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mation of the end-effector, which is usually acquired indirectly by using forward kinemat-
ics equations. Nevertheless, the kinematic model is insufficient to obtain accurate values if
there are non-negligible compliant displacements. This gives a strong motivation for imple-
menting a real-time stiffness model in the haptic control loop for improving its accuracy.

Is?;glzgzs' Additionally, stiffness performance indices can be used at the design stage for enhancing
Parallel manipulator the haptic devices impedance range within optimal design procedures. Fast solutions of a
Virtual joint method stiffness model are required for a real-time control as well as for decreasing the optimiza-
Haptic mechanism tion time during a design process with a trade-off between accuracy and computational

costs. In this study, we propose a computation time-efficient stiffness analysis of a parallel
haptic device mechanism. The accuracy and computational costs of the proposed model
are calculated and compared with a model that is obtained via a finite element method
to demonstrate the effectiveness of the proposed approach with the desired real-time and
accuracy performance.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Haptic devices display haptic stimuli to a user [1]. Kinesthetic type haptic devices generate force/torque that is regulated
by motion information in order to generate the required impedance output. These devices are used as a master controller
to manipulate a slave robot. The essence of haptic feedback is to enhance the telepresence sensation, which is the sense
of being present in the remote environment (RE). The realism of telepresence depends on transmission quality of haptic
information from the RE to the user via the haptic device. The physical capabilities (PC) of the haptic device determine the
transmission quality of haptic information and the performance of the haptic device.

Haptic devices use parallel, serial, or hybrid mechanisms [2-4|. Therefore, the PC of a haptic device depends on the
manipulator’s mechanical performance. The PC of the manipulator can be increased via an optimal design [5-7]. The design
optimization, on the other hand, requires the usage of many performance metrics related to robotics [8,9]. These metrics are
computed based on the manipulator’s models such as the kinematics, stiffness, and dynamic models. Among these models,
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Fig. 1. Haptic control loop; Subscripts ¢, d, and a indicate the computed, desired, and actual parameters; X is the position vector. #(G) denotes the forward
kinematics equations to compute the end-effector position by using measured joint positions, . J denotes the Jacobian matrix; F and 7 are the force/torque
vectors defined in task and joint space, respectively; M, V, G, f are the mass, Coriolis-centripetal, gravitation, and friction terms, respectively. The dashed
lines denote the measured physical signals via related sensors.

the stiffness model receives special attention in design since high stiffness is needed for enhanced maximum impedance
performance [1,10,11]. Hence, an optimal design process requires a stiffness model to be used in the calculation of stiffness
performance indices [12-15].

In a general haptic control loop, forward kinematics is used to compute the end effector’'s motion. This information is
used for mapping the motion of the haptic device’s end-effector to the motion of the manipulated object in RE. The percep-
tion of haptic realism depends on this mapping accuracy. During a haptic interaction, however, the end-effector experiences
compliant motions while displaying resistive forces/torques to the user. Hence, a kinematic model alone is not sufficient for
achieving accurate mapping. On the other hand, a stiffness model can be used to estimate compliant motions. Then, these
estimated compliant motions can be used for compensating the end-effector motion acquisition errors due to the indirect
calculation of the end-effector’s motion. As a result of this, the motion mapping performance between the master and the
slave can be enhanced [16].

The usage of a generic stiffness model, K, is shown in Fig. 1 within a haptic control loop. In this loop, all of the mea-
sured/calculated forces and torques that are acting on the manipulator are transmitted to the stiffness model to estimate
the compliant deflections, AX. AX is combined with the end-effector’s position information, which is calculated via forward
kinematics, to compute an estimated actual position of the end-effector, Xc.. This estimated position information is used in
RE to produce the desired force/torque, F;, relatively more accurately.

A control loop needs to operate in real-time. Namely, it should operate with at least 1 kHz sampling frequency to cover
all kinesthetic haptic interaction types [1]. Aside from the haptic control loop, design optimization for a haptic device mech-
anism or any robot manipulator is an iterative process. The speed of the model computations determines the duration of
the optimization process. Among the variety of models, generally, stiffness models have a more considerable computation
cost. Hence, a computationally efficient stiffness model with acceptable accuracy is required in the design optimization
studies.

As in any modeling study, in stiffness modeling, accuracy and computation time are inversely proportional. While slow
computations reduce control performance that even may cause control instability due to computation delays, a single design
optimization run may extend to several months due to the excessive computation of the stiffness model. Nevertheless,
inaccurate but fast computations cannot be used in both scenarios. Compared to serial manipulators, stiffness computations
of parallel manipulators consume more time and processor power because they have relatively more links and joints in
their closed-loop kinematic structure [17-19]. Hence, both aspects may be addressed by a computationally time-efficient
solution of the stiffness model. This study focuses on the derivation of a stiffness model of a parallel manipulator that can
run in real-time (less than 1ms computation time) with high accuracy (less than %1 error). A version of R-CUBE parallel
mechanism [20] is adopted for stiffness modeling as a case study since it was previously used as a mechanism of a haptic
device [21]. The stiffness model of this mechanism is obtained via Virtual Joint Method (VJM). Then, the Finite Element
Method (FEM) is used to obtain more accurate results. Later, these results are compared to VJM model’s results, in terms of
compliant displacements, via their computation time and accuracy. In Section 2, stiffness modeling methods are reviewed,
and the reason for selecting VJM is explained. In Section 3, brief information on the kinematics of R-CUBE mechanism
and its detailed stiffness model are presented. In Section 4, FEM model of the manipulator that is constructed by using
ANSYS Workbench software is provided along with the description of the simulation setup. In Section 5, the results of
the model validation procedure and computation time calculations are presented. Finally, in Section 6, the outcomes are
discussed.
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Fig. 2. FEM model of a link: (a) mesh structure and its zoomed view, (b) the deflected pose of meshed link.

2. Stiffness modeling methods

The stiffness methods can be classified as lumped and distributed modeling approaches. Here, lumped means that all of
the stiffness information is lumped on a single node. In the distributed approach, the stiffness information is distributed
among the many discrete elements of a body. Widely used distributed modeling approaches are FEM and Matrix Structural
Method (MSM), while an extensively used lumped modeling approach is VJM. Strain Energy Method (SEM) is a compu-
tational approach that may be used with both distributed and lumped methods. In the following subsections, the main
characteristics of each method are outlined briefly.

Stiffness modeling in the literature generally considers links as the only flexible bodies. Some studies also consider the
joint stiffness [22,23]. Of course, joint stiffness plays a significant role in the stiffness model. However, this study is a com-
parison of FEM and VJM in terms of computation time and accuracy. Hence, we have excluded the joint stiffness in both
methods for a fair comparison between them.

2.1. Finite element method

In this modeling technique, each body is decomposed into small discrete elements. The procedure is called “meshing”.
A meshed link and the nodes on each element are illustrated in Fig. 2. The compliant deflections are computed concerning
the applied force/torque vector, F. This force vector is mapped on each node as Fy. The overall deflection is computed by
the accumulation of the small deflections of each node. The force/torque equilibrium and the deflection on a node are given

by:
[_Fm } _ [ K, Kj), }[ A, } (21)
Fyist kS 01 KD [ A6

where i denotes the computed nodes on elements. 8 denotes the variables that are computed in the local frame of nodes.
A4 is the deflections of the nodes, and Kj is a 6 x 6 stiffness matrix.

Complex shaped bodies can be easily meshed via FEM. Hence, the FEM gives accurate results regardless of the geometry
of the link. However, the computation of the total deflection is an iterative process. Considering a high number of meshes, it
takes a long time to obtain the solution for a single F value at a single configuration. In each configuration change, all bodies
are re-meshed. This process extends the computation time [24]. Hence, a FEM approach is not suitable for real-time control
and design optimization. However, FEM is preferred in the verification of the final design of an optimized manipulator [25].
The merits of the method are explained in [26] and studies on computation of stiffness via FEM are presented in [27-31].

2.2. Matrix structural method

MSM uses an analytical stiffness model that is derived through the Euler-Bernoulli approach. In MSM, a flexible link
structure is modeled by using a number of simple structural elements like beams and tubes [32,33]. The method is illus-
trated for a single link in Fig. 3.

In [24], this method is applied to model a tripod-based parallel mechanism. Li et al. [34] obtained the stiffness model
of a Stewart platform. Deblaise et al. [35] obtained a Delta-type parallel mechanism’s stiffness model. This method is also
adopted in recent studies presented in [14,36-38], which indicates that this method is still extensively implemented in
stiffness modeling of mechanisms.

Larger discrete elements are used in MSM relative to FEM. Each link is denoted by a 12 x 12 stiffness matrix. Hence, MSM
is relatively simpler and faster compared to FEM. However, the method still requires long computation since it consists of
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Fig. 3. MSM model of a link: (a) MSM model discretization, (b) the discrete elements which are defined via [Kj ]2 . 12 local stiffness matrices.

Virtual Joint
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Fig. 4. VM modeling of a link: (a) the VJM model, (b) virtual springs defined at the tip of link and a diagonal stiffness matrix [Kjlsxs =
diag(ky, ky, kz, ko, kg, k) may be defined.

higher dimension matrices [28,38]. For instance, in a recent study, 10ms computation time is achieved [39] by using MSM
for a planar parallel manipulator’s stiffness model computation. The approach is considerably faster than a standard FEM
simulation duration. However, with this computation time, the 1 kHz sampling frequency cannot be achieved in a haptic
control loop. Therefore, MSM is not suitable for real-time haptic device control, but it may be used in the optimization
process.

2.3. Virtual joint method

In this method, Jacobian matrices and the virtual work principle are used. In VJM, stiffness information of the links is
lumped on virtual springs. These springs are placed on the virtual joints that are located at the distal end of each link.
This distal end is either the location of the passive or active joint. Hence, the same virtual joint can be used to lump the
passive/active joint stiffness information. A stiffness matrix of a link is given by a 6 x 6 stiffness matrix in VJM. Hence, a V]M
model contains relatively smaller number of nodes in its calculation. Therefore, V]M is expected to be computationally more
efficient when compared to MSM and FEM. In Fig. 4, the approach is illustrated by showing a 6 degrees of freedom (DOF)
virtual joint with 6 virtual springs at the distal end of a single link. It is assumed that the deflections are small enough to
construct the following equation:

AX ~J,AO (2.2)

where AX is the change in position vector of the end-effector, Af is the change in virtual joint variables, and Jo is the
Jacobian matrix containing virtual joint variables. Consequently, the force/torque equilibrium of compliant manipulator is
established as follows:

Foxt = KcAX (2.3)

Kc = (oK, 'J§)™ (2.4)
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Fig. 5. SEM using distributed and lumped approach: (a) the MSM-SEM, (b) the stored energy U, of each link and forces/torques F, in MSM, (c) the V]M-
SEM and the total stored energy Uc.

where Fy is the vector of applied wrenches on end-effector in task-space. K¢ is the task-space stiffness matrix of the
manipulator. K is the joint-space stiffness matrix.

In this method, either the applied forces Fy or resultant deflections AX are assumed to be known. Ky may be computed
by using the analytical representations of beams [28,40,41], by using numerical results of FEM [42], or by using experimental
results [43]. Therefore, while VJM produces computationally efficient models, these models can also produce reliable results.

Intially, the idea of the virtual joints was introduced by Salisbury and Craig [44]. Then, the concept was extended for
parallel mechanisms by Gosselin [17]. Later, the method is improved for parallel manipulators as their compliant links are
denoted by one dimensional linear and torsional springs [45]. In [28], VM is further improved by including the influence
of passive joints in the calculation of stiffness model for parallel mechanisms. Some relatively recent studies using VJM are
presented in [46,47].

The reasons for selecting this method in this study are as follows:

o It permits a systematic approach in stiffness modeling of parallel manipulators,
o It can easily be modified with the results of FEM and experimental studies [48],
o It may be optimized to be fast enough for use in a real-time control loop and design optimization.

2.4. Strain energy method

SEM is a computation approach for lumped and distributed models. Elastic potential energy stored in the compliant
bodies are investigated in this method [15]. If the stored energy is known, the compliant displacements can be computed
assuming that there is no permanent shape deformation. Castigliano’s theorem [49-51] is used in this method, and the
stiffness matrix is obtained by computing the Hessian matrix of the potential energy [52] as follows:

1, - - 02U
Uc = jAFeY);tCCAFexts Cc= a2, (2.5)
1, - - 02U,
Us = = AECo ARy, C5= —=2 26
b= 50K CAR. C o2 (2.6)

where U¢ and Uy are the strain energies that are obtained in terms of Cartesian space and joint-space variables, respectively.
Note that, Uc = Ug. Cc and C, are the compliance matrices defined in Cartesian space and joint space, respectively. Fy and
Fy are the force/torque vectors denoted in the Cartesian space and joint space, respectively (see Fig. 5).

The drawback of the approach is the difficulty in obtaining an analytic representation. It becomes a significant problem
when links cannot be represented by simple structures like beams and tubes. This method is employed in [53] for a 6-
DOF parallel mechanism. In [54], a parallelogram-type parallel mechanism’s stiffness model is obtained and compared with
the FEM results. In [30], a general approach for SEM-based stiffness modeling is proposed for over-constrained parallel
mechanisms with SCARA motion, and in [31], this method is applied for over-constrained parallel mechanisms.
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Fig. 6. Kinematic sketches of the R-CUBE mechanism [13]: (a) The manipulator, (b) variables of ith serial chain where i is one of the serial chains.

3. A case study on an R-CUBE mechanism
3.1. Kinematics model

R-CUBE manipulator is introduced in [20] with two different structural designs. The active linkage group is determined
as a parallelogram in one of its design. In the other design, a single link is used as the active link. In this study, we focus on
the design solution without the parallelograms since it has relatively fewer moving parts, which result in smaller moving
inertia and a smaller number of joints. These are beneficial in a haptic application to minimize the impedance mechanical
characteristics. Moreover, the single link version requires less computational costs for stiffness modeling as compared with
parallelograms. This manipulator has 3 translational DOF at its mobile platform with a decoupled motion structure. The
actuated links are attached to the base. They are connected to a mobile platform via 2R passive serial kinematic chains. In
Fig. 6, a sketch that provides information on the kinematics of the R-CUBE mechanism is illustrated.

In Fig. 6, initial frame of kth serial chain is located on LT,(CO) unit vector where k=1, 2, 3. LTIEU) indicates the unit vector
belonging to the jth frame of the ith serial chain. lT’(CO) [| LT,(}’) where p is the frame of the mobile platform. Kinematic con-

straints align ugl‘r’) , 11(325) , 11(335) with 11(135), ﬁgw), LT?S) vectors, respectively. Note that, dimensions of the mobile platform do
not change the coordinates of the mobile platform frame because the origin of this frame is defined at the intersection point
of ﬁff’) vectors for k =1, 2, 3. In this case, the forward kinematics is represented by a single equation as follows:

. . - T
ri=S+hsingy fori=123 and i=[r, 1, 5] (3.1)
where S is a constant distance between the origin and 1T§i0). l; is a common link length for all the serial kinematic chains’

first link. © denotes the position of the mobile platform with respect to the origin.

3.2. VJM stiffness model

VJM model of the R-CUBE mechanism is derived by implementing the virtual joint variables into the compliant kinemat-
ics formulations. In a general format, a virtual joint can be defined as follows [19]:

H,(0;) =T, (6T, (95)7‘3 (95 )R, (9$)R2 (95)R3 (95) (3.2)

where H, denotes the homogeneous transformation matrix for virtual joints and 9-1‘] is the column matrix containing virtual
joint variables of the jth body in the ith serial chain. R, and T, are homogeneous transformation matrices for pure rotation
and pure translation where k denotes the rotation/translation axis for k = 1, 2, 3. Superscripts of ;; denote element number

in 49_1-]-. A sketch of R-CUBE’s compliant kinematics is illustrated in Fig. 7.
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Fig. 7. Compliant kinematics of the manipulator and its virtual joint model where AJ is active joint, PJ] is passive joint, V] is virtual joint, MP is mobile
platform, B is base.

The mathematical model for compliant forward kinematics of the ith serial chain is represented by Eqs. (3.3) to (3.8).
Since all three serial kinematic chains are connected to each other at a single point on the mobile platform, the total
homogeneous transformation matrices calculated for all serial chains are equal to each other as shown in Eq. (3.9).

H™ = Ry (9i)T1 (1)Hy (G3) (33)
H® 1 K2) — Ry (¢1p)Ry (—7 /2)R3 (9i3)T1 (l)Hy (6;2) (34)
H 1) = Ry (9ia)T1(13)Hy (0) (3.5)
H® ) = Rs(¢is) (3.6)
Hy = HO0) gi0K) 0 Ke) g (Ko Ko) gy K. i5) g 5.0) (3.7)
Hy; = |:I;I: F;ﬁi| (3.8)
Hy1 = Hgo = Hys (3.9)

where Ry; and ry; denote the rotation and position matrices of the mobile platform including the virtual joints. Hy; is the
homogeneous transformation matrix containing the active, passive, and virtual joint variables. Under external wrenches,
compliant displacements calculated from each serial chain should be equal to each other such that AHyx; = AHyg, = AHs
assuming that the mobile platform is rigid. Since the mobile platform is considered to be rigid, its dimensions do not affect
the stiffness model. However, the offsets of the mobile platform should be considered if the external force/torque vector is
not applied at the origin of the mobile platform frame.

The joint variables are presented in column matrix form as follows:

_ T _
Api = [(012 ¥z Pig (015]4“7 qi = ¢in (3.10)
5 = - ~ T
bi = [9,-71. 91'72- 6i§]18x1 (3.11)
- = _ T
Q= [eiT qITJi q”]23x1 (3.12)

where Q; contains all joint variables for the ith serial chain. By making use of general notation of Q;, Jacobian matrix can be
procured for all joint variables including active, passive, and virtual ones.

[ 5]
— = | T k| fork=1,2,...,23 (3.13)
o7 1

where subscript k denotes the k™ variable of Q;.

Angular velocity coefficients are obtained by using the derivative of the rotation matrix. 2, is a skew-symmetric matrix
which contains the angular velocity coefficients. By using the col operator, angular velocity coefficients are obtained in a
column matrix format Eq. (3.14). Linear velocity coefficients in column matrix form V;, are obtained by differentiating 7y;
with respect to the Qyth variable as shown in Eq. (3.15). Finally, 6 x 1 column Jacobian matrix, jg;. of Qyth variables are
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formed as shown in Eq. (3.16).

IR 0 —Qiks  Qik,

Qu = aQ’:’R,Tﬁ: Qiks 0 —Qiky |, Qy = col(Qy) = [Quky  Qik, Qik3]T (3.14)
k —Qik,  Qiky 0

_ O

Vik:ﬁ (3.15)

- — - T

= (75 ] (316)

The Jacobian matrix Ji; containing active, passive, and virtual joints for the ith serial chain is formulated by using the
column matrices that are mentioned above. It is then divided into sub-Jacobian matrices as Jy;, Jp;, and J,; that are obtained
by differentiation with respect to the virtual joints, passive joints, and active joint, respectively.

Joi=lkn  Jaa - Jkinslg, g (317)
Joi= ko Jaizo S Jkizz]g.q (3.18)
Jai = [Jkizs ], , (3.19)
Jai=[o Ty Jailg s (3.20)

Based on the assumption presented in (2.2), obtained Jacobian matrices are used to calculate the compliant deflections
of the mobile platform as follows:

AXi =JiiAQ (3.21)

AX; = Joi AO; +J i Adpi + Jai Adin (3.22)

where AX; is 6 x 1 column matrix containing translational and rotational compliant deflections of the last frame of the ith
serial chain. A operator denotes the change in conditions between loaded and unloaded states.
Jxi in Eq. (3.21) is used for mapping external wrenches in Cartesian space to joint-space forces/torques as follows:

Fii = JxiFoxe (3.23)

where [F;]23x1 is the joint-space force/torque vector for virtual, passive, and active joints, respectively. [Fext]gx1 is the exter-
nal wrench including three-dimensional forces and moments. F; can be divided into 3 sub-components, and the force/torque
vector of each joint are calculated as follows:

_ _ - _ T _T = _T = - 9T =

Fao=[F Fi Fi] =[Js 0 0] Fx+[0 J, O] Fx+[0 0 Jy] Fou (3.24)

where [Fy;ligx1. [F_p,-]4x1, and [Fg]q .1 are the joint-space force/torque for virtual, passive, and active joints, respectively.
Fy; is functions of the stiffness matrices and deflections in joint-space.

Fei = diag(Ky;. K, Koi) AQ; (3.25)
Ky; = diag(Kgi1. Koiz, Koi3)18x18 (3.26)
CEA /I, 0 0 0 0 0
0 12ELB 0 0 0 —6ELyP
0 0 12EL, /12 O 6EL/I2 0
Ko — i/l yi/l 3.7
Oik 0 0 0 G/l 0 0 (3.27)
0 0 6EL /2 O 4ElL/l, 0
|0 —6ELR 0 0 0 4L/l |

where Ay, I, I are the area and the second moments of the link cross-section area. Ey and Gy are the Young and Coulomb
modulus of the link material. J; is the polar moment. Sub-script k denotes the kth link. Kj; denotes the structural stiffness
matrix of a single serial chain in joint-space. Ky;, for k = 1, 2, 3 denotes each respective link’s stiffness matrix. Consequently,
the size of Ky; is 18 x 18. K};; and K,; denote the 4 x 4 stiffness matrix for passive joints and stiffness coefficient for active
joint.

Eq. (3.25) is rearranged in Cartesian space by making use of Egs. (3.23) and (3.21).

JkiFexe = diag(Kg;, K i, Ki) AQ; and Jii! AX; = AQ; (3.28)

= Fou = Jii diag(Kpir, Koin, Koi3)Jii AX: (3.29)
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When Jj; is substituted to the above equation, the following equality is obtained.
Foxe = Ui Kod! +150 Ky + 15" Kl ) AXq (3.30)

AX; is the computed compliant displacement of the last frame of the ith serial chain. Adpi # 0 since passive joints are
free to rotate about their own axes with the assumption that the joint frictions can be neglected. It is assumed that active
joints are locked to obtain information on the structural stiffness; hence, Ag;; = 0. AG; = 0; because in the initial condition
there is no load on the system and /M@ = 0. According to the previous assumptions and investigations, AX; in Eq. (3.22) is
updated as follows:

= AX; = Joib; +J i AGpi (3.31)
The above equality is substituted in Eq. (3.30) and it is simplified as:
Foxe = Ui Kol +1, Ky, ) AX, (3.32)

Since passive joints do not generate reaction torques in their rotation axes assuming that there is no friction, Ky = 0.
Consequently, F; only contains forces and torques of virtual joints. Therefore, Eq. (3.32) is further simplified in Eq. (3.33) and

Eq. (3.34) is obtained. 6; is solved from Eq. (3.34).

Foxe = Uy] Koy AX; (3.33)

Fore = J5! Koib; (334)

JhiFe =0 (3.35)
The structural stiffness matrix K is defined in Eq. (3.33).

Kei = U, Koidp xs (3.36)

However, this calculation omits the effects of passive joints. Therefore, rank(K¢;) = 6 of the above matrix. Since passive
joints are free to rotate, they decrease the rank of stiffness matrix K. This effect is included by constructing the following
homogeneous relation matrix by using Egs. (3.33) and (3.35).

UoikGiTs) Ty |[ For ] [AKi (3.37)
I 0 [[Ag:] Lo |

Taking the inverse of the matrix that is on the left-hand side of Eq. (3.37) produces a rank deficient Ky matrix. The
homogeneous relation matrix is invertible if det(lgi](,i) # 0. The inversion is shown as follows:

-1

Uoil5i 150 Jpi _ I:[Kfi]ﬁxﬁ
Ih 0

where upper-left 6 x 6 sub-part of the above inversion contains the desired modified K matrix.

K; matrices are summed up in order to obtain the Cartesian stiffness matrix as if they are springs connected in parallel
to the mobile platform as shown in Eq. (3.39).

N] (3.38)

~ ~

3
Kc=> K (3.39)
i=1

If there is no external wrench on the mobile platform (Fx = 0), K¢ takes the following form in Eq. (3.40). For small
deflections and loads, this matrix can be used without resulting in large errors. If |Fx:| >> 0, an iterative approach should
be used and K- must be recomputed for each iteration.

S 0 0 K> Ko
0o K& 0 K& 0 KZ®
Kc = 0 0 KC(333) I<C(34) KSS) 0 (3.40)
0 k&Y KV KEY 4Kk K& K
P T G (O I
SR K& KE® KO 4+ K9 |
Units of the elements of K¢ are illustrated by re-organizing this matrix as 3 x 3 sub-matrices in Eq. (3.41).
Kcyn  Kcs
K- = Ko KCD] (3.41)
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Fig. 8. Significant locations in the workspace. Black circles denote these poses. Solid lines that connect these poses show that they are kinematically
symmetric.

where K¢y, Kcg, Kcc, and Kcp have the units of N/m, Nfrad, Nfrad, and Nm, respectively.
In this study, it is assumed that the applied wrenches are known. This is an accurate assumption for a haptic scenario
since the actuators are used to reflect desired/calculated resistance forces to the user. Since the wrenches are known, the

compliance matrix is computed to obtain compliant displacements. The compliance matrix, Cc, and its sub-components are
given as follows:

_ Cca Ce
Cc=K'= 3.42
- [Ccc cm} (34

where C¢y, Ccg, Ccc, and Cop have the units of m/N, rad|N, rad/N, and (Nm)~!, respectively. Compliant deflections are com-
puted as:

AX = CcFox:. (3.43)

4. Simulation setup

The manipulator has the maximum/minimum kinematic, stiffness, or dynamic performances at some poses. These poses
are critical poses that contain important information about the manipulator. These configurations turn out to be the ones
when the active links are fully folded, fully extended, and in their home position. In its current optimized design of the R-
CUBE mechanism, the maximum range of active joint variables is limited between +30°. This generates 27 poses for +30°
and 0° for each active joint variable. The locations of these poses in the workspace are shown in Fig. 8 and an example
location set is given in Fig. 9(a) to illustrate the poses of a random selection of active joint positions. 10 active joint position
combinations were selected to identify the test poses (TPs). These poses provide sufficient information for stiffness model
verification thanks to the symmetric architecture of the manipulator. The selected TPs are presented in Table 1 and shown
in Fig. 9(b).

The manipulator was designed to display three-dimensional forces to the user in a haptic scenario. In addition, the
prototype has a passive spherical joint that connects the handle on the mobile platform. Also, the rotation center of the

Table 1
Active joint values of TPs, TP=TP(q11, q21, 31), —30 = —30°, +30 = +30°, 0 = 0°.

Active joint variables  TP1 TP2  TP3 TP4 TP5 TP6 TP7 TP8 TP9 TP10

qn -30 0 +30 O 0 0 0 +30 +30 O
q21 -30 0 +30 O 0 +30 -30 -30 -30 -30
q3 -30 0 +30 +30 -30 +30 -30 -30 +30 +30
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Fig. 9. Locations in the workspace: (a) example locations of the mobile platform for a randomly selected active joint angle set, (b) locations of selected
TPs.

Fig. 10. CAD sketch of the mobile platform.

spherical joint is coincident with the mobile platform frame. Hence, it is not possible to induce external moments to the
mobile platform. A sketch of a possible design of the mobile platform is illustrated in Fig. 10. In this way, the intersection
of the axes of the revolute joints that connect the serial chains to the mobile platform is aligned with the center of the
ball-in-socket joint, which is used to mount the handle to the mobile platform. Hence, neglecting the moments due to the
frictions in the ball-in-socket joint, only external three-dimensional forces can be exerted on the mobile platform by the
human operator. Even though the current design does not permit applying torsional loads, we have considered this kind of
loading for verification purpose and the generality of the proposed approach. Hence, computed stiffness matrices are always
6 x 6, and therefore, computation time includes the time spent for computing the translational and rotational compliant
displacements.

Forces and torques ranging between +5 N and +1 Nm are selected to be applied to the manipulator’s mobile platform.
The force range is the maximum force range of the designed haptic device. On the other hand, the range of torque input
is considered as a unit input for verification purpose of the stiffness model. In a three dimensional space, it is possible
to obtain 23 combinations of load for the proposed ranges. Hence, 8 loading combinations are possible for each loading
type. Each combination is identified as a load combination (LC) in Table 2 for forces and Table 3 for torques. In VJM and
FEM computations, gravitation and dynamic effects were excluded. The reason to exclude the dynamic effects is that the
haptic device usually displays resistive forces to the user at a static condition such as the boundary of a virtual wall. A map
of the compliant displacements due to the gravitational effects can be made for any location of the workspace. Thus, this
information can be used as a bias in the overall compliant displacement calculation of the end-effector in order to decrease
the overall computational cost of the stiffness model calculation.
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Table 2
Magnitude of applied loads and load combinations of forces.

Direction  LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8

i +5N 45N 45N 45N 5N 5N 5N 5N
iy +5N 45N 5N -5N 45N 45N 5N 5N
g +5N 5N 45N -5N 45N -5N 45N 5N

Table 3

Magnitude of applied loads and load combinations of torques.
Direction  LC1 Lc2 LC3 LC4 LC5 LC6 LC7 LC8
T +INm +1Nm +1Nm +INm -1Nm -1Nm -1Nm -1Nm
i +1Nm +1Nm -1Nm -1Nm +INm +INm -1Nm —1Nm
i +1Nm -1Nm +INm -1Nm +INm -1Nm +1Nm —1Nm

Several simulations were executed to compare FEM and VJM. Computations were conducted on the same computer to
have a fair comparison. ANSYS Workbench was used for FEM computations. VJM model was constructed in MATLAB soft-
ware. The same link structures were used in both models. R-CUBE mechanism’s CAD model is shown in Fig. 11(a). Although
it is relatively easy to obtain a FEM of this complex geometry, it is not easy to construct an exact VJM model due to the ir-
regular shape of the links. Especially, the connection between the links and universal joints is relatively hard to implement
in VJM. Since the main aim in this study is to have a fair comparison between the FEM and VJM in terms of computa-
tion time and accuracy of results, the link design was simplified to hollow tubes to be used in both models as shown in
Fig. 11(b). The dimensions of the manipulator are the result of an optimal design process [55].

Hollow tube’s inner and outer diameters are identical for each link. Material type of links was set as structural steel.
The dimensions of the tubes and the material properties are given in Fig. 13. VJM model was obtained according to these
dimensions and material properties. Configuration of the manipulator changes in each TP. Hence, a stiffness matrix must be
obtained in each TP. Then, LCs should be applied to the models in both simulation environments. A solution algorithm for
VJM model is given in Fig. 12 to represent the application of all LCs on all TPs.

The simplified CAD model was also implemented in an ANSYS Workbench simulation. The base structure was defined
as a rigid body in the “Geometry” section of the “Static Structural” tool. The remaining bodies were set as elastic bodies.
Then, orthogonal coordinate frames were defined at each tip of the links, as shown in Fig 14(a). Next, a “remote point”
was defined on each coordinate frame. These remote points are body-fixed points, and they are constrained by the circular
profile of hollow tube structure, as shown in Fig. 14(b). This relation is also preserved after the meshing process, as shown in
Fig. 14(c). Hence, when the meshes are deformed under the load, the remote point and its reference frame also deform with
the attached mesh structure. By observing each remote point, it is possible to obtain the translation and rotation information
of all frames, including the mobile platform frame. The connection of the links was achieved via the remote points. These
points were connected by using “Revolute” and “Universal” joint options. This connection is illustrated in Fig. 15 for a single
serial chain. At the mobile platform frame, the last remote points of each serial chain intersect with each other. All last

Fig. 11. Sketches of R-CUBE: (a) a CAD model, (b) a simplified CAD model for use in simulations.
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Fig. 12. Flow chart for VJM model simulation.

three remote points of serial chains were connected with each other by using the aforementioned joint options to construct
the manipulator structure.

After the abovementioned settings were done, the meshing process was conducted. The mesh size was set to be constant
for all links and determined as “4 mm”. This size is the same as the thickness of the tubes. Since the tubes have a regular
shape, reducing the mesh size does not affect the accuracy, but it extends the computation time. “Iterative” solver was
selected in this FEM analysis to obtain relatively more precise results. If an external wrench is applied to the manipulator,
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Fig. 14. ANSYS sketches of a link. (a) Reference frame and remote point at the tip of a link, (b) Constraint of the remote point and hollow tube profile, (c)
meshed tube structure and remote point.
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Fig. 15. Illustration of connections in ANSYS. RP: Remote Point, R]: Revolute Joint, UJ: Universal Joint, B: Base, MP: Mobile Platform.

force/torque distribution among bodies changes due to compliant deflections. Hence, “Large Deflections” were set to “On” to
calculate this change in force/torque distribution. All of the force, torque, displacement, and rotation convergence tolerances
were set to 0.05%. Tighter tolerances increase the computation time but do not have an effect on the accuracy of results. A
detailed simulation setup information is given in Table 4. A “Parameter Set” was prepared in ANSYS Workbench for 8 LCs.
However, 10 TPs were manually set.

5. Results

In this section, FEM and VJM results are presented and compared. First, compliant displacements computed from each
model are given. Then, errors between the results obtained from both models are calculated. Finally, the computation times
of each model are compared to each other. In addition, a correction term is introduced and applied to VJM model results to
increase its accuracy with respect to the FEM results.

5.1. Deflection results of FEM and VM

A general deflection vector, AX, is given by the following equality:

AXi = [AXTTD,hk | A)_(RTD,hk]T (51)

TD and RD denote the translational and rotational deflections. Subscripts h and k denote the test point (TP), and load condi-
tion (LC), respectively. TDs are examined for force loads, and RDs are investigated for torsional loads. Accordingly, absolute
and error percentage between the VJM and the FEM results are computed separately for TD, and RD according to the fol-
lowing equations.



[ Gorgiilii, G. Carbone and M.L.C. Dede/Mechanism and Machine Theory 143 (2020) 103614 15

Errorg e = | AXyjmg e — AXrem gkl (5.2)

[ AXyimg e — AXeemgnkl

%EITOrg 1jp = x 100

ud (5.3)
| AXrewm,g bk
where subscript VJM and FEM indicates the simulation type, and g denotes TD or RD. Hence, A)_(g.hk has three elements for
VJM and FEM.

Absolute translational compliant deflections, ||A)_(TD,hk||, for both FEM and VJM are given in Fig. 16. Relative errors and
error percentages are also illustrated in Fig. 16 for all TPs and LCs. Minimum translational compliant deflection values are
observed at TP7 in both VJM and FEM results for LC2 and LC7 load conditions. Minimum deflection with VJM is computed
as 1.11 x 10~ mm and minimum deflection with FEM is computed as 1.25 x 10! mm. Maximum deflections for VM and
FEM are observed at TP3 for load conditions in between LC2 and LC7. Maximum deflections are computed as 1.18 mm for
VJM and 1.3 mm for FEM. Among all LCs and TPs, minimum VJM-FEM error is computed to be 0.014 mm, and the maximum
error is obtained as 0.12 mm. In TP7 for LC4 and LC5, error percentage is less than 8% while LC2 and LC7 load conditions’
error percentages are up to 12%. In general, error percentages vary between 8% and 10%.

Absolute rotational compliant deflections, IIAXRD_thI, relative errors, and error percentages are given in Fig. 17. The max-
imum and the minimum VJM rotations are obtained at TP1 and TP9 as 0.4362 and 0.4069 degrees for all LCs. The maximum
rotation in FEM is computed at TP1 as 0.5072 degrees for LC2, LC5, and LC8 while the minimum rotation is acquired at TP9
as 0.4393 degrees for LC1, LC4, and LC7. The minimum error is observed as 0.0208 degrees at TP9 for LC4. The maximum
error is 0.1008 degrees at TP1 for LC8 and LC5. The minimum error percentage is around 6% while the maximum one is
above 12%.

There are two important phenomena for the presented results. The first one is the VJM compliant deflection results are
always lower than the FEM results for both translation and rotation. Secondly, rotational deflection results for VJM do not
depend on LC change. Both behaviors of VJM model are explained by the linear solution algorithm given in Fig. 12. In order
to conduct a direct solution for fast operating algorithm, 6; is set to 0 to compute Jp; matrix. Later, this matrix is used for
calculating the force/torque distribution of the external wrench on virtual joints. Since 9_,- is set to 0, this mapping always
considers an undeformed kinematic configuration. FEM, on the other hand, uses an iterative solution process which up-
dates the kinematics in each iteration by issuing the deformations calculated in the previous iteration. Hence, force/torque
distribution on FEM nodes are re-computed in each iteration. This iterative computation generates relatively more accurate
results. Setting 6; to 0 also changes the numerical values of C- matrix elements in Eq. (3.42). When the matrix is computed
with 9_,- =0, off-diagonal elements of Ccp is equal to 0. Hence, Ccp is a diagonal sub-matrix of Cc. This indicates that ro-
tational deflections about an axis are generated by the torques that are applied about that specific motion axis. In other
words, applying a moment about one axis does not cause rotation about the other axes. This makes the torque/rotation
relation decoupled for the investigated manipulator. It should be noted that when an iterative algorithm is employed for
VJM, this decoupled behavior will not be observed. Iterative computation causes the generation of non-zero elements in the
off-diagonal elements of Cqp. Nevertheless, FEM updates kinematics after each iteration due to the calculated deformations.
Therefore, the LC effect on the rotational deflections becomes visible in FEM simulation.

5.2. Average translational deflection results

Average translational compliant deflections were acquired to evaluate the accuracy of VJM against FEM results. Average
translational compliant displacement was computed via the arithmetic mean of the absolute value of compliant displace-
ments at each TP for all LCs. In Fig. 18(a), average translational deflections are illustrated for FEM and VJM results. The

Table 4
ANSYS simulation setup details.

Mesh properties

Analysis settings

Size Function Curvature Solver Target Mechanical APDL
Relevance Center Fine Number of Steps 1
Transition Slow Solver Type Iterative
Span Angle Center Fine Weak Springs On
Curvature Normal Angle 18° Spring Stiffness Program Controlled
Min Size 2 mm Solver Pivot Check Program Controlled
Max Face Size 4 mm Large Deflection On
Max Tet Size 5 mm Newton-Raphson Program Controlled
Growth Rate Default Force Convergence On
Remaining Parameters Default Moment Convergence On
Total Nodes 5578 Displacement Convergence  On
Element Type Quad4 SHELL181 Rotation Convergence On

Tolerance 0.05%

Minimum Reference

0.001 N, 0.001 Nm, 0 m, 0°




16 L. Gorgiilii, G. Carbone and M.LC. Dede/Mechanism and Machine Theory 143 (2020) 103614

(TP1)
g, 107 4928
5 .
3 * - 4.26
52 §ssses O E 4.4
1 422700
0 4.2 9
12345678 12345678
LC LC
(TP3) (TP4)
1073 . -5
1.5 25880410
888888 9.7
=) . 94 H
& ) EE 9] xS
0.5
° . 8.8
0 0.2 8.5
12345678 12345678
LC LC
(TP5) (TP6)
1070 1074

RE
CRNSC RNy e

123456788

12345678
LC LC
(TP7) (TP7)
1074 1075

12345678
LC

(TP10)
1073

0 0.4 8 0.2
12345678 12345678 12345678
LC LC LC LC
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the results of VJM and FEM, respectively for TD graphs. “®” and “[0" denote the % errors and relative errors, respectively for RE - %E graphs.
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Fig. 18. Compliant deflection and error graphs: (a) Average Translational Deflection (ATD) of VJM and FEM, (b) VJM-FEM ATD error.

deflections obtained in both methods have the same trend in results. At TP3, TP6, and TP9, higher average deflections are
observed. In these poses, the relative error of the two methods also increases, as shown in Fig. 18(b). The most and the
least stiff poses are TP3 (fully extended pose) and TP1 (fully folded pose), respectively. While the highest errors are ob-
tained at TP3, the lowest errors are observed at TP1. Hence, for more compliant poses of the mechanism, the accuracy of
the compliant displacement results obtained from VJM is relatively lower.

In Fig. 19(a)-(c), average compliant deflections calculated with VJM and FEM are given for each motion axis. In these 3
plots, the most and the least compliant deflections are observed at TP3 and TP1, as expected. At TP1, TP2, and TP3, the same
amount of deflections are observed along each respective motion axis, since these poses are isotropic poses.

In Fig. 19(d), error percentages of average deflections are illustrated. The error is around 10%. The maximum variation of
errors is less than 1% except for LTEO) axis of TP7. The error percentage obtained along 1150) and LT;O) is relatively smaller than
the general error trend. Even though TP1 has the minimum deflection among all results, its error percentage is relatively
higher.

Having small compliant deflections makes the error percentage computation more sensitive to numerical errors. For this
reason, relatively higher error percentages are calculated for TP1.

TP7 is the second stiffest pose. Hence, smaller compliant deflections are computed at this pose. Similar to TP1, its error
percentage is high. However, the error percentage observed at TP7 has a different condition relative to TP1, which is ob-
served by a peak in error percentage. Note that, TP1 is an isotropic pose due to its kinematic configuration. This isotropy
makes the VJM and FEM models less nonlinear at this pose. TP7, on the other hand, is not an isotropic pose. As a result of
this, the difference between FEM and VJM results is relatively higher in one direction, which is ﬂfo) axis of TP7.

TP3 is the one in which the lowest error percentage is obtained, even though the highest deflections are computed at
the pose. The reason for this is that TP3 is an isotropic pose and the calculated compliant displacements are larger, which
decreases the effect of the numerical errors. Finally, we can state that 10% error is obtained by VJM against FEM results with
a 1% variation.

Correlation between FEM and V]M results is shown in Fig. 20(a). FEM results are plotted against VJM results. Also, y(x) =
x function is plotted. 100% correlation is achieved when the plotted data is on y(x) = x line. In the compliant displacement
range between —0.2 mm and 0.2 mm, the results obtained from both models show a high correlation. The corresponding
poses to these data have higher stiffness. Accordingly, deflections at these poses are smaller. This makes them closer to
the correlation line. Data in between 0.2 mm and 0.8 mm, and —0.8 mm and —0.2 mm show less correlation since the
corresponding poses are more compliant. As a result, they are away from the correlation line. It is observed that the plotted
data have a linear distribution. Therefore, it is possible to define a line function as y(x) = mx where m denotes the slope.
When m is determined, it is possible to compensate for the VJM model errors.

When a line is fitted to data points, its slope is computed as m = 1.098. The slope of the perfect correlation line is 1.
When it is compared with m, it can be seen that the error is 9.8%, which is the error of VJM as stated earlier. All the results
of VJM are multiplied by m = 1.098. Next, a corrected correlation graph is plotted, as shown in Fig. 20(b). This time, almost
a perfect correlation is achieved. The error percentage is given in Fig. 21.

5.3. Average rotational deflection results

Average rotational compliant deflections were obtained similarly to translational ones, via the arithmetic mean of the
absolute value of rotational compliant displacements at each TP for all LCs. In Fig. 22(a), average rotational deflections
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Fig. 19. Compliant deflection and error graphs: (a) ATD along @{”’, (b) ATD along &), (c) ATD along &"’ and (d) VJM-FEM % error of each axis.

results are given for both, FEM and VJM. Notice that, the rotational deflections in both methods have the same trend.
Unlike translational deflections, the highest average deflections are observed at TP1, TP5, and TP7. Similarly, TP3, TP6,
and TP9 show high stiffness against the torsional loads. From here, we concluded that the translational and rotational
stiffness of R-CUBE mechanism is inversely proportional. Hence, TP1 is the least stiff pose in terms of rotational stiff-
ness while it is the stiffest pose for translational stiffness. Similarly, TP3 has the highest stiffness against torsional loads
even though it is the most compliant pose against force loads. The relative error between the methods increases when
the deflections are high, as shown in Fig. 22(b). This is the natural result of iterative (FEM) and direct (VJM) solution
methods.

In Fig. 23(a)-(c), average compliant deflections are illustrated for each motion axis. TP1, TP2, and TP3 have the same
average deflection value for each motion axis since these poses are isotropic. The highest average rotational deflection is
observed for LTgo) axis at TP7. The stiffest axis is ﬁ§0) axis at TP9.

In Fig. 23(d), error percentages of average rotational deflections are illustrated. The error is around 10%, and the maxi-
mum variation of errors is about 0.2%. Since the relative deflections between the FEM and VJM are large, there is no peak
in error percentage graph that is caused by numerical errors.

Rotational deflection correlation is shown in Fig. 24(a). y(x) = x function is plotted as the full correlation line. In the
compliant deflections are grouped in the range of (—0.3°, —0.2°), and (0.2°, 0.3°). Since the coupling effect between the axes
in terms of rotational stiffness is small, there is no deflection distribution along the correlation line.
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The function with the slope of m = 1.098 is used for scaling the rotational deflections of VJM results. A corrected corre-
lation graph is plotted, as shown in Fig. 24(b). Again, almost a perfect correlation is achieved. The error percentage is given

in Fig. 25, which shows that VJM has an error of less than 0.4%.

5.4. Computation time results

Tests are conducted at 10 TPs and 8 LCs in both ANSYS and MATLAB simulation environments. The simulation tests
are carried out on the same computer with the following specifications: 4 Core 2.5 GHz processor and 8GB of RAM. Two
cores of the processor are used in ANSYS simulations, while only one core is used in MATLAB simulations. It is observed
that computation time does not vary depending on TPs and/or LCs. Computation time is calculated to be 24 s for FEM
simulation in ANSYS environment. MATLAB program running the VJM model obtains the solution in 0.0005 s (0.5 ms).

Percentage difference in computation time is calculated as follows:

Itvpm — tem | « 100 = 10.0005 — 24|
trEM 24
where t function shows elapsed time for computation. 99.998% difference is calculated between FEM and VJM calculation

durations. Hence, calculations of VJM is significantly faster than FEM.

x 100 = 99.998% (5.4)
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6. Conclusion

In this work, a stiffness model of a haptic device’s parallel mechanism, R-CUBE mechanism, is investigated to be used
in real-time control and optimal design of this haptic device. The main aim is to minimize the computation time while
preserving accuracy. Among the other stiffness modeling techniques, VJM is preferred due to its compatibility in a real-time
control loop application and also its ability to minimize the duration of a design optimization process.

As a result of the simulation tests, the computation time of VJM is measured to be 0.5 ms, which is 99.998% faster than
the FEM solution. Even though VJM is faster, it has about 10% error as compared with FEM results. We have noticed that
there is a linear correlation between both models. Hence, a simple scaling constant is used to correct the VJM model. By
using the results of FEM, VJM is revised, and the error percentage is reduced to ~ 1% for translational deflections, and ~ 0.5%
for rotational deflections. Finally, a stiffness model for this specific mechanism and use case is obtained being fast enough
for optimal design and real-time-control and being as accurate as the FEM model. However, this correction is only valid for
the applied ranges of forces and torques. Therefore, it is necessary to re-evaluate the correction term, which is devised in
this article, when a different range of forces/torques is required to be studied. Moreover, a correction term can be obtained
as a function of force. If the deflections are small enough, a single scaling factor may be conveniently used for corrections.

As a future study, the VJM model can be calibrated with respect to the experimental results obtained from a prototype,
acquired by using experimentally obtained deflection data for correction. In an experimental study, when measuring the
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total stiffness of the mechanism, the effect of the stiffness of the joints along with the links are obtained. In this case, when
the VJM model is revised with this experimental data, it will include the joint stiffness properties as well since the virtual
joints and passive joints are located at the same positions.
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