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1. Introduction

Let f : Zl → C be a function and P : Zk+l → Zl be a polynomial with integer 
coefficients. The operator

Iλf(n) =
∑

m∈Zk
∗

f(P (m,n))
|m|λk (1)
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where Zk
∗ = Zk − {0} and λ > 0, is called a discrete fractional integral. We call 

P (m, n) the phase polynomial of Iλf . If this polynomial is n − m, then these discrete 
operators have essentially the same boundedness properties as those given by the Hardy-
Littlewood-Sobolev theorem for their continuous counterparts. But if P (m, n) involves 
a higher order term, then the discrete analogues satisfy boundedness results with more 
extensive ranges. These operators and the related case of discrete singular Radon trans-
forms

Rf(n) =
∑

m∈Zk
∗

f(P (m,n))K(m) (2)

where K is a Calderon-Zygmund kernel, have been studied extensively since [1], and 
efforts have concentrated on the translation invariant case for which P (m, n) = n −Q(m), 
and the quasi-translation invariant case for which the operators have the form

Jλf(n, n′) =
∑

m∈Zk
∗

f(n−m,n′ −Q(m,n))
|m|λk , (3)

or in the case of Radon transforms

R∗f(n, n′) =
∑

m∈Zk
∗

f(n−m,n′ −Q(m,n))K(m), (4)

with f : Zk+l → C, Q : Zk+k → Zl. Translation invariance and quasi-translation 
invariance make the operators amenable to Fourier analytic techniques, and they are 
studied as multipliers, as exemplified by [1]. Over the last thirty years utilizing such tools 
as multipliers, maximal functions, singular integrals, Hardy-Littlewood circle method a 
very extensive theory that is also connected to ergodic theory have been developed 
for these two cases. In this work we treat cases that remain completely outside these 
efforts, and instead of Fourier transform based methods we utilize results from number 
theory on representation of an integer by a polynomial, e.g. as a sum of two squares. We 
use the number, structure and distribution of such representations in conjunction with 
appropriate decompositions to prove our results.

We would like to recall certain important milestones of the study of discrete fractional 
integrals, a much more extensive account of these developments, as well as a general 
history of the study of discrete analogues in harmonic analysis can be found in [16]. 
Observe that if in (2) we let m ∈ Z∗, K(m) = 1/m, P (m, n) = n − Q(m), and regard 
n as a continuous variable in R, taking the Fourier transform in an appropriate sense 
would yield the multiplier

m(ξ) =
∑ e−2πiξQ(m)

m
.

m∈Z∗
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The first result in the subject, obtained by Arkhipov and Oskolkov in [1], was that 
this m(ξ) defines a bounded function, which implies in a straightforward way that the 
corresponding discrete singular Radon transform is a bounded operator on l2(Z). Then 
Bourgain [2,3] used the Hardy-Littlewood circle method to obtain results on the closely 
related maximal function

Mf(n) = sup
r≥0

1
r + 1

r∑
m=0

|f(n−Q(m))|.

The results and methods of [2,3] inspired almost all of the later work done on the subject. 
For discrete singular Radon transforms with translation invariant phase polynomials the 
work of Ionescu and Wainger [8] greatly extended the known boundedness results by 
proving that if m ∈ Zk, n ∈ Zl and P (m, n) = n −Q(m), then (2) is a bounded operator 
on lp(Zl) for all 1 < p < ∞. For quasi-translation invariant operators of the form (4), 
if m, n ∈ Zk, n′ ∈ Zl, and Q : Zk+k → Zl then [22] proves that R∗ is a bounded 
operator on l2(Zk+l). Also by [9], if Q has degree at most 2 the operator R∗ is bounded 
on lp(Zk+l) for 1 < p < ∞. As for the discrete fractional integrals when m, n ∈ Z and 
P (m, n) = n −m2, works of Stein and Wainger [23,24], Oberlin [13], Ionescu and Wainger 
[8] led to a complete understanding of the operator Iλ, and it is now known that this 
operator is bounded from lp(Z) to lq(Z) if and only if

1
q
≤ 1

p
− 1 − λ

2 ,
1
q
< λ,

1
p
> 1 − λ.

Unfortunately even for the cases P (m, n) = n −ms with s > 2 sharp results remain out 
of reach. For the quasi-translation invariant operators Jλ too there exist almost sharp 
results for certain special cases, see for example [19], while complete solution remains 
out of reach. Various extensions and generalizations of the results exhibited in this short 
summary, as well as their connections and applications to ergodic theory have been 
uncovered in such works as [10–12,16–19].

In this work we prove results on operators of type (1), with f ∈ lp(Z) and P (m, n) =
q(m, n) = am2+bmn +cn2, where both variables m, n and coefficients a, b, c are integers. 
Polynomials of this type are called integral binary quadratic forms, and they were studied 
intensely in 19th century by Gauss, Jacobi, Dirichlet and others. Properties of q depend 
greatly on the discriminant Δ(q) := b2 − 4ac. The form is called definite if Δ(q) < 0, 
and indefinite if Δ(q) > 0. It is called diagonal if b = 0. We state our first theorem.

Theorem 1. Let f ∈ lp(Z) where 1 ≤ p ≤ ∞. Let q be a definite integral binary quadratic 
form with discriminant Δ(q). Then the operator

Iλf(n) =
∑

m∈Z∗

f(q(m,n))
|m|λ

satisfies
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‖Iλf‖p ≤ Cp,λ,Δ(q)‖f‖p (5)

for λ > 1 − p−1 when p < ∞, and for λ > 1 when p = ∞. This result is sharp in the 
following sense.

For p = 1 and r ∈ N, there is a form q and a function f such that ‖Ilogrf‖1 = ∞, 
where

Ilogrf(n) =
∑

m∈Z∗

f(q(m,n))
logr(1 + |m|) .

For 1 < p < ∞, there is a form q and a function f such that ‖Iλf‖p = ∞ where 
λ = 1 − p−1.

For p = ∞, there is a form q and a function f such that ‖Iλf‖∞ = ∞ where λ = 1.

We would like to have a similar result for forms with nonnegative discriminant as 
well, and as will be stated in our second theorem this is possible when the discriminant 
is not a square number. Although the exponents in both theorems are exactly the same, 
the proofs are rather different, with the proof of the second theorem being much more 
delicate. Also we would like to emphasize that it is not possible to improve upon either 
result. We therefore state them separately.

Theorem 2. Let f ∈ lp(Z) where 1 ≤ p ≤ ∞. Let q be an indefinite integral binary 
quadratic form with nonsquare discriminant Δ(q). Then the operator

Iλf(n) =
∑

m∈Z∗

f(q(m,n))
|m|λ

satisfies

‖Iλf‖p ≤ Cp,λ,Δ(q)‖f‖p (6)

for λ > 1 − p−1 when p < ∞, and for λ > 1 when p = ∞. This result is sharp in the 
following sense.

For p = 1 and r ∈ N, there is a form q and a function f such that ‖Ilogrf‖1 = ∞, 
where

Ilogrf(n) =
∑

m∈Z∗

f(q(m,n))
logr(1 + |m|) .

For 1 < p < ∞, there is a form q and a function f such that ‖Iλf‖p = ∞ where 
λ = 1 − p−1.

For p = ∞, there is a form q and a function f such that ‖Iλf‖∞ = ∞ where λ = 1.
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It will be clear in the next section that in both theorems the cases λ > 1 are trivial, 
and therefore by nontrivial estimates we mean estimates with λ ≤ 1. We will show in the 
next section that boundedness results with a similar range of λ is never possible when 
the discriminant is a square number. But if it is a nonzero square number, with some 
additional assumptions on coefficients, a set of weaker results may still be possible. We 
hope the methods we introduce here will allow progress on the more general case of an 
arbitrary second degree integral polynomial of two variables as the phase polynomial. 
Even more interesting and challenging would be proving results for forms of higher rank 
and degree, and then extending these results to arbitrary polynomials. For quadratic 
forms of higher rank proving such results with the methods of this work should be quite 
possible, for a great deal is known about representations of integers by such forms. The 
case of higher degree forms seems to be very challenging, for the theory of such forms is 
much less developed than that of quadratic forms. But it may still be possible to uncover 
some partial results. Connecting the methods and results of this work to the theory of 
maximal functions, and to ergodic theory would also be a very interesting task. The 
authors will pursue these questions further in their upcoming works.

The article is organized as follows. In the next section we establish the notation and 
terminology that will be used for the rest of this work, and we demonstrate that it is never 
possible to obtain results such as those given in our two theorems when the discriminant 
is a square number. Most importantly, by conducting a preliminary investigation of 
the problem we illustrate the approach that leads to the proofs of our theorems. This 
approach uses the number, structure and distribution of representations of integers by 
quadratic forms. To understand these we study quadratic forms in section 3 from an 
analytic and geometric point of view. We solve them over the field of real numbers, 
and investigate the curves obtained from solutions. This allows us to prove two lemmas 
regarding the distribution of representations of integers that will be of crucial importance 
in the proofs of our theorems. Then in section 4 we study quadratic forms from a number 
theoretic point of view using ideas and results obtained by Gauss, Jacobi, Dirichlet, and 
Pall. We summarize certain facts discovered by them regarding the number and structure 
of representations of integers that will constitute the backbone of our proofs. Finally in 
sections 5, 6 we prove Theorem 1 and Theorem 2 respectively. Proofs will rely heavily 
on sections 3, 4.

2. Preliminaries

Henceforth we concentrate exclusively on integral binary quadratic forms, and reserve 
the notation q(m, n) = am2 + bmn + cn2 to such forms with integer inputs m, n. We 
will use the letter k to denote the values taken by q on integer inputs m, n, that is 
q(m, n) = k. When this equation holds (m, n) is called a representation of k by q. We 
define the set of all representations of k by q

Rq,k := {(m,n) ∈ Z2 : q(m,n) = k}. (7)
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When the form q is clear from the context we will drop it and write Rk. When we want 
to consider the same form q on real numbers, we will use the notation q(x, y), x, y ∈ R. 
We similarly define for a real number w the set

Sq,w := {(x, y) ∈ R2 : q(x, y) = w}, (8)

and similarly we will also denote this set by Sw. We will use the notation #E to denote 
the cardinality of a set E, and |E| to denote its Lebesgue measure. Cardinality of Rk

and of certain intersections of Sw with lines will be a chief concern of ours in the rest of 
this work.

We reserve the notation Δ(q) to denote the discriminant of q, and when the form q
is clear from the context, we will only use Δ. If Δ = b2 − 4ac < 0, then clearly ac > 0, 
and thus for definite forms both a, c are nonzero, and of the same sign. We observe that 
ax2 + bxy + cy2 = w implies

4a2x2 + 4abxy + 4acy2 = 4aw, and 4acx2 + 4bcxy + 4c2y2 = 4cw, (9)

and completion of squares yields

(2ax + by)2 − Δy2 = 4aw, and (2cy + bx)2 − Δx2 = 4cw. (10)

Therefore definite forms can take, even on the field of real numbers, only nonnegative or 
only nonpositive values depending on the sign of a. If a > 0, the form is called positive 
definite, and if a < 0, it is called negative definite. We observe that if q is a positive 
definite form, then −q is a negative definite one, and vice versa. Therefore it suffices to 
prove Theorem 1 only for positive definite forms, and henceforth we consider only these. 
We note that when Δ > 0 the form q takes values of both signs.

For two integers u, v the notation u|v means u divides v. A quadratic form q(m, n) =
am2 + bmn + cn2 is called primitive if the greatest common divisor of a, b, c, denoted 
by gcd(a, b, c), is 1. A representation (m, n) of k is called proper if gcd(m, n) = 1, and 
improper if it is not proper. In number theory it is mostly the case that studying under 
the assumption of coprimality removes many obstacles. We will see that this indeed is 
the case for the study of representations of integers by quadratic forms, and therefore 
before understanding the set of all representions it is more fruitful to study the set of 
proper representations given by

R′
q,k := {(m,n) ∈ Z2 : q(m,n) = k, gcd(m,n) = 1}. (11)

We now show that an analogue of Theorem 1 and Theorem 2 for quadratic forms with 
square discriminant is never possible. Let q(m, n) := am2 + bmn + cn2 be a form with 
Δ(q) perfect square, that is Δ = d2, d ∈ N ∪ {0}. We observe that if c �= 0, then the 
points (2cj, (−b + d)j), j ∈ Z are distinct elements of the integer lattice Z2, and when 
plugged in q they give 0. Thus, for
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f(k) =
{

1 if k = 0
0 otherwise

we have

‖Iλf‖1 =
∑
n∈Z

∣∣∣∣∣∣
∑

m∈Z∗

f(q(m,n))
|m|λ

∣∣∣∣∣∣ =
∑
n∈Z

∑
m∈Z∗

f(q(m,n))
|m|λ

≥
∑
j∈Z∗

f(q(2cj, (−b + d)j))
|2cj|λ

=
∑
j∈Z∗

1
|2cj|λ ,

and this diverges for λ ≤ 1. If c = 0, then q(m, n) = am2 +bmn, and (bj, −aj), j ∈ Z are 
elements of the integer lattice Z2, and when plugged in q they give 0. Assuming b �= 0, 
with the same f as above we have

‖Iλf‖1 =
∑
n∈Z

∑
m∈Z∗

f(q(m,n))
|m|λ ≥

∑
j∈Z∗

f(q(bj,−aj))
|2bj|λ

≥
∑
j∈Z∗

1
|2bj|λ ,

and this diverges for λ ≤ 1. If b, c are both zero, then q(m, n) = am2. In this case we 
take

f(k) =
{

1 if k = a

0 otherwise,

and consider the points (1, j), j ∈ Z. We have

‖Iλf‖1 =
∑
n∈Z

∑
m∈Z∗

f(q(m,n))
|m|λ ≥

∑
j∈Z

f(q(1, j))
1λ = ∞.

Therefore, for no quadratic form of square discriminant is a boundedness result on l1(Z)
possible when λ ≤ 1. The same constructions impose the condition λ > p−1 for bound-
edness results on lp(Z), 1 < p < ∞. A counterexample similar to those we provide in 
sections 5, 6 would further impose the condition λ > 1 − p−1, and some restrictions 
on coefficients. Further yet, it is possible to demonstrate that the discriminant must be 
nonzero. When all these conditions are met, we may have a set of nontrivial estimates 
on these spaces. As stated in the introduction this issue will be investigated later.

In what follows we conduct a preliminary investigation of the basic case of estimates 
on l1(Z). As will later be seen in the proofs of both Theorem 1 and Theorem 2 this is the 
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most important case. This investigation describes the starting point of our arguments, 
and we will return to it in the proofs of both our theorems. We let f ∈ l1(Z), and let

Iλf(n) =
∑

m∈Z∗

f(q(m,n))
|m|λ

be our operator with an arbitrary quadratic form q(m, n) = am2 + bmn + cn2. We 
emphasize that we put no restrictions regarding Δ(q). We have

‖Iλf‖l1(Z) =
∑
n∈Z

∣∣∣ ∑
m∈Z∗

f(q(m,n))
|m|λ

∣∣∣ ≤ ∑
n∈Z

∑
m∈Z∗

|f(q(m,n))|
|m|λ . (12)

We define the sets

Ak := {(m,n) ∈ Z∗ × Z : q(m,n) = k} (13)

for each k ∈ Z. These sets form a partition of Z∗×Z, for clearly every element of Z∗×Z

belongs to one of these sets Ak, and if k �= l then Ak ∩ Al = ∅. Therefore the last term 
of (12) satisfy

=
∑

(m,n)∈Z∗×Z

|f(q(m,n))|
|m|λ =

∑
k∈Z

|f(k)|
[ ∑

(m,n)∈Ak

1
|m|λ

]
. (14)

Since f ∈ l1(Z), if we could show that

∑
(m,n)∈Ak

1
|m|λ ≤ C (15)

for all k, with a constant C independent of k, we would have the desired estimate 
‖Iλf‖l1(Z) ≤ C‖f‖l1(Z). Therefore the problem of estimates on l1(Z) essentially reduces 
to understanding the quantity

∑
(m,n)∈Ak

1
|m|λ , (16)

and this clearly is about the number of representations of k by the form q, and the 
distribution and structure of these representations. If the number of representations is 
small, and if all except a fixed number of them have large first coordinates then this 
can be bounded by an absolute constant. We will use this idea to prove Theorem 1. 
If the number of representations is large or even infinite, then there still is hope if we 
can, by deeper study, show that the first coordinates of these representations grow fast. 
Incorporating this idea into the proof of Theorem 1 will lead us to the proof of Theorem 2. 
The next section is devoted to showing that with a fixed number of exceptions the first 
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coordinates of the representations are large. We will deduce this from a geometric and 
analytic investigation of quadratic forms conducted by solving them over the field of real 
numbers. In section 4, using the classical theory of binary quadratic forms developed 
mostly in 19th century, we will study the number and structure of representations.

We note that the term in (16) is always finite if λ > 1 and for a fixed m, the set 
Ak contains at most a constant number of representations (m, n). It will be seen in 
section 3 that this latter condition is satisfied by all forms under consideration in our 
two theorems. It also holds for many forms of square discriminant.

3. Analysis and geometry of quadratic forms

In this section we consider the representation problem over the field of real numbers, 
where it is much easier to understand. We investigate the set Sq,w as given in (8). 
This leads to quite different outcomes for positive definite forms and indefinite forms of 
nonsquare discriminant, therefore we investigate them separately. Further information 
on many of the issues discussed in this section can be found in analytic geometry books 
such as [5,20,21].

We first discuss positive definite forms. Let q(x, y) = ax2 + bxy+ cy2 be positive defi-
nite, therefore a, c are positive, and −2

√
ac < b < 2

√
ac. By (9), (10), the set Sw is empty 

if w < 0, and contain only the origin if w = 0. Therefore to observe nontrivial cases we 
assume w > 0. In this case Sw is an ellipse centered at the origin, and as such it is a closed 
plane curve enclosing a strictly convex region. A line can intersect it at most two points 
owing to this strict convexity. It always contains the points (±

√
w/a, 0), (0, ±

√
w/c)

regardless of the value b takes, and by convexity the parallelogram with these points 
as vertices lies inside it. We observe that the lines that contain the sides of this par-
allelogram essentially dictate the behavior of Sw as b changes. Decreasing b from zero 
to −2

√
ac elongates the set in the direction of the line y =

√
a/cx, and increasing b to 

2
√
ac elongates it in the direction of the line y = −

√
a/cx. At limits the ellipse turns 

into the lines given by the sides of the parallelogram.
We can write this curve as graphs of two functions: solving the equation ax2 + bxy +

cy2 = w for y is possible if and only if x2 ≤ −4cw/Δ, and gives

y = f1(x) = −bx +
√

Δx2 + 4cw
2c , y = f2(x) = −bx−

√
Δx2 + 4cw
2c . (17)

The graph of f1 lies above that of f2 except at the endpoints, and they meet at the 
endpoints. On their domain of definition f1 is concave and f2 is convex.

We state a lemma that will be crucial for the proof of our first theorem. It shows that 
except for a fixed number of them, representations of integers by positive definite forms 
have large first entries. The proof essentially boils down to the degree of the form q.

Lemma 1. Let q(x, y) = ax2 + bxy+ cy2 be a positive definite binary quadratic form, and 
let k be an integer. Then q(x, y) = k has at most 4 solutions (x, y) ∈ Z2 satisfying
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|x| ≤ |k|1/4√
−Δ(q)

. (18)

Proof. The statement is clear if k ≤ 0, we therefore assume k to be positive. The solutions 
we are looking for lie on the graphs of the functions f1, f2 in (17). Owing to the condition 
(18), any of these solutions can lie on only one of these graphs. The lines

l1(x) = − b

2cx +
√

k

c
, l2(x) = − b

2cx−
√

k

c

are respectively tangent to f1, f2 at x = 0. We will prove that f1, f2 stay very close to 
these lines for x satisfying (18). The differences |fi(x) − li(x)|, i = 1, 2 for such x are 
bounded by

√
k

c
−

√
Δx2 + 4ck

2c =
(k
c

)1/2
−

(Δx2

4c2 + k

c

)1/2

= −Δx2

4c2 ·
[(Δx2

4c2 + k

c

)1/2
+

(k
c

)1/2]−1

≤ −Δx2

4c2 ·
[3
2

(k
c

)1/2]−1

≤ 1
6c3/2

.

(19)

Therefore our solutions satisfying y = fi(x) lie inside the set Si := {(x, y) ∈ R2 :
|y − li(x)| ≤ 1/6c3/2} for i = 1, 2.

However, if (m, n) ∈ Z2, then 2cn + bm = j ∈ Z. Thus

n = − b

2cm + j

2c .

Therefore if we consider the collection of parallel lines

{
(x, y) ∈ R2 : y = − b

2cx + j

2c

}
,

every element (m, n) ∈ Z2 lies on exactly one of these lines. But the sets S1, S2 each can 
contain at most one line from this collection. Therefore we have at most 4 solutions. �

We now investigate the case of indefinite forms of nonsquare discriminant. We assume 
Δ(q) = b2 − 4ac > 0 to be nonsquare, therefore both a, c are nonzero. We will assume 
c > 0, and investigate the set Sw for any real number w, clearly the case c < 0 follows 
from this. As will be seen the sign of w mostly determines the geometry of the set Sw.

Let w = 0. Then for a fixed x the equation ax2 + bxy + cy2 = 0 is satisfied if and 
only if
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y = j1(x) = −b +
√

Δ
2c x, y = j2(x) = −b−

√
Δ

2c x. (20)

Therefore Sw consists of these two lines. When b = 0 these lines have slopes that add up 
to zero, as b decreases they turn counterclockwise, and as b increases they turn clockwise. 
We will see that these lines govern the behavior of Sw even for w nonzero.

Let w > 0. In this case Sw is a hyperbola centered at the origin with the lines in (20)
as asymptotes. As such it is a smooth plane curve. The graphs of the functions

y = g1(x) = −bx +
√

Δx2 + 4cw
2c , y = g2(x) = −bx−

√
Δx2 + 4cw
2c , (21)

give the two disconnected subsets of the hyperbola, with g1 being above both asymptotes 
and g2 being below both of them.

Let w < 0. In this case our set is the conjugate of the hyperbola we would obtain 
for −w. The two disconnected subsets of Sw lie between the asymptotes. The equation 
ax2 + bxy + cy2 = w can be satisfied only if x2 ≥ −4cw/Δ.

We investigate how many times a line can intersect Sw. If w = 0, then Sw itself is 
union of two lines intersecting at the origin, therefore a different line can intersect it 
at most twice. For w �= 0 we will consider the equation for a generic line and plug it 
into the equation given by our form. Any line in R2 has an equation of the form either 
y = ux + v or x = uy + v where u, v are real numbers. Plugging these equations into 
ax2 + bxy + cy2 = w gives respectively

x2(cu2 + bu + a) + x(2cuv + bv) + cv2 = w,

y2(au2 + bu + c) + y(2auv + bv) + av2 = w.
(22)

The coefficients of x2 and x, or y2 and y cannot both be zero since w �= 0 and Δ > 0. 
Therefore we have at most 2 intersections. With this information at hand we proceed 
to state an analogue of our first lemma for the case of indefinite forms of nonsquare 
discriminant.

Lemma 2. Let q(x, y) = ax2 +bxy+cy2 be an indefinite form of nonsquare discriminant, 
and let k be an integer. Then q(x, y) = k has at most 4 solutions (x, y) ∈ Z2 satisfying

|x| ≤ |k|1/4√
Δ(q)

. (23)

Proof. We assume c > 0, the case c < 0 follows from this by considering −q and −k. We 
proceed in three cases. We first assume k = 0. In this case (23) implies x = 0, and since 
c �= 0, this implies y = 0. Thus the origin is the only solution.

We assume k > 0. Then our solutions lie on the graphs of the functions in (21), and 
since these graphs do not intersect, each solution can lie only on one of these graphs. 
The lines
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y = l′1(x) = − b

2cx +
√

k

c
, y = l′2(x) = − b

2cx−
√

k

c
,

are tangent respectively to g1, g2 at x = 0. The difference between g1, g2 and these lines 
for a fixed x satisfying (23) can be shown by the same arguments as in Lemma 1 to 
satisfy

√
Δx2 + 4ck

2c −
√

k

c
≤ 1

8c3/2
. (24)

Then arguments similar to those in Lemma 1 allow us to reduce the problem to the 
number of intersections Sk can have with two lines, and our investigation above lets us 
conclude that there can be at most 4 solutions.

Finally let k < 0. In this case for any element (x, y) ∈ Sk we must have x2 ≥ −4ck/Δ, 
but this contradicts (23), therefore there is no solution. �
4. Arithmetic of quadratic forms

In this section we concentrate on understanding the set Rq,k. This is a topic that 
attracted great interest in the 19th and early 20th centuries. Through works of Gauss, 
Jacobi, Dirichlet, Pall and others we now know that properties of Rk are ultimately tied 
to the theory of quadratic residues, and to the automorphs of q. We will derive this 
connection, and describe its use. We will mostly use the terminology and notation of [6], 
and also recommend that work for a complete exposition of binary quadratic forms that 
starts from very basics of number theory. For a more recent treatment see [4].

Let q(m, n) = am2 + bmn + cn2 be a binary quadratic form. We will denote q by 
[a, b, c], and associate to it the matrix

[q] :=
[
2a b
b 2c

]
.

Clearly then Δ(q) = − det[q]. We consider a matrix [T ] of integral entries given by

[T ] :=
[
α β
γ δ

]
,

and the linear map given by this matrix

[
m
n

]
=

[
α β
γ δ

] [
M
N

]
.

This matrix turns our form q into Q(M, N) = AM2 +BMN +CN2, if we replace m, n
by their equivalents αM+βN, γM+δN as given by the matrix multiplication. We easily 
calculate A, B, C to find
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A = aα2 + bαγ + cγ2, B = 2aαβ + b(αδ + βγ) + 2cγδ, C = aβ2 + bβδ + cδ2.

We denote the map thus induced by a matrix [T ] with T , thus we have Tq = Q. The 
action of this map in terms of matrices is given by

[Q] = [T ]∗[q][T ], (25)

where [T ]∗ stands for the transpose of [T ]. If the determinant of [T ] is ±1, then [T ]−1

also have integral entries and induces a map. It follows from (25) that in this case T
is a bijection from the set of integral binary quadratic forms to itself, with the inverse 
being the map induced by [T ]−1. Then both the integers represented, and the number 
of representations for each such integer are the same for the forms q and Q = Tq. 
Furthermore their discriminants are the same. If the determinant is 1 we say that these 
two forms are properly equivalent, if it is −1 then we say that they are improperly 
equivalent. We sometimes just use the term equivalent to mean properly equivalent. 
Clearly proper equivalence is an equivalence relation, so it partitions forms of a given 
discriminant into equivalence classes. In the theory of quadratic forms class of a form 
means the equivalence class with respect to this relation. If [T ], [S] are two matrices of 
determinant 1 that transform q to Q, then

[q] = [S]−1∗[Q][S]−1 = [S]−1∗[T ]∗[q][T ][S]−1 = ([T ][S]−1)∗[q][T ][S]−1.

If a matrix of determinant 1 fixes a form, it is called an automorph of that form. Thus 
[T ][S]−1 is an automorph of q. If we denote this automorph by [A], we obtain the result 
[T ] = [A][S], and thus matrices of determinant 1 that transform q to Q are exactly those 
given by finding just one such matrix, and multiplying it with the automorphs of q.

Let g ∈ N satisfy g2|k. Then (m, n) 
→ (m/g, n/g) gives a bijection between the 
representations (m, n) of k with g = gcd(m, n) and the proper representations of k/g2. 
Therefore if k �= 0, then

Rk =
⋃
g2|k

g ·R′
k/g2 . (26)

If k = 0, the set Rk consists of the union above and the origin.
We first consider Rk for the case k = 0. For definite forms the only representation is 

(0, 0), this is clear from the formulas (9), (10). For the form with all coefficients zero, 
every element of Z2 is a representation. When the discriminant is nonnegative and the 
form has at least one nonzero coefficient, the representations are intersections of one or 
two lines given by linear factors of the form with Z2. When the discriminant is nonsquare 
by (20) the origin is the only intersection. For a square discriminant, for each line they 
are given by (jm, jn), j ∈ Z where gcd(m, n) = 1.

We now assume k �= 0, and concentrate on understanding the proper representations 
R′

k. If there is a pair (α, γ) such that q(α, γ) = k and gcd(α, γ) = 1, then we can find 
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a pair β, δ with αδ − γβ = 1. If β′, δ′ is another pair with the same property then 
αδ− γβ = αδ′ − γβ′, and thus α(δ′ − δ) = γ(β′ − β). Since gcd(α, γ) = 1, at least one of 
these is nonzero, assume α is nonzero. Then α divides β′−β. So we must have β′ = β+tα

for some uniquely determined integer t. This then implies α(δ′ − δ) = γtα, and since 
α is not zero, we must have δ′ = δ + tγ. If γ is nonzero we run the same argument to 
conclude that in any case we have a uniquely determined integer t such that

β′ = β + tα, δ′ = δ + tγ. (27)

Conversely any integer t determines unique numbers β′, δ′ given by (27) that satisfy 
αδ′ − γβ′ = 1. The matrix

[
α β
γ δ

]
(28)

then have determinant 1, and transforms q to an equivalent form [k, u, v], where

k = aα2 + bαγ + cγ2, u = 2aαβ + b(αδ + βγ) + 2cγδ, v = aβ2 + bβδ + cδ2.

On the other hand, the matrix
[
α β′

γ δ′

]

transforms q to the form [k, u′, v′] with

u′ = 2aαβ′ + b(αδ′ + β′γ) + 2cγδ′, v′ = a(β′)2 + bβ′δ′ + c(δ′)2.

We observe that replacing β′ = β + tα and δ′ = δ + tγ we obtain

u′ = 2aαβ′ + b(αδ′ + β′γ) + 2cγδ′

= 2aα(β + tα) + b[α(δ + tγ) + (β + tα)γ] + 2cγ(δ + tγ)

= 2aαβ + b(αδ + βγ) + 2cγδ + 2t[aα2 + bαγ + cγ2]

= u + 2tk.

(29)

Therefore there is a unique choice of the pair β, δ for which 0 ≤ u < 2|k|. Since the 
discriminant remains fixed, we also have the relation u2 − 4kv = Δ(q). Since k �= 0, 
given u there can be a unique v solving this equation, therefore there is a one-to-one and 
onto correspondence between solutions u, v of these two equations and solutions u of

u2 ≡ Δ(q) (mod 4|k|), and 0 ≤ u < 2|k|. (30)

Therefore, going forward we will employ these latter equations that do not burden us 
with the coefficient v that plays no role in this theory.
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We sum up what we have uncovered as follows: for a representation (α, γ), by choosing 
β, δ as prescribed, we obtain a unique matrix (28) of determinant 1 that transforms q
to an equivalent form [k, u, v] satisfying the equations (30). We thus see that by this 
process representations are mapped injectively to matrices, which in turn are mapped 
to quadratic forms satisfying a congruence. We observe however that the mapping of 
matrices to forms is definitely not injective, for the matrix

[
−α −β

−γ −δ

]

too would transform q to [k, u, v]. Indeed, as we have observed, matrices of determinant 
1 transforming q to [k, u, v] are exactly those obtained by finding just one such matrix 
and multiplying it with the automorphs of q. Conversely, when we obtain a form [k, u, v]
satisfying (30), there are two possibilities: either it is not equivalent to q, in which case 
there is no corresponding representation, or it is equivalent to q, whence by finding 
one matrix transforming q to [k, u, v], and multiplying it with the automorphs of q we 
obtain all such matrices, and the first columns of these matrices give the representations 
corresponding to [k, u, v]. We repeat this for every form satisfying (30), and obtain a 
number of matrices. Of these matrices no two can be the same, for if two matrices map 
q to different forms they must be different, and if they map q to the same form, this 
would imply that the automorphs we used to obtain them are the same. Furthermore, no 
two of these matrices can have the same first column, for this is forbidden by (29). Thus 
the first columns of these matrices are exactly the desired proper representations. Hence 
to uncover the number and structure of proper representations we need to understand 
two issues: how many forms [k, u, v] satisfying conditions (30) exist, and how many 
automorphs of q exist. If we could find answers to these two issues, by simply multiplying 
these answers we would get an upper bound for R′

k. Further, if we knew that every 
solution of (30) is equivalent to q, we could find the number of proper representations 
exactly. We note however that we will never need such exact knowledge of representations 
in this work, we will only need upper bounds on their number, lower bounds for their 
first entries, and their structure under the assumption that they exist.

The answer to the first issue is purely about quadratic residues, and depends on the 
relation between Δ and k. For the case gcd(Δ, k) = 1 the answer was given by Dirichlet 
and as a part of the classical theory of binary quadratic forms can be found in any basic 
number theory book, such as [6]. The complete answer was given by G. Pall in [14,15]. 
We here lay forth a summary of their studies. We define for t ∈ Z, s ∈ N the function

Γt(s) = #{u : u2 ≡ t (mod 4s), 0 ≤ u < 2s}. (31)

Since u2 ≡ (u + 2ls)2 (mod 4s), we have

Γt(s) = 1#{u : u2 ≡ t (mod 4s)}. (32)
2
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If t gives the remainders 2, 3 when divided by 4, the definition of our function implies 
a perfect square giving these remainders when divided by 4, therefore the function is 
uniformly zero for all values of s in these cases. Therefore we are left with the cases 
when t gives the remainders 0, 1, and since all discriminants give these remainders when 
divided by 4, these are the cases that are of importance to us. We immediately observe 
that for such t we have Γt(1) = 1. For larger s we consider the prime factorization 
s = pa0

0 pa1
1 . . . p

aj

j with p0 = 2, a0 ≥ 0 and ai > 0 for 1 ≤ i ≤ j. Then by Theorem 16 
of [6]

Γt(s) = 1
2#{u : u2 ≡ t (mod pa0+2

0 pa1
1 . . . p

aj

j )}

= 1
2#{u : u2 ≡ t (mod pa0+2

0 )}
j∏

i=1
#{u : u2 ≡ t (mod pai

i )}.
(33)

Since Γt(1) = 1, again by the same theorem for i > 0 we have

Γt(pai
i ) = 1

2#{u : u2 ≡ t (mod 4pai
i )}

= 1
2#{u : u2 ≡ t (mod 4)}#{u : u2 ≡ t (mod pai

i )}

= #{u : u2 ≡ t (mod pai
i )}.

(34)

Therefore

Γt(s) =
j∏

i=0
Γt(pai

i ). (35)

Thus it remains to compute Γt(pa) for prime p and positive a. When t = 0 we easily 
see that Γt(pa) = p�a/2�. For t nonzero, the results depend very much on divisibility 
relations between p and t, and can be obtained via use of Theorem 17 of [6] together 
with basic arguments of modular arithmetic. The full results are tabulated in section 3 
of [14] in nine cases. We remark that although in that work t is assumed to be negative, 
the results therein depend not on the sign of t, but on the divisibility relations stated for 
each case, and thus follow through for positive t as well. We observe that the common 
bound Γt(pa) ≤ 2p�c/2�, where c is the power of p as a factor of t, is true for all cases. 
Therefore Γt(s) ≤ d(s)

√
|t|, where the function d gives the number of positive divisors. 

It is known, see [7], that for every ε > 0 we have d(s) ≤ Cεs
ε. Therefore for every ε > 0

we have

Γt(s) ≤ Cεs
ε
√

|t|. (36)

We turn to the second question. If Δ < 0, or if Δ > 0 is a square then the form has 
at most 6 automorphs, see [6,14,15]. Thus from (36) we obtain
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#R′
k ≤ Cε|k|ε

√
|Δ|.

Therefore by (26) for every ε > 0 we can write

#Rk =
∑
g2|k

#R′
k/g2 ≤ d(|k|)Cε|k|ε

√
|Δ| ≤ Cε|k|ε

√
|Δ|. (37)

If Δ is zero or positive nonsquare, there can be infinitely many automorphs. But the 
automorphs are generated in a very structured way, and this will allow us to extract in-
formation about the structure of representations. We lay forth the theory of automorphs 
for the case Δ a positive nonsquare integer.

We further assume that q is primitive, the non-primitive case follows thereafter. Since 
Δ is positive and non-square, it is at least 5. By Theorem 87 of [6], a matrix

[
α β
γ δ

]

is an automorph of q if and only if

α = (t− bu)/2, β = −cu γ = au, δ = (t + bu)/2

where t, u are integer solutions of t2−Δu2 = 4. Solutions of this equation turn out to be 
very structured. We observe that (±2, 0) are solutions for this equation, and that there 
can be no solution with t = 0. By Theorem 88 of [6], the equation have a solution (t, u)
with t �= 0, u �= 0. If (t, u) is a solution, then (−t, u), (t, −u), (−t, −u) are also solutions. 
Therefore there is a solution with both entries positive. If (t, u), (t′, u′) are two such 
solutions then t < t′ implies u < u′. Therefore there has to be a solution (T, U) with 
both entries positive and minimum. This solution is called the least positive solution of 
the equation. Since we have Δ ≥ 5 we must have U ≥ 1, T ≥ 3. By Theorem 89 of [6], 
all solutions (t, u) of t2 − Δu2 = 4 are given by

(t +
√

Δu) = i2−j+1(T +
√

ΔU)j , i = ±1, j = 0,±1,±2 . . . (38)

and the automorphs corresponding to these solutions are given by

i[A]j , i = ±1, j = 0,±1,±2 . . . (39)

with [A] being the automorph corresponding to (T, U). The only solutions (t, u) with 
one entry zero are (±2, 0), and these come from the cases i = ±1, j = 0, and if (t, u) is 
a solution with both entries positive, then i, j corresponding to this solution are both 
positive. In this case (−t, −u) is obtained by taking −i, j; (t, −u) by i, −j; and (−t, u)
by −i, −j. Since (T +

√
ΔU)/2 > 2, different pairs of i, j cannot give the same pair 

(t, u). Therefore for each pair of i, j we get a different solution from (38). We observe 
that no two pairs (t, u) �= (t′, u′) can give rise to the same automorph, for since a, c are 
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both nonzero, we immediately get different automorphs if u �= u′, and if u = u′, then 
we must have t �= t′, and this leads to different terms on the diagonals of corresponding 
automorph matrices.

5. The case of positive definite forms

In this section we will prove the first theorem. We will further the investigation of the 
second section with the tools obtained from analytic, geometric and arithmetic study of 
positive definite quadratic forms in sections 3 and 4. Specifically we will use Lemma 1
and (37) to prove the estimate (5). Then we will provide, using arithmetic properties of 
specific forms and summability properties of certain functions, counterexamples showing 
the sharpness part of the theorem.

Proof. If p = ∞ then,

‖Iλf‖∞ = sup
n∈Z

∣∣∣ ∑
m∈Z∗

f(q(m,n))
|m|λ

∣∣∣ ≤ ‖f‖∞
∑

m∈Z∗

1
|m|λ = Cλ‖f‖∞.

As is seen clearly, in this case our constant is entirely independent of the form q.
For the case p = 1 we will continue the analysis in section 2. We note that since the 

form is positive definite, the sets Ak need to be considered only for k ∈ N. We partition 
the sets Ak introduced there as follows

A′
k := {(m,n) ∈ Ak : |m| ≤ |k|1/4(−Δ)−1/2}, A′′

k := Ak \A′
k.

Then the quantity (16) satisfies by Lemma 1

∑
(m,n)∈Ak

1
|m|λ =

∑
(m,n)∈A′

k

1
|m|λ +

∑
(m,n)∈A′′

k

1
|m|λ ≤ 4 +

∑
(m,n)∈A′′

k

1
|m|λ .

We estimate the cardinality of the set A′′
k by taking ε in (37) to be λ/8. We then have

∑
(m,n)∈A′′

k

1
|m|λ ≤ Cλk

λ/8
√

|Δ|k−λ/4|Δ|λ/2 = Cλ|Δ|(λ+1)/2k−λ/8 ≤ Cλ,Δ.

Therefore
∑

(m,n)∈Ak

1
|m|λ ≤ Cλ,Δ, (40)

and we conclude that

‖Iλf‖1 ≤ Cλ,Δ‖f‖1.
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We now handle the case 1 < p < ∞. Broadly, we proceed as in the case p = 1, only 
significant difference being use of Hölder inequality to make utilization of the sets Ak

possible. We let λ′ = λ − 1 + p−1. Then

‖Iλf‖pp =
∑
n∈Z

∣∣∣ ∑
m∈Z∗

f(q(m,n))
|m|λ

∣∣∣p ≤
∑
n∈Z

( ∑
m∈Z∗

|f(q(m,n))|
|m|λ′/2

1
|m|1−p−1+λ′/2

)p

.

We apply the Hölder inequality to bring the exponent p inside the parenthesis

≤
∑
n∈Z

[ ∑
m∈Z∗

|f(q(m,n))|p
|m|λ′p/2

][ ∑
m∈Z∗

1
|m|1+λ′p/2(p−1)

]p−1
.

The second sum over m is bounded by a constant Cp,λ while for the first sum we bring 
in the sets Ak. Thus we obtain

≤ Cp,λ

∑
k∈N

|f(k)|p
∑

(m,n)∈Ak

1
|m|λ′p/2 .

By (40) the inner sum is bounded by a constant Cp,λ,Δ. Therefore we conclude that

‖Iλf‖p ≤ Cp,λ,Δ‖f‖p.

We turn to the sharpness part of the theorem. When p = ∞, it is clear that we cannot 
take λ = 1, we can observe this just by taking f to be a nonzero constant function and 
q any positive definite form.

For p = 1, we first consider the case r = 1. We will describe how to generalize this to 
the case of arbitrary r afterwards. We let q(m, n) = m2 + n2. A well known theorem of 
Jacobi tells us that if k is an odd natural number for which all prime factors are of the 
form 4l + 1, then the number of representations of k as a sum of two squares is 4d(k), 
see [6]. Therefore the set Ak contains at least 4d(k) − 2 ≥ 2d(k) elements. Thus if we 
consider the numbers kj := (5 ·13)j , j ∈ N, then #Akj

≥ 2(j+1)2. But j = log kj/ log 65, 
therefore

#Akj
≥ 2

log2 65
log2 kj .

We define

f(k) :=
{
j−2 if k = kj

0 otherwise.

This f clearly is in l1(Z). But we have
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‖Ilogf‖1 =
∑
n∈Z

∑
m∈Z∗

f(q(m,n))
log(1 + |m|) =

∑
k∈N

f(k)
∑

(m,n)∈Ak

1
log(1 + |m|)

=
∑
j∈N

f(kj)
∑

(m,n)∈Akj

1
log(1 + |m|)

≥
∑
j∈N

j−2 2
log2 65

log2 kj
1

log kj

= 2
log 65

∑
j∈N

j−1,

which clearly is divergent. This process generalizes in a straightforward way to the case 
of arbitrary r by taking a larger number of primes of the form 4l+1 instead of just 5, 13.

For the case 1 < p < ∞ we take q(m, n) := m2 + n2, and

f(k) :=
{
j−

1
p log−

1+p
2p j if k = j2, j ∈ N − {1}

0 otherwise.
(41)

We then have

‖I1−p−1f‖pp =
∑
n∈Z

∣∣∣ ∑
m∈Z∗

f(q(m,n))
|m|1−p−1

∣∣∣p ≥
∣∣∣ ∑
m∈Z∗

f(q(m, 0))
|m|1−p−1

∣∣∣p

=
(
2
∑
m≥2

m−p−1 log−
1+p
2p m

m1−p−1

)p

=
(
2
∑
m≥2

1
m log

1+p
2p m

)p

,

(42)

and this clearly diverges. �
This proof suggests that the proper space for the study of Iλ is l1(Z), for the case 

l∞(Z) is trivial, and the case lp(Z), 1 < p < ∞ follows largely from the l1(Z) case and 
summability arguments. The last counterexample makes it plain that when the operators 
Iλ are applied to lp(Z) functions the sum in (1) may not even be finite unless λ > 1 −p−1, 
and we do not even need to make use of more delicate properties of the form q to see 
this.

6. The case of indefinite forms

We prove Theorem 2 in this section. The proof will rely but also greatly expand upon 
ideas laid forth in the proof of Theorem 1. Most importantly instead of using the estimate 
(37) on the number of representations we will use their sparsity. We will establish this 
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sparsity from (39) for the special case when the form q is primitive and diagonal, and 
we will reduce the other cases to this case.

Proof. When p = ∞ the proof is exactly the same as it is for the corresponding case of 
Theorem 1, and we obtain

‖Iλf‖∞ ≤ Cλ‖f‖∞.

Let p = 1. We first assume q(m, n) = am2 + cn2 with a > 0, c < 0 and gcd(a, c) = 1. 
Since the determinant −4ac must be nonsquare it is at least 8. We again consider the 
sets Ak, k ∈ Z. If k = 0, then it follows from (20) that Ak is empty, therefore we assume 
k �= 0. In this case we define

A′
k := {(m,n) ∈ Z∗ × Z∗ : q(m,n) = k},

and since Ak \A′
k can contain at most 2 elements, we have

∑
(m,n)∈Ak

1
|m|λ ≤ 2 +

∑
(m,n)∈A′

k

1
|m|λ .

If (m, n) ∈ A′
k, then (−m, −n), (m, −n), (−m, n) ∈ A′

k. Therefore if we define

A′′
k := {(m,n) ∈ N ×N : q(m,n) = k},

we have
∑

(m,n)∈Ak

1
|m|λ ≤ 2 +

∑
(m,n)∈A′

k

1
|m|λ = 2 + 4 ·

∑
(m,n)∈A′′

k

1
|m|λ .

Henceforth we concentrate our efforts on estimating the sum over A′′
k. We decompose

A′′
k =

⋃
g2|k

A′′
k,g, A′′

k,g := {(m,n) ∈ N ×N : q(m,n) = k, gcd(m,n) = g}.

Then, as laid out in section 4, the map (m, n) 
→ (m/g, n/g) gives a bijection from A′′
k,g

onto A′′
k/g2,1, and each representation in A′′

k/g2,1 emerges from a solution of

u2
g ≡ Δ (mod 4|k/g2|), and 0 ≤ ug < 2|k/g2|, (43)

and the corresponding form [k/g2, ug, vg]. Let therefore

A′′
k/g2,1 =

⋃
ug

A′′
k/g2,1,ug

.

These decompositions induce decompositions of A′′
k,g into subsets A′′

k,g,u . We thus write

g
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∑
(m,n)∈A′′

k

1
|m|λ =

∑
g2|k

∑
ug

∑
(m,n)∈A′′

k,g,ug

1
|m|λ .

We have
∑

(m,n)∈A′′
k,g,ug

1
|m|λ = 1

gλ

∑
(m,n)∈A′′

k/g2,1,ug

1
|m|λ .

The elements of A′′
k/g2,1,ug

, if it is nonempty, are obtained from multiplying a matrix 
that takes q to [k/g2, ug, vg] by the automorphs of q. Let [Ug] be a matrix taking q
to [k/g2, ug, vg], and let [A] be the automorph of q corresponding to the least positive 
solution (T, U) of the equation t2 − Δu2 = 4, thus

[Ug] :=
[
αug

βug

γug
δug

]
, [A] :=

[
T/2 −cU
aU T/2

]
. (44)

We have T 2 = ΔU2 + 4 ≥ Δ + 4 ≥ 12, and therefore T ≥ 2
√

3. The elements (m, n) ∈
A′′

k/g2,1,ug
are the first columns of the matrices in the chains below for which both entries 

of the first column are positive

. . . [A]−2[Ug], [A]−1[Ug], [A]0[Ug], [A][Ug], [A]2[Ug] . . .

. . .− [A]−2[Ug], −[A]−1[Ug], −[A]0[Ug], −[A][Ug], −[A]2[Ug] . . .
(45)

We let [
α β
γ δ

]

stand for an arbitrary matrix in these chains. Since we have
[
T/2 −cU

aU T/2

] [
α β

γ δ

]
=

[
Tα/2 − cUγ Tβ/2 − cUδ

aUα + Tγ/2 aUβ + Tδ/2

]
,

if α, γ > 0, then Tα/2 − cUγ, aUα + Tγ/2 > 0, and further

Tα/2 − cUγ >
√

3α. (46)

Therefore if there is a matrix in one of the chains (45) for which

α > 0, γ > 0, (47)

then for every matrix to the right of it the same property holds. This immediately implies 
that if there are matrices with this property in these two chains, all of them must be 
located in just one chain. On this chain owing to (46) there must be a leftmost matrix 
with this property. Let



F. Temur, E. Sert / Journal of Functional Analysis 277 (2019) 108287 23
[U ′
g] :=

[
αu′

g
βu′

g

γu′
g

δu′
g

]

denote this matrix. Thus all elements of A′′
k/g2,1,ug

come from the first columns of [A]j[U ′
g]

for j ≥ 0, and the first entry of the first column for [A]j[U ′
g] is not less than 3j/2αu′

g
. 

Therefore

∑
(m,n)∈A′′

k/g2,1,ug

1
|m|λ ≤ 1

αλ
u′
g

∞∑
j=0

1
3jλ/2

≤ Cλ

αλ
u′
g

,

and thus
∑

(m,n)∈A′′
k,g,ug

1
|m|λ ≤ Cλ

(gαu′
g
)λ ,

with (gαu′
g
, gγu′

g
) ∈ A′′

k,g,ug
being just one representation. Thus we succeeded in estimat-

ing an infinite sum over representations of a certain type by just one representation of 
that type. Then

∑
(m,n)∈A′′

k

1
|m|λ =

∑
g2|k

∑
ug

∑
(m,n)∈A′′

k,g,ug

1
|m|λ ≤ Cλ

∑
g2|k

∑
ug

1
(gαu′

g
)λ .

There are at most 4 representations q(m, n) = k with |m| ≤ |k|1/4Δ−1/2 by Lemma 2, 
therefore we have

≤ Cλ

[
4 + Δλ/2

|k|λ/4
∑
g2|k

∑
ug

1
]
. (48)

The double sum gives the sum over g of number of solutions of (43), and as explained in 
section 4, for each g this number is bounded by d(|k|)

√
Δ. The number of possible g is 

again bounded by d(|k|). Therefore if we use the estimate d(|k|) ≤ Cλ|k|λ/16, the double 
sum is bounded by Cλ|k|λ/8

√
Δ. Hence

≤ Cλ

[
4 + Δλ/2

|k|λ/4Cλ|k|λ/8
√

Δ
]
≤ Cλ

[
4 + CλΔ(1+λ)/2] ≤ CλΔ(1+λ)/2.

Therefore
∑

(m,n)∈Ak

1
|m|λ ≤ CλΔ(1+λ)/2, (49)

and this suffices to conclude that for q(m, n) = am2 + cn2 primitive with a > 0, c < 0
we have



24 F. Temur, E. Sert / Journal of Functional Analysis 277 (2019) 108287
‖Iλf‖1 ≤ CλΔ(1+λ)/2‖f‖1.

We move to the general case. Let q(m, n) = am2 + bmn + cn2 be an indefinite form 
of nonsquare discriminant. Discriminant being nonsquare implies a �= 0, c �= 0. Then,

‖Iλ,qf‖1 ≤
∑
k∈Z

|f(k)|
∑

(m,n)∈Ak

1
|m|λ ,

with Ak := {(m, n) ∈ Z∗ × Z : am2 + bmn + cn2 = k}. But we have

{(m,n) ∈ Z∗ × Z : am2 + bmn + cn2 = k}
={(m,n) ∈ Z∗ × Z : 4acm2 + 4bcmn + 4c2n2 = 4ck}
={(m,n) ∈ Z∗ × Z : (bm + 2cn)2 − Δ(q)m2 = 4ck}
={(m,n) ∈ Z∗ × Z : Δ(q)m2 − (bm + 2cn)2 = −4ck}.

We define the form q′(x, y) = Δ(q)x2 − y2, and the sets Aq′,k := {(m, n) ∈ Z∗ × Z :
Δ(q)m2 − n2 = k}. Then we have Δ(q′) = 4Δ(q). If (m, n) ∈ Ak, then (m, bm + 2cn) ∈
Aq′,−4ck, and the map (m, n) 
→ (m, bm + 2cn) is injective. Therefore

∑
(m,n)∈Ak

1
|m|λ ≤

∑
(m,n)∈Aq′,−4ck

1
|m|λ . (50)

Since the form q′ is of a type covered by our investigation above, from (49) with Δ(q′) =
4Δ(q) we have

∑
(m,n)∈Aq′,−4ck

1
|m|λ ≤ Cλ21+λΔ(q)(1+λ)/2 = CλΔ(q)(1+λ)/2

, (51)

and thus

‖Iλ,qf‖1 ≤ CλΔ(q)(1+λ)/2‖f‖1 = Cλ,Δ(q)‖f‖1.

We let 1 < p < ∞, and q(m, n) = am2 + bmn + cn2 an indefinite form of nonsquare 
discriminant. Proceeding exactly as in the positive definite case yields

‖Iλf‖pp ≤ Cp,λ

∑
k∈N

|f(k)|p
∑

(m,n)∈Ak

1
|m|λ′p/2

with λ′ = λ − 1 + p−1. Combining (50) and (51) yields

∑ 1
|m|λ′p/2 ≤ Cp,λΔ(1+λ′p/2)/2,
(m,n)∈Ak
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and therefore

‖Iλf‖p ≤ Cp,λΔ1/2p+λ′/4‖f‖p = Cp,λ,Δ‖f‖p.

We move to the sharpness part of the theorem. We observe that the claim is clear for 
p = ∞. Let p = 1. If r = 1, the unboundedness is easy to show using the infinitude of 
automorphs. Indeed, let q(m, n) := m2 − 8n2 and

f(k) =
{

1 if k = 4
0 otherwise.

We have representations of 4 given by (38), which in our case becomes

(t + 2
√

2u) = i2(3 + 2
√

2)j , i = ±1, j = 0,±1,±2 . . . .

It suffices to consider the representations tj, uj > 0 obtained when i = 1 and j > 0. 
These satisfy tj ≤ 2 · 6j . Hence

‖Ilogf‖1 =
∑
k∈N

f(k)
∑

(m,n)∈Ak

1
log(1 + |m|) =

∑
(m,n)∈A4

1
log(1 + |m|)

≥
∑
j∈N

1
log(1 + tj)

≥
∑
j∈N

1
log 6j+1 ,

and this diverges. But this method clearly does not generalize to the cases r ≥ 2. For 
these cases we must use the arithmetic structure of the quadratic forms, just as we did 
in section 4. But we will also need further effort to deal with indefiniteness of the form. 
More specifically, in section 4 the form we used q(m, n) = m2 +n2 allows us to conclude 
that if q(m, n) = k, then |m| ≤ |k|. No such conclusion is possible for indefinite forms, 
and indeed we know that |m| ≥ C|k| is possible for any C ∈ N. However we will be 
able to find for each solution of (43) for which there are corresponding representations 
one representation (m, n) of k with |m| ≤ 10|k|, and this will suffice. Thus we will not 
make use of the infinitude of representations, but we must calculate exactly the number 
of solutions of (43), and make sure that each solution gives rise to representations of k.

We take the form q(m, n) := m2 −2n2. Therefore Δ(q) = 8. We take the primes 7, 17, 
which are of the form 8l ± 1. Then we consider kj = (7 · 17)2j+1, j ∈ N. We define

f(k) =
{
j−2 if k = kj

0 otherwise.
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We compute the number of solutions of (43). If g is a square divisor of kj , it must have 
the form 7i117i2 , 0 ≤ i1, i2 ≤ j, and thus the number of solutions of (43) is

Γ8(72(j−i1)+1172(j−i2)+1) = Γ8(72(j−i1)+1)Γ8(172(j−i2)+1).

Both factors on the right hand side are 2 by Theorem 17 of [6]. Therefore (43) has 
4 solutions for each choice of i1, i2. Since there is a total of j + 1 choices for each of 
i1, i2, the equations (43) have in total 4(j + 1)2 ≥ log2 kj/ log2 119 solutions. For each 
solution [kj/g2, ug, vg] we want to find a matrix [Ug] of determinant 1 that maps q to 
this solution, as given by (44). Existence of such a matrix is guaranteed, for both q and 
[kj/g2, ug, vg] have discriminant 8, and there is only one equivalence class of forms for 
this discriminant; see page 99-104 of [6]. Since α2

ug
−2γ2

ug
= kj/g

2 > 0, we have αug
�= 0. 

Since the matrix −[Ug] also have the desired properties of [Ug], we may assume αug
> 0. 

All representations corresponding to ug are then as in (45), and the automorph [A] and 
its inverse is given in our case by

[A] :=
[
3 4
2 3

]
, [A]−1 =

[
3 −4
−2 3

]
.

As mentioned above, we want to associate just one representation to ug. If αug
≤ 10kj/g2, 

then we let (gαug
, gγug

) be this representation. We now suppose αug
> 10kj/g2. There-

fore γ2
ug

> 49kj/g2, and γug
is either positive or negative. If it is positive, then from the 

matrix [A]−1[Ug] we obtain the representation (3αug
−4γug

, −2αug
+3γug

), for which we 
have 0 < 3αug

−4γug
< αug

/3, and 0 < −2αug
+3γug

. If 3αug
−4γug

≤ 10kj/g2 we multi-
ply this representation with g and associate it to ug, if not, we repeat the process. Clearly 
in a finite number of steps we obtain a desired representation. Similarly, if γug

is nega-
tive, from the matrix [A][Ug] we obtain the representation (3αug

+4γug
, 2αug

+3γug
), for 

which we have 0 < 3αug
+4γug

< αug
/3, and 2αug

+3γug
< 0. If 3αug

+4γug
≤ 10kj/g2

we multiply this representation by g and associate it to ug, if not, we repeat the process 
until, in a finite number of steps, we obtain a representation with desired properties.

Therefore for any solution ug we have a representation (gαug
, gγug

) where 0 < αug
≤

10kj/g2. Having obtained these representations we can write

‖Ilogf‖1 =
∑
n∈Z

∑
m∈Z∗

f(q(m,n))
log(1 + |m|) =

∑
k∈N

f(k)
∑

(m,n)∈Ak

1
log(1 + |m|)

=
∑
j∈N

f(kj)
∑

(m,n)∈Akj

1
log(1 + |m|)

≥
∑
j∈N

j−2 log2 kj

log2 119
1

2 log kj

≥ 1
log 119

∑
j−1,
j∈N
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and this is clearly divergent. This example can easily be generalized to any r ∈ N. The 
number 8 is a quadratic residue for any prime p of the form 8l ± 1, see chapter 3 of [6], 
and this allows us to conclude that u2

g ≡ 8 (mod p) have 2 solutions. Therefore if we 
take more primes of this form instead of just 7, 17 the same method allows us to show 
unboundedness for any r ∈ N.

When 1 < p < ∞ and λ = 1 − p−1, we take q(m, n) := m2 − 2n2, and f as in (41). 
Then the steps in (42) yield the desired result. �
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