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The Picard iteration has been the default smoother for a multigrid of the second
kind. Jacobi-like methods have not been considered as viable options. We pro-
pose two strategies. The first one focuses on the most oscillatory mode and aims
to damp it effectively. For this choice, we show that weighted-Jacobi relaxation
is equivalent to the Picard iteration. The second strategy focuses on the set of
oscillatory modes and aims to damp them as quickly as possible, simultaneously.
Although the Picard iteration is an effective smoother for model nonlocal prob-
lems under consideration, we show that it is possible to find better than ones
using the second strategy. We also shed some light on internal mechanism of the
Picard iteration and provide an example where the Picard iteration cannot be
used as a smoother.
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1 | INTRODUCTION

We study smoothers for solving systems arising from Fredholm integral equations of the second kind known as the multi-
grid of the second kind. The Picard iteration is a well known smoother for Fredholm second kind systems.! P49>2 The
multigrid method for such systems dates back to late 1970s.3-% The Fredholm operators of second kind under considera-
tion arise from nonlocal operators introduced in the works of Aksoylu et al.”® The operators are inspired by peridynamics,
a nonlocal formulation of continuum mechanics.!® Peridynamics is capable of quantitatively predicting the dynamics
of propagating cracks, including bifurcation. Its effectiveness has been established in sophisticated applications such
as Kalthoff-Winkler experiments of the fracture of a steel plate with notches,'!? fracture and failure of composites,
nanofiber networks, and polycrystal fracture.!3-16
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Unlike traditional nonlocal operators, our operators enforce local boundary conditions (BC). When these operators are
extended to vector valued problems, we anticipate that our operators will help apply peridynamics to problems that require
local BC. In addition, the ability to enforce local BC makes these operators attractive because our approach will avoid
altogether the surface effects seen in peridynamics. In the work of Aksoylu et al.,® the theoretical foundations were laid,
and in the work of Aksoylu et al.,” the foundations were applied to prominent BC such as Dirichlet and Neumann, and
the numerical implementation of the corresponding wave propagation was presented. The novel operators were extended
to higher dimensions.!” An overview of how to apply functional calculus to general nonlocal problems in a methodical
way was provided.!® The conditioning and error analysis of the novel operators was provided.*

The convergence speed of a multigrid method critically depends on the smoother used. Effective smoother means that
it enables a fast multigrid convergence and, hence, is vital from the linear system point of view. Jacobi methods have been
frequently used probably due to their ease of use. Because the operators of the Fredholm second kind have a smooth-
ing property, the Picard iteration has been the default smoother?® in multigrid methods. Jacobi-like smoothers have not
been considered as viable options. Although spectral analyses exist for finding effective smoothers for 1D elliptic model
problems,?*-22 to the best of our knowledge, a guiding spectral analysis is not available for Fredholm second-type prob-
lems. We fill the gap in the literature by revealing the internal mechanism of the Picard iteration and show that Jacobi-like
methods can be used as smoothers for multigrid methods.

We obtain the discrete systems by utilizing the Nystrom method with the trapezoidal rule.!® We obtain the spectrum of
system matrices of periodic, antiperiodic, and Dirichlet problems using eigenfunctions of the original continuous oper-
ators. Due to analytical construction, we have direct access to the explicit expression of the eigenvalues of the operators
in terms of nonlocality parameter 6. Using the eigenfunctions of the continuous operators, we find the eigenvalues of the
matrices in terms of mesh size h and 6. The explicit expression of the spectra is instrumental in finding effective smoothers
because direct spectral analysis of the weighted (damped)-Jacobi relaxation becomes possible.

For a relaxation scheme to be a smoother, it must damp the oscillatory modes effectively. Based on this fact, we propose
two strategies to construct smoothers using weighted-Jacobi relaxation. The first strategy depends on the idea of damping
the most oscillatory mode as quickly as possible. We find a parameter that accomplishes this task in the case of the
antiperiodic problem. In fact, we show that the weighted-Jacobi becomes equivalent to the Picard iteration. Through
this equivalence we shed some light on the working principle of the Picard iteration from the spectral point of view.
The second strategy depends on the idea of damping the oscillatory modes as quickly as possible, simultaneously. The
spectral analysis for the second strategy applied to 1D Poisson boundary value problem can be found in other works.?!22
Furthermore, a good reference of smoothing analysis for several other problems is in the work of Trottenberg et al.?> We
provide a way to numerically find an optimal parameter with given 6 and h. A smoother is designed to produce a fast and
scalable multigrid method. Based on this fact, we compare relaxation schemes obtained from the two strategies.

We collect the statements of our three main results in this study.

« Main Result 1: Identification of the internal mechanism of the Picard iteration. More precisely, the Picard iteration
aims to damp the most oscillatory mode.

« Main Result 2: For Fredholm second kind problems, a smoother strategy based on simultaneous damping of the
oscillatory modes is more effective than damping the most oscillatory mode.

« Main Result 3: The weighted-Jacobi iteration can be used as a smoother and with a suitable weight it is equivalent to
the Picard iteration. In certain cases, the weighted-Jacobi iteration can even outperform the Picard iteration.

The remainder of this paper is structured as follows. In Section 2, we introduce the model problems and the nonlocal
operators that enforce local BC. In Section 3, we present the spectrum of the underlying matrices explicitly. In Section 4,
we construct the smoothers based on two strategies. We also provide the spectral analysis for their iteration matrices. In
Section 5, we compare the two smoothing strategies. A discussion devoted to the Picard iteration and its effectiveness is
presented in Section 6. We conclude in Section 7.

2 | MODEL PROBLEMS

Our model problems use nonlocal governing operators that enforce local periodic, antiperiodic, Neumann, and Dirichlet
BC. We briefly explain their construction. We set the domain Q := [-1,1]. For x, X € Q, it follows that the convolution
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argumentx’ —x € 0= [—2, 2]. Hence, the kernel function C(x) needs to be extended from Q to the domain of (A?(x’ -X),
which is Q. Furthermore, C(x) is assumed to be nonnegative and even. Namely,

C(=x) = C().

The important choice of C(x) is the canonical kernel function y ;(x) whose only role is the representation of the nonlocal
neighborhood, called the horizon, by a characteristic function. More precisely, for x € Q,

1, -8,6
Xs(X) 1= { *&( )

0, otherwise.

The size of nonlocality is determined by 6 and we assume 0 < 6 < 1.

In the construction of the novel operators, a crucial ingredient is first restricting C to Q and then suitably extending it
back to Q. To this end, we define the periodic and antiperiodic extensions of C(x) from [—1, 1] to [—2, 2], respectively, as
follows:

Cix+2), xel[-2,-1), —-C(x+2), xe[-2,-1),
Col) =1 C), xe[-1,1, C. :={cw), x e [-1,1],
Cx-2), xe@,2], —-Cx-2), xe@1,2].

Throughout this paper, we assume that
u,C e LA(Q).

Even and odd parts of a univariate function u(x) are used in the governing operators. We utilize the orthogonal projections
that give the even and odd parts, respectively, of a univariate function by P,, P, : L*(Q) — L*(Q), whose definitions are

Pou(x) := w Pou(x) 1= M

In addition, we define

Tou(x) :=/€’p(x’—x)u(x’)dx’ and T.u(x) :=/€'a x' —x)ux)dx'.
Q

Q

Letc= /Q C(x)dx. We define the novel operators enforce local periodic and antiperiodic BC, respectively:
Mpu(x) :=cux) — Toux) and Mau(x) = cu(x) — Tau).

In addition, we define the novel operators that enforce local Neumann and Dirichlet BC, respectively:

Myu(x) = cu(x) — / [6‘p(x’ — X)Pou(x') + Ca(x’ — X)Pou(x’ )] dx’
o
=: Txu(x)

Mpux) = cu(x) — / [a‘a(x’ — X)P.u(x') + ap(x' — x)Pu(x’ )] dx’
o
=: Tpu(x).

The operators 7zc, BC = {p, a, N, D} are self-adjoint and compact. We are primarily interested in the choice of C(x) = y;(x).
This choice is the most representative among kernel functions because it represents the source of nonlocality, that is, the
horizon.
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One can easily identify the associated kernels with the operators. By writing P, and P, explicitly and utilizing a simple
change of variables, the operators can be written as

Mpu(x) = cu(x) — /KD(x, xXNu@d)dx', €))
Q

Myu(x) = cu(x) — / Ky, xu(x)dx',

where )
Ko(x,X) 1= % { [E‘a(x’ —x) + O+ x)] + [ép(x’ —x) - Gy +x)] } , )
Ky(x,x) 1= % { [ap(x’ —-Xx)+ a‘p(x’ +x)] + [(A,‘a(x’ —x) = Ca(x +x)] } . 3)

Utilizing the explicit expressions of the kernel functions in (2) and (3), we show how the operators enforce homogeneous
Dirichlet and Neumann BC. By the Lebesgue dominated convergence theorem, the limit in the definition of the Dirichlet
BC can be interchanged with the integral. We check the boundary values by plugging x = +1 in (2).

Mopu(x1) = cu(x1) — /KD(il,x’)u(x’)dx’
Q

The functions E‘p and C, are 2-periodic and 2-antiperiodic, respectively, therefore, we have
Cod 1) = Co@+1) and C.(x' F1) = —C.(x'%1).
Hence, the integrand in (1) vanishes, that is, Kp(£1, X') = 0. Therefore, we arrive at
Mpu(£1) = cu(x1).

When we assume that u satisfies homogeneous Dirichlet BC, that is, u(+1) = 0, we conclude that the operator My
enforces homogeneous Dirichlet BC as well. The case of Neumann BC follows from a similar line of argument involving
differentiation at x = =1; see Section 3.2 in the work of Aksoylu et al.}”

In order to avoid integration over the jumps of kernel functions, we prefer to utilize the following representation of the
operators, which leads to a more convenient implementation:

X+6 1

Souax + [, sueddx!, x € [-1,-1+9),
Tou(x) :=1 [ ux)dx, xe[-1+6,1-5], )
L + [ ued)dx, x e (1-6,1],
([ ueyde — [1  udydd,  x€[-1,-1+96),
Tau(x) :=1 [ ux)dx, xe[-1+8,1-4], (5)
- [ued) + [ ued)dy, xe(1-6,1],
([ uehdx + [T ue)dx, x € [-1,-1+6),
Tou() 1= 14 [ ux)d, x€[-1+6,1-56],
| s WA + [ uehdx!,  x e (1 -5,1],
_x1+§ u(xydx' — __lx_2+5 uxdx', xe[-1,-1+96),
Tou(x) =1 [ ud)dx, xe[-1+8,1-4], (6)
| = [ UONAX + [L u()dx', x € (1-6,1].
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For discretization, we utilize the Nystrém method with the trapezoidal rule with uniformly distributed N nodes where
N is odd. One can use other discretization rules, but we find the trapezoidal rule more useful because it allows us to write
the expression of eigenvalues in a convenient way. We obtain the following system matrices:

Kpcupe = fac.

The system matrices Kgc are not symmetric. With simple algebraic manipulations, it is possible to obtain symmetric
matrices Agc.

For the periodic problem, using the BC, we set (up); = (up)y and (f5); = (f;)n. When we add the last column to the
first one, we see that the first and last rows are identical. Using (f;); = (f5)n, we can eliminate the last row because it
is identical to the first row. Similarly, for the antiperiodic problem, we set (u,); = —(u,)y and (f;); = —(f,)y. When we
subtract the last column from the first one, we see that the first and last rows are identical. Using (f,); = —(f.)n, we can
eliminate the last row.

For the Neumann problem, we multiply the first and last rows by 1/2. The entries (fy); and (fy)y are also multiplied
by 1/2. This multiplication operation gives an equivalent system matrix, which is symmetric. For the Dirichlet problem,
the values (up); and (up)y are known because they are part of the BC. By deleting the first and last columns and the first
and last rows, we obtain a symmetric system matrix. For the structure of the matrices and further details, see the work
of Aksoylu et al.!® We note that the matrices Agc, BC = {p, a} are of size (N — 1) X (N — 1), whereas the matrices Ay and
Ap are of size N X Nand N — 2 X N — 2, respectively. In our discretization, the ratio R = §/h > 1 always corresponds to a
positive integer.

3 | DERIVATION OF EIGENVALUES OF SYSTEM MATRICES

We calculate the eigenvalues of the system matrices Agc, BC = {p, a,D}. We know that the operators Mgc, BC = {p, N}
contain zero as an eigenvalue and, hence, are not invertible. Similarly, their corresponding system matrices Agc, BC =
{p, N} contain zero eigenvalue and they are not invertible either. Therefore, we will not consider them directly when we
study smoothers. However, because the matrix Ap assumes eigenvalues of the matrix A, Lemma 42 we need to derive the
spectrum of Ag.

3.1 | Periodic matrix Ap

The matrix Ay is symmetric positive semidefinite and Toeplitz. It also satisfies the zero row sum property and, hence, has
a zero eigenvalue. We present its eigenpairs.

Lemmal. Let vlic denote the ith component of the vector v. Then, the matrix Ay, assumes the eigenvectors, for1 < i <
N-1,

Cos(w» 1<k< ML
N-1

; 2
v, = . (7
© i (Rt BS cpoN -,
with the corresponding eigenvalues where h := 1\%’
R
M(Ap) :=26+hcos(6(k—1r)+h— 2hz cos (I(k — 1)zh) (8
1=0
0, k=1,
=55 hsm((k — Dzé)sin((k — 1)7zh)’ k=2 .. N-1. 9)

2sin® <—(k_;)”h )
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The eigenvalues have the property, fork =1, ... ,(N—1)/2,
Ak(Ap) = AN-k(Ap). (10)
Hence, the eigenvalues have geometric multiplicity 2 except An-1)2Ap whose geometric multiplicity is 1.

Proof. Note that the vectors in (7) are orthogonal:

0, 1<k#I<N-1,
V-V i= 1%, 2<k=I<N-1, (11
N-1, k=1=1.

For computational convenience, we define the shifted matrix
By :=261 - Ap

and consider its eigenvalues. Let b; denote the ith row of B, withi =1, ...,N—1.Fork =1, ...,N — 1, we want to
show thatb; - v, = ﬂk(Bp)vlic.

Depending on which interval x comes from in (4), the rows originate from three different integral equations. The
rows b;, R < i < N — R are less involved because they are obtained from the discretization of the operator

x+6

/u(x’)dx’:f, x€e[-1+6,1-6]

x—6

by the trapezoidal rule and imposing periodic BC.
We denote the numerical integration operator with the trapezoidal rule using uniformly distributed nodes as Trp.
The function vi(x) stands for the continuous form of the discrete vector vy, which is defined as

cos(x+ (k—Dr), 1<k< 2
Vk(X) 1= N+1 >
sin((x+ (k- Dr), =2 <k<N-1L

Forrowsb;,,R<i<N-Randk=1, ...,N—1,we have

x+6

b; - v = Trp /vk(x’)dx’ (12)
XxX—6

=h (%VL‘R S /R h A RS A %v,i:R) . (13)

Using simple trigonometric identities such as the sum and difference formulas for cos(x) and sin(x), one can show that

b; - i = A(Bp)V.,

where .
A(Bp) = —hcos (8(k = 1)z) = h +2h ). cos (I(k — 1)zh). (14)
Forrows b;,1 < i < R, we have l:O
x+6 1
b, - v = Trp /vk(x’)dx’ + Trp / neHax' |, xe[-1,-1+59). (15)

-1 xX+2-6
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Because v (x) = vi(x + 2), the change of variable ) = x’ — 2 in the second integral in (15) leads to

X+6 -1

b, v =Trp /vk(x’)dx’ + Trp /vk(x’)dx’
-1 x—6
x+6
=Trp /vk(x’)dx’ , (16)
xX—6
which is equivalent to equation (13).
Forrowsb;,, N—R <i < N -1, we have
X—2+6 1
b; - v, = Trp / v eHdx' | + Trp /vk(x’)dx’ , xe(1-4,1]. 17)
-1 x—6

Because v (x) = vi(x + 2), the change of variable y’ = x’ + 2 in the first integral in (17) leads to

X+6 1
b, v =Trp /vk(x’)dx’ + Trp /vk(x’)dx’
1 x—6
X+6
=Trp /vk(x’)dx’ , (18)
x—6

which is equivalent to Equation (13).

We see that the expressions in (12), (16), and (18) are identical. As a result, the eigenvalue expression in (14) holds
forallrows 1 < i < N — 1. Furthermore, it is straightforward to verify (10). Consequently, the vectors v in (7) pair
with all of the eigenvalues in (8); hence, (Ax(Ap), vk)i’:‘l1 form the eigenpairs of the matrix A,. We used the following
trigonometric identities to turn (8) into (9):

hcos(8(k — x)+h = 2h(COS Gk-Dm+1) _ 2hcos? <5(k - 1)7r> ’

2 2
and
g cos(19) = %(01))0/2) cos(RO/2),
where 6 = (k — 1)zh and plugging R = % Similar identities are used in the proofs of upcoming lemmas. O

Now, we find bounds for the spectrum of Ay, which will be utilized to determine if Jacobi relaxations converge for the
matrix Ap.

Lemma 2. The eigenvalues of A, satisfy the following bounds:

0< M(Ap) <46—2h, k=1,... N—-1.

Proof. 1t is clear that 4,(Ap) = 0. Because cos(I(k —1)zh) < 1forallh,l =0,...,R,andk =1, ...,N — 1, from
definition of 4x(Ay) in (8), it follows that Ax(Ap) > 0.



8of22 AKSOYLU AND KAYA
WILEY

For the upper bound, the case of k = 1 is clear. We proceed with an induction on R where § = Rh, where R > 1.
Then, we need to show that

M(Ap) = 26 — hsin((k — 1)z8) cot((k — 1)zh/2) < 45 —2h, k=2, ..,N—1.
The above inequality is equivalent to showing that
sin((k — 1)zRh) cot((k — 1)wh/2) > 2 — 2R. (19)
We immediately see that the case of R = 1 holds, that is,
sin((k — 1)zh) cot((k — 1)zh/2) > 0. (20)
Now, assume that (19) holds for R = m > 1. Namely,
sin((k — 1)zmh) cot((k — 1)zh/2) >2—-2m, k=2,...,.N—-1. (21)
We will show that (19) holds for R = m + 1. Using (20), (21), and the fact that cos(x) < 1, we arrive at
sin((k — 1)z(m + 1)h) cot((k — 1)zh/2) = sin((k — 1)whm) cos((k — 1)zh) cot((k — 1)zh/2)
+ sin((k — 1)zh) cos((k — 1)whm) cot((k — 1)zh/2)
> sin((k — 1)zhm) cot((k — 1)wh/2) + sin((k — 1)zh) cot((k — 1)zh/2)

>2-2m+0
>2-2(m+1).

This completes the induction step. O

3.2 | Antiperiodic matrix A,
The matrix A, is symmetric positive definite and Toeplitz. We present its eigenpairs.

Lemma 3. The matrix A, assumes the eigenvectors, for1 < i < N-1,

v o= (22)

|

with the corresponding eigenvalues where h : =

iy 1= 25 heos (5 (k- 1) ) =20 cos (1 (- ) )

sin (k= 2)#5) s ( (k- 1) =0)

=25—h , k=1,...,.N—-1. (23)

2sin’ <M>

[0 IS}
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The eigenvalues have the property, fork =1, ... ,(N—1)/2,
Ak(Aa) = AN-k(Aa).
Hence, the eigenvalues have geometric multiplicity 2.

Proof. Note that the vectors in (22) are orthogonal:

N-1

0, 1<k#l<N-1,
Vi V] =
« : T, 1Sk=lSN—1

As in the proof of Lemma 1 for the periodic case, we define the shifted matrix B, := 26 — A,. Depending on
which interval x comes from in (5), the rows b; of B, originate from three different integral equations. We apply the
same procedure in Lemma 1 and conclude that the vectors vy in (22) pair with all of the eigenvalues in (23); hence,
(A(AL), V")g: form the eigenpairs of the matrix A,. O

Now, we find bounds for the spectrum of A,, which will be utilized to determine if Jacobi relaxations converge.

Lemma 4. The eigenvalues of A, satisfy the following bounds:

0< (A <46 —2h, k=1,..,N—1.

Proof. Because 0 < (k — %)ﬂ'l’l <2rxfork=1,2,...,N—1, the terms in (23)cos(l(k — %)ﬂh) cannot be equal to 1 for a
fixed k, simultaneously. Therefore,

A(Aa) > 26+ h+h-2n(2+1) =0,
Applying the same steps in Lemma 2, we can show that

Me(Az) < 46 — 2h.

3.3 | Dirichlet matrix Ap
The matrix Ap is symmetric positive definite. Unlike the matrices A, and A,, it is not Toeplitz. We present its eigenpairs.

Lemma 5. The matrix Ap assumes the eigenvectors, forl < i < N—2,

: ik2x N-1
: Sln<N—_1>, 1Sk<T’
vV, = 21
T ) <‘(k+5)2”>, N1k <N-2
N-1 2
with the corresponding eigenvalues where h : = ﬁ
A 26 + hcos (8kn) + h — 2h Y5, cos (Ikzh), 1<k< 2
KAn) = 26+heos (8 (k+1)x)+h—2nE cos (1(k+2)xh), “2<k<N-2
26 — sin(kz6) sin(kzh) 1< N-1
) h—zsinZ(%) , <k<=
= ; 1 : 1 24
25 — hsm(<k+5>mﬁ) 51r11§<k+5>7rh> N-1 <k<N-2. ( )
2

2sin? ( G

nh) ’ 2

N}
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Proof. Note that the vectors in (5) are orthogonal:

0, 1<k#I<N-2,
Vi V] i=
A ’% 1<k=1<N-2.

As in the proof of Lemma 1 for the periodic case, we define the shifted matrix By := 26 — Ap. Depending on which
interval x comes from in (6), the rows b; of By, originate from three different integral equations. The rows b;,R < i <
N — R — 1 are less involved because they are obtained from the discretization of the operator

X+6

/u(x’)dx’:f, x€e[-1+6,1-46]

x—6

by the trapezoidal rule and imposing Dirichlet BC.
The continuous form v(x) of the discrete vector vy is defined as

. sin((x + 1)kx), <k<
Vele) += sin ((x+ 1) <k+ %)ﬂ') NT <k

IA N|z

First, we consider the case for 1 < k < 2= for which Vi(x) is odd. Because vi(—1) = vi(1) = 0, we have
X+6
IN A N-1
biy1 - Vi = Trp vecHdx'|, k=1, ..., — (25)
x—6

The eigenfunctions vk (x) coincide with those with periodic BC. Using (14), we obtain b; - vy = (26 — /lk)vlic where A
is defined in (24).
For rows b;,1 < i < R, because vi(—1) = vi(1) = 0, we have

xX+06 —x+6-2
b; - v =Trp /vk(x’)dx’ —Trp / weHdx' |, xe[-1,-1+59). (26)
-1 -1

Using the oddness of the eigenfunctions, that is, v (—x) = —vk(x), and the change of variable X' = —y’ —2 in the second
integral in (26) leads to

x+6 -1

b; - vy = Trp /vk(x’)dx’ + Trp /vk(x’)dx’
-1 XxX—6
X+6
= Trp / ve(xXax’ |, 27
x—6

which is equivalent to Equation (25).
Forrowsb;,, N—R—-1<i < N-2,we have

1 1
b;- vy = -Trp / v(X)dx' |+ Trp /vk(x’)dx’ , xe(1-4,1]. (28)

—Xx—0+2 xX—6
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Using the oddness of the eigenfunctions, v(—1) = vi(1) = 0, and the change of variable X' = 2 —y' in the first integral
in (28) leads to

X+6 1
b; - vy = Trp /vk(x’)dx’ + Trp /vk(x’)dx’
1 x5
X+6
=Trp / v (xHdx' |, (29)
x5

which is equivalent to Equation (25).

We see that the expressions in (25), (27), and (29) are identical. The case for I\% < k < N = 2 for which vi(x) is
even give rise to identical results. Consequently, the vectors vy in (5) pair with all of the eigenvalues in (24); hence,
(A(Ap), vk)f:‘l2 form the eigenpairs of the matrix Ap. O

4 | CONSTRUCTION OF SMOOTHERS FORNONLOCAL PROBLEMS
We consider the linear system of equation
ABCu=f, (30)

where BC = {a,D}. These matrices are invertible. Let u and v denote the exact and an approximate solution to (30),
respectively. In addition, let e and r denote the error and the residual, respectively, defined by

e:=u-v,

r.=f—Agv.

We examine stationary relaxation schemes, in particular Jacobi relaxation, applied to systems (30). In general, these
schemes are not preferred as solvers to Fredholm second kind systems due to slow convergence because the system
matrices are usually far from being diagonally dominant.

We begin with studying Jacobi relaxation for the matrix A,. We note that A, is constant along the diagonal. This property
allows us to obtain eigenvalues of the iteration matrix explicitly. We express the Jacobi relaxation in matrix form by using
the following splitting:

AazDa_La_Ua?

where D, —L,, and —U, denote the diagonal, strictly lower triangular, and upper triangular parts of A,, respectively.
We arrange A u = fas

u=D;'(Ds-A.u+D;'f = (I-D;'A.) u+D;'f,
and define the Jacobi iteration matrix by
GL :=1-D3'A..

Then, we define the Jacobi relaxation in matrix form as

v! = GIv + DS



120f 22 AKSOYLU AND KAYA
WILEY

A slight modification of Jacobi relaxation leads to the weighted (damped) Jacobi relaxation as
vl = |1 - oI + Gl Vv’ + wD;'f.
When we define the weighted Jacobi iteration matrix as
G? :=(1-w) + oG,
then the method becomes

vl = G2V° + wD;'f.

Because the matrix A, is constant along the diagonal with entries 26 — h, we can easily obtain the eigenvalues of the
iteration matrices G and G:

1
26 —h
(G2 =1 —-w)+ ol (GL). (31)

A (Gh) =1- A(Aa),

It follows from the Lemma 4 that p(G%) < 1 and p(G?) < 1. Hence, Jacobi and weighted Jacobi relaxations converge for
O0<w < 1.

Now, we discuss the action of the iteration matrix on G¢ on the smooth modes. Note that Fourier modes (eigenvectors of
A,) in the first quarter and last quarter of the spectrum, that is, modes with wavenumbers in the ranges 1 < k < I% and

@ < k < N —1 are classified as low-frequency or smooth modes. However, the modes at the center of the spectrum

with wavenumbers in the range ]% <k< @ are classified as high-frequency or oscillatory modes.

Let € be the initial error and it can be represented in terms of eigenvectors of A, as

N-1

0 _

e = ZCka.
k=1

After m iterations with G¢, the error becomes

N-1 N-1
" =G’ = ) (G "vic = Y el (G i,
k=1 k=1

thereby reducing the initial error of the kth mode by a factor of 47(G2).
We start analyzing weighted Jacobi relaxation by quantifying the eigenvalues using a Taylor expansion corresponding
to smoothest modes:
253 + n*oh?
6 12

MAL) = v (4y) = + OhsY) + O™).

Because § > h and the term % dominates, we have
M(Ag) = An-1(Aq) = O(S).
It follows from these observations that for w satisfying 0 < @ < 1, we obtain

A1 (GE) = An-1(G2) = 1+ O(6%).
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The smaller 6 is, the closer 4;(G?) and Ay_1(G%) are to 1. Hence, 4;(G%) and Ay_1(GY) are close to 1. Finally, we conclude
that no value of w will damp the smooth components of the error quickly. This is the expected behavior because smoothers
are designed to damp the oscillatory modes, not the smooth ones. We depict this fact in Figures 1, 2 for the values of
6 = 0.25 and 6 = 0.125, respectively.

Having observed that no value of w reduces the smooth components effectively, we try to find the best choices of w that
damp the oscillatory modes effectively. To accomplish this, we propose two strategies.

4.1 | The first strategy

‘We focus only on the most oscillatory mode. We aim to damp it as quickly as possible by minimizing the absolute value
of eigenvalue of G¢ corresponding to most oscillatory mode. By assuming that A,(G?) is continuous in k, we want to
enforce

Ax (G3) =0,
2

and present the appropriate choice of w for doing that.

Lemma 6. Assume that Ax(G2) is continuous in k. Then, A%z (G?) = 0 implies
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Proof. We have two cases. First, we assume that R is an odd integer. Then,

R
26 + hcos (‘%’”) +h- ZhZ cos(Ir)
1=0

MNMGH=1-w+w|l-
%( a) T o 28 —nh

25—h—26—hcos(5—”>—h

h
=l-w+w
@ 26— h
=0.
It follows that
1 h
v=———"=1-——.
2h+hc0s(%"> 26
1+ ——~
26—h
Now, assume that R is an even integer. Then,
—hcos (57” )
),%l (Gg})= l-w+w W =0.
This implies that
hcos(%”) 26
1+ —2L
25—h O

In Figure 3, we depict the eigenvalues of G¢ for 6 = 0.5,0.25,0.125 when w = 1 — % and N = 33. We observe that the
eigenvalue associated to the most oscillatory mode is very close to 0. In addition, the eigenvalues associated to oscillatory
modes (those with ]% <k< %_D) are also close to 0. As a result, forw =1 — %, although smooth component of the
error reduce slowly, oscillatory components are damped rapidly for any 6 satisfying 0 < 6 < 1.

We want to investigate if the first strategy is related to the Picard iteration in any way. Let us recall the weighted Jacobi
relaxation

vl =GV + wD;'f = (1 - ) + » (I - D3'A.) ) v° + wD3'f. (32)

Substituting w =1 — % in (32), the weighted Jacobi relaxation turns into

1 _ _ £ _E _n1 0 _ﬁ -1
v—<<1 1+25>I+<1 25)(1 DaAa)>v+ 15 | D't

1 1
= I——Aa> oy Lg
( 2572)V T35

This iteration is nothing but the Picard iteration. In other words, for w = 1 — % weighted Jacobi is equivalent to the
Picard iteration. Consequently, our investigation revealed the working principle of the Picard iteration from a spectral
point of view.

Let us see if the same working principle of the Picard iteration is also valid for the Dirichlet matrix Ap. First, note that
the matrix Ap is not constant along the diagonal. Therefore, it is difficult to directly apply the same spectral analysis done
for the Jacobi relaxation using the matrix A,. However, if we switch to Jacobi-like relaxation by setting the diagonal matrix
to Dy = (26 — h)I in the splitting A, = Dy + Ly + Up, we can easily transfer the analysis done for A,. However, we skip this
approach and instead, we examine the Picard iteration applied to Ap. This is a more direct way to find out if the Picard
iteration is consistent with the first strategy.
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Let us recall the Picard iteration applied to Ap:

1 1 )0 1
=(I-—A —f.
v ( i A

N-—

Similar to A,, the eigenvector of Ap in the range 1 < k < Tl and @ < k < N — 2 are smooth modes, whereas the

ones in the range ]% <k< @ are oscillatory. The eigenvalues of the iteration matrix of the Picard iteration Gf are

W (Gh) =1 3-h(Ao), k=1, .. .N-2
The matrix Ap assumes all eigenvalues of the matrix A, and A, except 41(Ay) = 0. From Lemmas 2 and 4, it follows that
p (Gg) <1,

which indicates that the Picard iteration converges.
Notice that for smoothest modes

M(Ap) = O(8%)
IN-2(Ap) = In_1(Aa) = O(F).

Hence, it follows that

M (Gh) =1+0(6%
in-2 (Gh) =14 0O(8%).

For most oscillatory modes, because eigenvalues of Ay agree with those of A, we resort to the eigenvalues of Ay It is easy
to show that Ax-1(Ap) = 26. From the definitions of Ap, we can infer that Av-; (Ap) and Ax-1(Ap) are close to 26. Hence,
/1»% (G}S) and /lé (G’g) are close to 0. In summary, we showed that the two mozst oscillatory Iilodes can be damped rapidly,
whereas the two smoothest modes cannot. In Figure 4, we depict the eigenvalues of GID’ for 5§ = 0.5,0.25,0.125 when
N = 33. Consequently, our investigation reveals that the working principle of the Picard iteration for A, is also valid for
the matrix Ap.
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4.2 | The second strategy

In this strategy, we focus on the oscillatory modes of the weighted Jacobi relaxation. Our aim is to damp them simultane-
ously as rapidly as possible. Eigenvalues corresponding to oscillatory modes reside at the center of the spectrum. Actually,
the same strategy is applied to 1D Poisson problem.?%?! For this strategy, it is not straightforward to find a parameter for
weighted Jacobi explicitly, but we provide a way to numerically find an optimal parameter with given § and h.

Assume that Ax(A,), 4k(Ap), 4(GY), and 4x(GY) are continuous in k. The eigenvalues of 1;(G%) are obtained by adding
a constant and multiplying 4x(A,) with another constant; see (31). Therefore, the critical points of 1x(G%) and 1x(G%) do
not change with respect to w and are the same as those of 4;x(A,) and Ax(Ap), respectively; see Figures 1 and 2. Because
these ideas easily carry to the case of Ap, we proceed with the case of A,. Recall that modes with wavenumbers in the

range 1% <k< @ correspond to oscillatory modes. Let

A(Aa) = max Ak(As) and 4 (Al) I=E$ir@ Ak(Aa).
4 - 4 4 4

Because we aim to damp a group of modes, we accomplish this by setting
M(GZ) = =4, (G2)

in order to find optimal value of w. More precisely,

w kY w
TeA) = -1 A (AL
25 —p A2 = 714 5 A

Solving above equation for w, we obtain the optimal value of @ as

. 2(26 — h)
M(A) + 4, (As)

Again, by choosing Dy, = (26 — h)I in the splitting
AD =DD +LD + UD7

the optimal value of w can be found similarly for Ay as

e 2025-h
A(Ap) + A, (Ap)
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In Figure 5, we show the eigenvalues of G¥ and G for different values of 6 (6 = 0.5,0.25,0.125) when N = 33 and give
the corresponding values of w. Graphs indicate that our proposed way of finding the optimal @ works successfully.

5 | NUMERICAL COMPARISON OF THE TWO STRATEGIES

We make comparisons between the two strategies. We consider only the matrix Ay, because results for A, are similar. The
smoother is critical in obtaining a fast multigrid convergence. Our comparison is based on how fast a two grid iteration
converges using the two strategies.

To carry out the comparison, we construct the following two grid iteration matrix and calculate its spectral radius

GI6 = (1 -1 (Agh)‘llihA’g) Gr,

where the prolongation operator I;‘h is the linear interpolation whose matrix form is given by

— N
— N =

[\
=
N

€ RIN-2X(N-3)/2

— N =
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and the restriction matrix I flh is the transpose of the prolongation matrix
2h _ (7h \T
L' = (L)
The coarse grid matrix A" is defined by Galerkin projection
2h _ 12k ghTh
A5t =L AL, .

Because the kernel function can be resolved on every level by the underlying grid, it is certainly possible to use rediscretiza-
tion to obtain AZDh. However, the Nystrom method requires 6 > h for all levels. The practical choice in the peridynamics
community is 6 = 3h or 4h, which allows only three levels at most in the hierarchy. Therefore, we decided not to use
rediscretization for practical purposes. In addition, peridynamics is usually implemented as a meshless method because it
aims to capture dynamic fracture. It would be ideal to construct an algebraic method with minimal reliance on the mesh.
A fully algebraic method is one of our future research avenues.

In Table 1, we report spectral radius of the matrix G2 for varying mesh size h = 2,1 = 3, ..., 9. when 6 = 272. Although
as h — 0, the convergence rates for the two strategies seem equivalent, for large h convergence for the second strategy
is faster. Overall, the second strategy seems more effective than the first one. When h becomes smaller, the number of
eigenvalues accumulating around zero increases, and as a result, the performance of the two methods becomes similar
and they both improve.

We have implemented a multilevel hierarchy using 5 levels with weighted Jacobi using parameters @ = 1 — % in
Table 2. When | = 2, weighted Jacobi is equivalent to Picard's iteration. We have observed convergence indicating that
the smoothers are effective for more than two levels as well.

The operators 7, 75, Ty, and 7y, are all compact. Hence, their discretized forms have eigenvalues that cluster at 0 for large
enough R (e.g., R > 4); see Figure 6 for the operator 7. For small R values, we do not observe this clustering property. For
computational feasibility, practical R values are chosen small, typically R = 3,4, in peridynamic applications. For such
practical values of R, the discretized operators in the multilevel hierarchy seem far from being collectively compact.

Collective compactness is a desirable property to construct an abstract general purpose framework for the convergence
analysis of the multigrid method of the second kind. We do not report a convergence proof of multigrid in this paper.
However, the convergence of multigrid has been established in the work of Kaya?* utilizing our operators. The approach
taken in?* to convergence proof is direct because the eigenvalues of the governing operator are explicitly available. Hence,
it seems that collective compactness property is not essential for the convergence proofin our case. Furthermore, we report

in the work of Kaya?* that the spectral radius of the iteration matrix of the two-grid is bounded by —L_. This indicates that

V2R

as R gets larger (i.e., the case of increased clustering), the convergence improves and we have convergence even for R = 1.
In the presence of collective compactness, a Krylov iteration has been shown to be an effective smoother.?>2¢ Based on
this finding, a Krylov iteration has a potential to be an effective smoother in our case as well. Especially, for large R, it

TABLE 1 Spectral radius of the two grid iteration matrix p(GT°) (the first strategy) p(GI°) (the second strategy)
GIC for the two strategies for varying h when § = 272 h=22 0.5000 0.3951

h=273 0.1727 0.1423

h=2"* 0.1083 0.1054

h=2> 0.0603 0.0597

h=2° 0.0310 0.0309

h=27" 0.0156 0.0156

h=28 0.0078 0.0078

h=2"° 0.0039 0.0039

h=2710 0.0020 0.0020
TABLE 2 Number of iterations for convergence with fixed &, § = 27* and varying h 274 25 26 27 58 59 10

h. The exact solution u(x) = sin(xx) is used to compute the right-hand side

[ NS SR
W N = e
(SR SR,
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seems worthwhile to investigate Krylov-based smoothers, which may be a future research direction. We also observe the
weighted Jacobi becomes more effective as R becomes large; see Table 2. For small R, we expect iteration counts similar
to ours when a Krylov-based smoother is used. Even in the absence of collective compactness, the weighted Jacobi is
able to damp most oscillatory modes, which seems to play an important role in convergence. In addition, we observe a
clustering behavior of eigenvalues that indicates that rather than high wavenumbers, middle wavenumbers cluster at 0;
see Figure 6. Because Picard's iteration aims to damp the most oscillatory mode and the fact that the middle mode is the
most oscillatory, for large R, damping the most oscillatory mode leads to damping a large number of oscillatory modes.

Remark 1. According to our ordering of the wavenumber, the eigenvalues of the discretized 7p- with middle
wavenumbers cluster near zero; see Figure 6. However, with reordering of wavenumbers, we can easily translate the
clustering to high wavenumbers. For instance, for the case of N = 31, the mapping

1, k=1,
pl)y=42k-1, k=2, ..16,
232-k), k=17, ...31,

gives a new ordering of the wavenumbers such that the first and second halves of the eigenvectors correspond to
smooth and oscillatory modes, respectively. Hence, the clustering near zero occurs when wavenumbers are high.

Ak /\k

® 1=

—_— h=27* —_— h=2"%

32 32

Ak Ak

@ 1=

—_— =2 —_ h=2"7

k /\/\/\ A/\/\ k

64 128 V Vs VY \J 256

FIGURE 6 Eigenvalues of discretized 7, with h = 274,275,276, 277 using § = 2™
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6 | DISCUSSION ON THE PICARD ITERATION

The Picard iteration has been used as a smoother for the multigrid of the second kind.?>?2 The Fredholm second kind
operator has a smoothing property and that is why the Picard iteration has been chosen as a smoother. However, to the
best of our knowledge, there is no study that sheds light on its internal mechanism.

To better understand the Picard iteration, we pose the following questions:

« Does it work for all kinds of Fredholm second kind problems?
« Does the smoothing property of the Picard iteration stem from the nature of the problem under consideration?

In Section 4, we observed that it focuses on the most oscillatory mode and aims to damp it rapidly. To better under-
stand internal mechanism of the Picard iteration, we generalize our nonlocal antiperiodic problem by allowing c to be an
arbitrary constant. We consider the following academic problem:

cu(x) — Tou(x) = f(x), (33)

where T3 is given in (5). Here, we assume that the constant ¢ > 0 and it is not an eigenvalue of 7. This implies that M,
has a bounded inverse; hence, the equation (33) has a unique solution.

We apply the same discretization and algebraic operations to get the symmetric matrix. The Picard iteration for the
discrete equation is defined by

vi=lrngogle
C C

where 7. is the discrete version of 7.

Let A,,(7)) denote the eigenvalue corresponding to the most oscillatory mode of T} The smoothing property of the
Picard iteration depends on the ratio M When this ratio is zero or close to zero, then the Picard iteration is a perfect
smoother. However, when the absolute value of the ratio is larger than 1, the Picard iteration fails to be a smoother.

We know that A,,,(7/) # 0. Now, we test the Picard iteration for ¢ = 26 and ¢ = % where § = 0.25. Note that for
these choices, the operator satisfies the Fredholm alternative and, hence, has a unique solution. However, the operators
corresponding to these cases are ill-posed and the ill-posedness is more severe for the case of c = f—;.

We choose the initial iteration

v) = cos(i31x /N) + cos(i5z/N), i=1,...,N—1,

with N = 33. We set f = 0, so that e = —v*. We show the approximations after one sweep in Figure 7. For ¢ = 26,
%T!) = —0.0024 and for ¢ = ‘f—:), @ = —3.008. This means that the oscillations in the right graph in Figure 7
cannot be damped by the Picard iteration. In summary, our academic example indicates that the smoothing property of
the Picard iteration depends on the problem considered. Hence, the Picard iteration does not necessarily generate the

expected smoothing for all Fredholm second kind problems.

FIGURE 7 Approximations after one
sweep with the Picard iteration for ¢ = 26 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
(left) and for ¢ = f—o (right) -1 0.5 0 0.5 1 -1 -0.5 0 0.5 1
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7 | CONCLUSION

We studied smoothers for the multigrid method of the second kind. We provided the eigenvalues of the resulting matrices
in terms of § and h. We presented a spectral analysis for the iteration matrix of the weighted-Jacobi method. We proposed
two strategies. The first one focuses on the most oscillatory mode and aims to damp it effectively. For the first strategy, we
found a parameter suitable for which we showed that weighted-Jacobi relaxation is equivalent to the Picard iteration.

The second strategy focuses on the oscillatory modes and aims to damp them as quickly as possible, simultaneously.
When we compared the two strategies, the second strategy outperforms the first one. However, the strategies become
equivalent when the mesh size goes to 0. We shed some light on internal mechanism of the Picard iteration. We provided
an example where the Picard iteration cannot be used as a smoother. To the best of our knowledge, a guiding spectral
analysis is not available for smoothers of the multigrid of the second kind. We filled this gap in the literature.
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