
form of the Klinkenberg equation as the combination of Eqs. (1),
(2), and (21) was employed to model observed behavior:

Kapparent = Kintrinsic(1 + CK KnEq). (22)

Different than the original assumption of Klinkenberg (CK = 4c
≈ 4), we calculated variation of the Klinkenberg constant (CK) from
the linear fits in Fig. 7. The slopes of the linear fits showed varia-
tion by porosity, independent from Rpt. For such a case, a variation
of CK by porosity was plotted in Fig. 8. CK was found decreasing
almost linearly by increased porosity. A second order fit showed

perfect match with the CK variation, but we chose to employ a
linear fit in order to keep our model simple. The linear fit created
good results with an R-square value of 0.98.

By combining the linear CK model and Eq. (20) into Eq. (22),
the Klinkenberg model became

Kapparent = Kintrinsic

⎛
⎜
⎝

1 + (10 − 7.54ε) λ√
32Kapparent

ε

⎞
⎟
⎠

, (23)

while Kintrinsic is a known quantity from Eq. (18), Kapparent can be
predicted by solving the above equation. For such a case, Eq. (23)
can be rearranged as

K3/2
apparent −Kintrinsic×K1/2

apparent −
√
ε(10 − 7.54ε)λ√

32
×Kintrinsic = 0. (24)

In order to link our model with the current practices, we
divided Eq. (24) with H3

Darcy. By this way, we also created the general
definition of the Kn in porous media as KnDarcy,

K3/2
apparent

H3
Darcy

− Kintrinsic

H2
Darcy

×
K1/2

apparent

HDarcy

−
√
ε(10 − 7.54ε)KnDarcy√

32
× Kintrinsic

H2
Darcy

= 0. (25)

Equation (25) is in the form of a third-degree polynomial func-
tion of the unknown K1/2

apparent, while Kintrinsic is a known quantity
from Eq. (18). For the solution of this cubic polynomial, two cases
exist depending on the below criteria:
if

⎡⎢⎢⎢⎣
−Kintrinsic

H2
Darcy

(
√
ε(10 − 7.54ε)KnDarcy√

32
)
⎤⎥⎥⎥⎦

2

4
+

⎛
⎝
−Kintrinsic

H2
Darcy

⎞
⎠

3

27
> 0, (26)

then

Kapparent

H2
Darcy

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

3

¿
ÁÁÁÁÁÁÀ−

⎡⎢⎢⎢⎣
−Kintrinsic

H2
Darcy

(
√
ε(10 − 7.54ε)KnDarcy√

32
)
⎤⎥⎥⎥⎦

2
+

¿
ÁÁÁÁÁÀ

⎡⎢⎢⎢⎣
−Kintrinsic

H2
Darcy

(
√
ε(10 − 7.54ε)KnDarcy√

32
)
⎤⎥⎥⎥⎦

2

4
+

⎛
⎝
−Kintrinsic

H2
Darcy

⎞
⎠

3

27

+
3

¿
ÁÁÁÁÁÁÀ−

⎡⎢⎢⎢⎣
−Kintrinsic

H2
Darcy

(
√
ε(10 − 7.54ε)KnDarcy√

32
)
⎤⎥⎥⎥⎦

2
−

¿
ÁÁÁÁÁÀ

⎡⎢⎢⎢⎣
−Kintrinsic

H2
Darcy

(
√
ε(10 − 7.54ε)KnDarcy√

32
)
⎤⎥⎥⎥⎦

2

4
+

⎛
⎝
−Kintrinsic

H2
Darcy

⎞
⎠

3

27

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

2

, (27)

while the second root develops if

⎡⎢⎢⎢⎣
−Kintrinsic

H2
Darcy

(
√
ε(10 − 7.54ε)KnDarcy√

32
)
⎤⎥⎥⎥⎦

2

4
+

⎛
⎝
−Kintrinsic

H2
Darcy

⎞
⎠

3

27
< 0, (28)
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then

Kapparent

H2
Darcy

= 4
3

Kintrinsic

H2
Darcy

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

cos

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
3

arccos

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

¿
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÀ

⎡⎢⎢⎢⎣
−Kintrinsic

H2
Darcy

(
√
ε(10 − 7.54ε)KnDarcy√

32
)
⎤⎥⎥⎥⎦

2

4
⎛
⎝

Kintrinsic

H2
Darcy

⎞
⎠

3

27

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

2

, (29)

which can be simplified to

Kapparent

H2
Darcy

= 4
3

Kintrinsic

H2
Darcy

cos

⎛
⎜⎜⎜⎜
⎝

1
3

cos−1

¿
ÁÁÁÁÁÀ
−0.221(√εCK KnDarcy)2

Kintrinsic

H2
Darcy

⎞
⎟⎟⎟⎟
⎠

.

(30)

As a result, solution of Eq. (25) as Eqs. (27) and (29) pro-
vides the apparent gas permeability in terms of porosity, Darcy
length of the porous system, intrinsic permeability (liquid perme-
ability), and KnDarcy as an extension of the Klinkenberg model.
We tested our final model on the current results. A compari-
son is presented in Fig. 9. Good agreement was obtained between
the numerical results and the apparent permeability predictions of

FIG. 9. Comparison of the permeability predictions of the current model [Eqs. (18) and (26)–(30)] with the numerical calculations.
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extended Klinkenberg model [Eqs. (26)–(30)] combined with the
extended Kozeny-Carman model calculating intrinsic permeability
[Eq. (18)].

CONCLUSIONS

Gas transport through microporous/nanoporous systems dif-
fers from conventional calculations due to nonequilibrium develop-
ing in gas dynamics at small confinements. The existing extended
Kozeny-Carman theories and their alternatives estimating perme-
abilities as a function of pore parameters needs to be corrected to
consider gas rarefaction effects. This was widely practiced by using
various forms of Klinkenberg and similar theories; however, a gen-
eral characterization is missing. One of the problems is about the
accurate definition of the Kn number to characterize the rarefac-
tion level. In Kn calculations, existing theories frequently use the
Darcy defined pore size or hydraulic diameter which does not con-
sider pore connectivity and the related secondary flow dynamics
of a porous system. For such a case, we performed pore-level gas
dynamic calculations for different pore sizes, porosities, pore to
throat size ratios, and rarefaction levels. Overall, permeability val-
ues increased by increasing porosity and decreasing pore to throat
size ratio. First, we developed a Kozeny-Carman based model for
intrinsic permeability calculations as a function of porosity and pore
to throat size ratio. Next, gas rarefaction also increased permeabil-
ity at different rates depending on the corresponding pore param-
eters. The change of permeability as a function of the Kn num-
ber calculated from the Darcy height or hydraulic diameter showed
dependence on both porosity and pore to throat size ratio. Instead,
we calculated an equivalent diameter as a function of the appar-
ent permeability of the corresponding system. Permeability vari-
ation by Kn from equivalent diameter became a simple function
of porosity, independent from pore connectivity. For such a case,
we employed the Klinkenberg model by estimating the Klinken-
berg constant solely as a linear function of porosity. However, such
representation of Kn in terms of the unknown permeability cre-
ates an implicit equation. First time in the literature, we solved the
equivalent diameter based the Klinkenberg equation and devised
an extended model based on the traditional Darcy height. The new
model as a combination of Kozeny-Carman and Klinkenberg was
tested on existing data set, where good agreements were observed.

SUPPLEMENTARY MATERIAL

See the supplementary material for (i) mesh independency
study, (ii) variation of permeability calculated from the Darcy height,
(iii) detailed explanation of the hydraulic diameter description in
a porous system, (iv) variation of permeability calculated from the
hydraulic diameter, and (v) simpler algebraic form of the extended
gas permeability model given in Eq. (30).
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