
Expert Systems With Applications 141 (2020) 112947

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

DGStream: High quality and efficiency stream clustering algorithm

Rowanda Ahmed

a , ∗, Gökhan Dalkılıç b , Yusuf Erten

c

a Computer Engineering Department, Izmir Institute of Technology, Urla, Izmir 35433, Turkey
b Computer Engineering Department, Dokuz Eylül University, Izmir 35390, Turkey.
c Computer Engineering Department, İzmir Institute of Technology and Bakırçay University, Izmir 35433 and 35665, Turkey

a r t i c l e i n f o

Article history:

Received 6 March 2019

Revised 9 September 2019

Accepted 9 September 2019

Available online 10 September 2019

Keywords:

Data streams architectures

Data stream mining

Grid-based clustering

Density-based clustering

Online clustering

a b s t r a c t

Recently as applications produce overwhelming data streams, the need for strategies to analyze and clus-

ter streaming data becomes an urgent and a crucial research area for knowledge discovery. The main

objective and the key aim of data stream clustering is to gain insights into incoming data. Recognizing

all probable patterns in this boundless data which arrives at varying speeds and structure and evolves

over time, is very important in this analysis process. The existing data stream clustering strategies so far,

all suffer from different limitations, like the inability to find the arbitrary shaped clusters and handling

outliers in addition to requiring some parameter information for data processing. For fast, accurate, ef-

ficient and effective handling for all these challenges, we proposed DGStream, a new online-offline grid

and density-based stream clustering algorithm. We conducted many experiments and evaluated the per-

formance of DGStream over different simulated databases and for different parameter settings where a

wide variety of concept drifts, novelty, evolving data, number and size of clusters and outlier detection

are considered. Our algorithm is suitable for applications where the interest lies in the most recent in-

formation like stock market, or if the analysis of existing information is required as well as cases where

both the old and the recent information are all equally important. The experiments, over the synthetic

and real datasets, show that our proposed algorithm outperforms the other algorithms in efficiency.

© 2019 Elsevier Ltd. All rights reserved.

1

m

A

o

a

d

e

t

f

S

s

s

b

c

s

m

d

(

i

e

s

l

t

s

a

&

s

i

m

s

l

t

s

s

e

a

w

h

0

. Introduction

Clustering is a very important and crucial process in data

ining especially due to the broad applicability of streaming data.

dvances in the hardware technology and proliferated deployment

f data-gathering devices such as sensors, large amounts of data

re collected in a fast-growing rate. Analyzing and clustering these

ata streams, we need a strategy to constantly and periodically

valuate the data and present updated fresh results and views of

he incoming records. Beyond the challenges static data clustering

aces, stream data clustering has to cope with additional ones.

ome of these challenges are (Ahmed, Dalkılıç, & Erten, 2018):

ingle-pass processing of the endless data streams and, at the

ame time, extracting necessary information from the data to

e used in the clustering process afterward. The limited time

onstraints should be observed and processing of every record

hould be able to keep up with the streaming speed. Limited

emory is also an important parameter to be considered since the

ata is unbounded and it is not practical if the stream processing
∗ Corresponding author.

E-mail addresses: rowandaahmed@iyte.edu.tr (R. Ahmed), dalkilic@cs.deu.edu.tr

G. Dalkılıç), muraterten@iyte.edu.tr (Y. Erten).

2

m

a

c

ttps://doi.org/10.1016/j.eswa.2019.112947

957-4174/© 2019 Elsevier Ltd. All rights reserved.
s done with buffering or storing an unbounded stream data. Data

volving continuously over time (Liu, Hou, & Yang, 2016), which is

o common in today’s applications is another challenge to be tack-

ed. In addition to many other challenges are concept drift, varying

ime allowances, novelty, scalability, number of clusters, clusters’

izes, and outlier detection, also should all be considered. There

re many data clustering methods for static data (Jain, Zhang,

 Chang, 2006), and there are various methods for clustering

tream data too. We can categorize the stream clustering methods

nto three types; prototype methods, density-based methods, and

odel-based methods (Alazeez, Jassim, & Du, 2017). The initial

tream data clustering paradigms suffer from several limitations

ike buffering for later handling or dropping some data which lead

o poor-quality clustering results. These approaches deal with the

tream data clustering as static clustering but in a continuous ver-

ion (Guha, Meyerson, Mishra, Motwani, & O’Callaghan, 2003). The

volving data are not taken into consideration in these paradigms

nd both recent and the outdated data are handled in the same

ay. Moving window is proposed to solve this problem (Barbará,

002) to a certain extent. Other more recent stream clustering

ethods tried to solve some of these limitations and several

lgorithms are proposed to cluster the stream data, and we shall

ompare some of the density-based clustering ones such as the

https://doi.org/10.1016/j.eswa.2019.112947
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2019.112947&domain=pdf
mailto:rowandaahmed@iyte.edu.tr
mailto:dalkilic@cs.deu.edu.tr
mailto:muraterten@iyte.edu.tr
https://doi.org/10.1016/j.eswa.2019.112947

2 R. Ahmed, G. Dalkılıç and Y. Erten / Expert Systems With Applications 141 (2020) 112947

s

o

2

e

n

d

o

c

i

c

o

a

h

n

o

2

c

a

d

2

I

p

a

g

t

r

o

c

v

w

d

w

D

R

s

t

2

t

t

r

r

t

v

p

l

p

t

Fig. 1. Online-offline stream clustering process (Carnein et al., 2017).
ones detailed in Aggarwal, Han, Wang, and Yu (2003) ; Cao, Estert,

Qian, and Zhou (2006) ; Ruiz, Spiliopoulou, and Menasalvas (2010) ,

and Kranen, Assent, Baldauf, and Seidl (2011) in the related work

section.

The remainder of this paper is organized as follows: in

Section 2 , we shall present a quick overview of the algorithms for

clustering static data, then we will go in more detail over some

related work in the field of stream clustering. In Section 3 , we

will go over the most important performance metrics which we

used and computed in Section 5 of this paper to compare our

proposed method and other clustering methods’ qualities and ef-

ficiencies. Section 4 describes our new proposed stream clustering

method, DGStream, in detail. In Section 5 , we will present the

results of many experiments carried out on one synthetic and

many real-world datasets and show their results along with many

performance metrics of our proposed algorithm, and also present

the comparison of the results with several outstanding stream

clustering algorithms in terms of precision, recall, F1-score mea-

sure, clustering purity, and time complexity. Finally, Section 6 will

conclude our paper.

2. Related work

There are a huge number of clustering algorithms both for

static and stream data. Earlier stream data clustering algorithms

are designed as continuous versions of the static ones. We shall,

therefore, describe briefly the algorithms developed for clustering

static data. We shall then continue with the others developed for

clustering the stream data focusing on the density-based ones

more than others. That is because density-based clustering, clus-

tering which depends on density-connected points or employing

density function, has many merits such as discovering the clusters

of arbitrary shapes, handling noise, performing calculations with-

out relying on too many parameters, and they can do it in just one

scan. We will describe some of them in the following subsections.

2.1. Static clustering algorithms

Several density-based clustering algorithms are developed

to cluster the static data like DBSCAN (Ester, Kriegel, Sander,

Xu et al., 1996), DENCLUE (Hinneburg, Keim et al., 1998), OP-

TICS (Ankerst, Breunig, Kriegel, & Sander, 1999), and CLIQUE

(Agrawal, Gehrke, Gunopulos, & Raghavan, 1998). We shall de-

scribe them in some detail below.

2.1.1. DBSCAN: Density-based spatial clustering of application with

noise

DBSCAN is a density-based algorithm that focuses on cluster-

ing large and noisy spatial datasets. It performs a neighborhood

density analysis according to two parameters, MinPts, and Eps,

so a point which has in its Eps radius at least MinPts points, is

classified as the core one. A point which does not qualify as the

core point but exists in the neighborhood of one core point can be

classified as the border point. Any point that is neither a core point

nor a border point is a noise point. The core and border points are

assigned to one cluster but the noise points are not. DBSCAN can

discover not only the spherical clusters but also the clusters of in-

terwoven arbitrary shapes due to the clusters growing according to

a density-based connectivity analysis (Ester et al., 1996). DBSCAN

has its limitations; DBSCAN classifies the dataset into two types of

regions depending on a predefined threshold, the high density re-

gions that are used in forming the final result of clustering as the

cluster sets, and the low density regions that will be considered as

noise. However, in some cases, many points identified as noises by

DBSCAN may end up being meaningful data but with a low den-
ity that is under the threshold set. So, DBSCAN doesn’t work well

n datasets with varying densities and the high-dimensional ones.

.1.2. DENCLUE: DENsity-based CLUstering

DENCLUE (Hinneburg et al., 1998) is based on a solid math-

matical foundation; it is like DBSCAN as it is also based on

eighborhoods analysis. It figures out how one data point in the

ataset can affect its neighborhood. The summation of influences

f all data points is the overall density of the data space. It

omputes the local maxima of the density function and identifies

t as density attractors that are used to assign data points to the

lusters. Objects belong to related or the same cluster depending

n whether they are associated with related or the same density

ttractor. It has been designed for clustering the multimedia in

igh-dimensional spatial datasets and having large amounts of

oise. DENCLUE is significantly faster than DBSCAN but it depends

n a large number of parameters.

.1.3. OPTICS: Ordering points to identify clustering structure

OPTICS (Ankerst et al., 1999) is a phase in the clustering pro-

ess; it can identify the clustering structure. It orders the points

nd the reachability distances in a better way to be used by other

ensity-based algorithms afterwards.

.1.4. CLIQUE

CLIQUE is both a grid and a density-based clustering algorithm.

t is designed for clustering high dimensional spatial datasets. It

artitions the dimensions into grids, the dense grids that contain

t least a threshold number of data points, and the non-dense

rids. Then it tries to find the embedded clusters in subspaces of

he dataset (Ruiz et al., 2010). However, the above-mentioned algo-

ithms do not work when the data is a stream. They are applicable

nly to spatial datasets. As mentioned before, earlier data stream

lustering algorithms have been developed to be the continuous

ersions of the static clustering algorithms. These approaches deal

ith the recent data and the outdated data in the same way. They

o not consider the evolving data. Many techniques like moving

indow are proposed to partially solve this problem (Babcock,

atar, Motwani, & O’Callaghan, 2003; Barbará, 2002; Gama, 2010).

ecently, many algorithms have been developed to cluster data

treams. We intend to review in the following section some of

hem focusing on the density-based clustering approaches.

.2. Stream clustering algorithms

Many clustering algorithms are developed recently to cluster

he stream data. Many of these algorithms use two-component

echnique: online–offline. Generally, in the online phase, the algo-

ithm captures necessary summary statistics of the incoming data

ecords. The output from the online phase is the micro-clusters

hat will be used in the offline phase to derive the macro-clusters

ia re-clustering. In the offline phase, the stream algorithm em-

loys one of the algorithms usually used for static data clustering

ike K-means or DBSCAN. Fig. 1 shows the idea of using the online

hase to convert the stream data points to micro-clusters and

he offline phase to convert the micro-clusters to macro-clusters

R. Ahmed, G. Dalkılıç and Y. Erten / Expert Systems With Applications 141 (2020) 112947 3

(

S

2

o

u

d

i

a

(

o

h

n

c

w

a

g

t

t

b

a

a

fi

t

v

o

c

i

n

t

t

h

i

M

m

w

t

o

s

a

r

s

2

(

e

t

m

d

F

s

W

d

v

a

c

m

f

a

a

e

m

g

g

e

e

h

t

v

2

a

I

i

m

fi

t

c

t

m

d

f

t

i

e

T

t

s

r

i

p

p

o

i

C

g

e

c

(

3

i

d

a

t

h

c

a

b

3

D

s

f

u

t

o

o

c

n

T

c

a

D

E
 Ahmed et al., 2018; Amini, Saboohi, Ying Wah, & Herawan, 2014;

ilva et al., 2013).

.2.1. Denstream

DenStream clustering algorithm (Cao et al., 2006) has an

nline-offline framework. DenStream does not depend on many

ser-defined parameters like the number of clusters. Also, it can

iscover the arbitrary shaped clusters in addition to its capabil-

ty of handling the outliers. Unlike other DBSCAN-based stream

lgorithms, DenStream is based on the idea of micro-clusters

 Aggarwal et al., 2003) as neighborhood weighing areas instead

f the neighborhood number of points in some radius. And, it

as three types of micro-clusters; the first one is the dense one,

amed core-micro-cluster, it summarizes the arbitrary shape

lusters. The second type is the potential core-micro-cluster; the

eight of this micro-cluster is greater than a threshold value,

nd its weight decays over time using some decay function to

ive less importance to the outdated or old data records. The

hird type is the outlier micro-cluster; its weight is less than the

hreshold. When the outlier micro-cluster grows and its weight

ecomes above a predefined threshold, it is upgraded to become

 potential one. DenStream applies a variant from the DBSCAN

lgorithm (Ester et al., 1996) in the offline phase to generate the

nal macro-clusters. When a new data record arrives, it is added

o its closest potential core micro-cluster if its addition does not

iolate the radius constraint. If it does, it is added to the closest

utlier-cluster if this can absorb the new point. Otherwise, a new

luster is initialized and marked as an outlier cluster. The most

mportant advantage of DenStream is saving time since it does

ot merge data into a micro-cluster. Moreover, it can discover

he clusters with arbitrary shapes, yet it can effectively recognize

he potential clusters from the real outliers. On the other hand, it

andles outliers with low accuracy, so removing them in the prun-

ng phase is a time-consuming process (Thoriya & Shukla, 2015).

oreover, it does not delete or merge micro-clusters to release

emory space. rDenStream algorithm is a version of DenStream

hich is developed to handle outlier’s problem in a better way

han the DenStream. However, rDenStream suffers from the mem-

ry complexity and the time complexity since it processes and

aves the historical outlier buffer. Another limitation of DenStream

lgorithm is that it cannot be applied to applications in which the

ecent data distributions are the most important because it is not

o well in tracking the cluster evolution.

.2.2. DStream

DStream is a density-based grid structure clustering algorithm

Chen and Tu., 2007). The algorithm in its online phase maps

ach input point into a grid. And in its offline phase, it clusters

he grids according to the density that is computed. DStream

aintains the densities of all grid cells so that it can decay these

ensities overtime to capture the dynamic changes of the stream.

urther, DStream removes sporadic grids, which improves the

ystem time efficiency and reduces the memory requirements.

hen new input data record arrives, DStream maps this input

ata record into some density grid and updates its characteristic

ector accordingly. And then, in every gap time, DStream detects

nd removes sporadic grids from the grid-list and adjusts the

lustering depending on the neighboring dense cells. DStream has

any advantages like adjusting the clusters in real-time; learning

rom data streams that drift over time; finding the interwoven

nd arbitrarily shaped clusters, detecting and handling the noises

nd outliers; and employing a decaying technique to deal with the

volving data streams (Thoriya & Shukla, 2015). And DStream has

any shortcomings; like considering the minimum time interval

ap while practically the algorithm depends on many interval

aps (Thoriya & Shukla, 2015). DStream’s another limitation is the
xistence of those grids at the borders of the clusters, which influ-

nces memory especially when the algorithm works with a very

igh dimensional dataset; these grids need to be removed even if

hey are non-empty. DD-Stream (Jia, Tan, & Yong, 2008) that is a

ariation from DStream has been developed tosolve this limitation.

.2.3. Clustree

ClusTree is a parameter-free algorithm, which handles streams

daptively according to the speed they arrive (Kranen et al., 2011).

t proposes new strategies to deal with the clustering to improve

ts result in slow streams’ cases, and it employs aggregation

echanisms to handle the fast streams. Additionally, it is the

rst algorithm that can present the result to the user at any time

hrough maintaining a current clustering result over time, and it

an update the final clustering result for the incoming data. It puts

he stream points’ ages into account; it gives more importance to

ore recent data by employing some decay function. When a new

ata point arrives, it is descended into the closest leaf as a new

eature vector if it has empty places for new records. Otherwise,

he leaf either splits into two nodes or the new incoming point

s merged to the closest feature vector. Except for the leaf nodes,

ach node has a buffer to store other feature vectors temporarily.

his offers a benefit when a new incoming record arrives while

he others are descending down the tree, the descending one is

tored temporarily in the buffer where it stays until a new data

ecord descends to the same place in the tree, it then completes

ts descend down to the true leaf. ClusTree uses the leaf nodes to

roduce the final macro-clusters. ClusTree is the first algorithm

roposed for the any-time merit, it is also parameter free, capable

f detecting outliers, it adapts concept drift in the stream and

t adapts itself to the stream speed automatically. However, in

lusTree, parameter selection is sometimes based on an exhaustive

rid search that incorrectly clusters the dataset’s samples and

nds up with bad performance metric. The reported results always

orrespond to the best execution obtained in the grid search

 Márquez, Otero, Félix, & García, 2018).

. Performance metrics and basic definitions

We will be exposed to some of the terms over and over again

n this paper. So, we shall first explain some theoretical notions by

efining the concepts like the SPtree, Density Grids and the Char-

cteristic Vector in the following Section 3.1 . And after explaining

he methodology of our proposed algorithm in details, to prove

ow well it performs we compared it with other related stream

lustering algorithms. Regarding some performance metrics in the

ssessment process, so let’s move over the used metrics in some

rief in Section 3.2 .

.1. Basic definitions

efinition 1. SPtree: is a clustered multidimensional index

tructure called as the segment-page clustering (SP-clustering)

or efficient sequential access. In our proposed algorithm, we

sed it to improve the query performance by continuous sorting

he relevant points in contiguous related grids. Using SPTree in

ur density-based algorithm is important because dependency

n density relies on the neighborhood relationships in growing

lusters through the continuity of arriving data points, the con-

ectedness of micro-clusters, and the convergence between them.

opological Spaces allows for the definition of concepts such as

ontinuity, connectedness, and convergence, though accelerating

nd improving the clustering process afterwards.

efinition 2. Density grids: the grid contains many data records.

ach record x inside the grid has its own density coefficient, and

4 R. Ahmed, G. Dalkılıç and Y. Erten / Expert Systems With Applications 141 (2020) 112947

a

M

t

u

i

t

a

a

4

q

d

s

S

b

a

t

(

s

s

i

s

i

o

d

a

t

d

d

I

R

c

d

d

h

n

s

D

d

4

i

t

w

&

d

fi

b

Fig. 2. Explanation art of using the density grids in stream clustering.
this density coefficient decreases as the data record ages. To illus-

trate this concept by mathematical equations, we suppose that the

data record x arrives at time t x , so it’s timestamp T (x) = t x , and its

density coefficient at this time is D (x, t) = λt−T (x) = λt −t c , where λ
is the decay factor constant, t ∈ (0, 1). Integrating from this point,

so we can define the grid density at some time t as the whole

summation of the density coefficients of all the records belonging

to that grid. Let R(g,t) be the set of all data records belong to grid

g at time t, so the density of g is D (g, t) =

∑

x ∈ R (g,t) D (x, t) .

Definition 3. Characteristic vector: it is a tuple with multiple

information related to some grid density with the form (t, D,

status, label), where t is the arrival time if there is no update since

the last arrival time, and if there has been an update afterwards

it will be the last updating time for the grid g. D is the last grid

density. Status is either sparse grid or normal one, and label is the

grid class label.

3.2. Performance metrics

Clustering is unsupervised learning; it is interested in dividing

the data into similar groups in the absence of class labels in

contrast to supervised learning where you have the data, the

class labels, and the algorithm. Supervised learning just learns a

function from the input. The absence of class labels in clustering

makes the evaluation and the quality assessment more difficult

and complicated than supervised classification. So, in clustering, to

learn about the data helps to model its distribution and underlying

structure. In this sub-section, we summarized the performance

metrics we used to evaluate the results of our experiments in

Section 5 .

Performance metrics determine how good the obtained clus-

tering reflects the actual data. Purity, precision, and Recall are

examples of extrinsic methods where the ground truths are avail-

able. Precision-recall is a measure of how much the prediction

is successful, especially in the case of very imbalanced classes.

In information retrieval, precision measures the output relevancy,

i.e. the fraction of retrieved relevant documents, but recall deals

with the returned results and measures the fraction of the rele-

vant documents that are successfully retrieved. F1-score can be

defined as the mean or weighted average of recall and precision

to evaluate an algorithm. F1-score provides a single measurement

for a system and it reaches the best score at 1 and worst score at

0. Purity measures the extent to which clusters contains a single

class (Manning, Raghavan, & Schütze, 2010). To calculate the purity

for each cluster, find out the most common class in it and count

the number of its data points. After that, compute the average

of overall clusters. A perfect purity score of 1 can be reached by

mapping each data record to its own class.

4. Our proposed algorithm methodology: DGStream

DGStream algorithm assumes special architecture to clus-

ter such unlimited data records. Like most stream algorithms,

DGStream also assumes a model with a discrete-time step model,

where every incoming record is labeled by an integer timestamp

0, 1, 2... n. The timestamp indicates the record arrival time. As the

online-offline approach has been integrated successfully with many

stream clustering algorithms (Cao et al., 2006; Chen & Tu, 2007;

Kranen et al., 2011), DGStream has an online-offline processing

framework as well. In the online phase, it uses feature vectors rep-

resented by a micro-cluster for each grid to dynamically maintain

the necessary information about the uninterrupted arriving data

records. While in the offline phase, DGStream employs a DBSCAN

algorithm to benefit from its speed and to improve the running

time. And it depends on grids to reduce the time complexity
nd accelerates the speed once more (Alhanjouri & Ahmed, 2012;

ekky, 2016). DGStream also employs a decay function mechanism

o accurately reflect the stream evolution process. In addition, it

ses a mechanism to delete the sparse grids to maintain process-

ng only with a limited number of dense grids, which saves both

ime and memory of the system. DGStream also employs a mech-

nism to get rid of the noise and to handle outliers. We will see

ll the steps that DGStream follows in the following subsections.

.1. Dataset input and standardization

Standardization of the features of the dataset is a general re-

uirement for many data mining algorithms. It aims to rescale the

istribution of data values; i.e. make the data in the dataset dimen-

ionless, though it helps in defining data in some standard indices.

o, in our algorithm, it is necessary to standardize the datasets

ecause we are going to calculate the similarity, dissimilarity and

 number of associated performance metrics of the resulted clus-

ers after the clustering process. Z-score and minimum-maximum

or normalization, or min-max scaling) are popular examples for

tandardizations. In implementing DGStream, we used min-max

tandardization that maps the minimum value to 0, and the max-

mum value to 1. This type of scaling gets the standard deviations

maller, which can reduce the effect of the outliers.

Since the stream data distribution is almost non-stationary,

.e. it changes over time, which is also known as concept drift;

ur algorithm detects and considers these changes through the

amped window model. To deal with this phenomenon, DGStream

ssigns the most recent incoming data points to higher weights

han the weights of the older points. These weights exponentially

ecrease as the time goes via an employed decaying function. The

ensity-based algorithms in Cao et al. (2006) ; Chen and Tu (2007) ;

saksson, Dunham, and Hahsler (2012) also adapted this model.

egarding non-stationary stream, DGStream decides to delete or

reate some grid according to the overall sum of all weights of

ata points in that grid. So that if one grid keeps receiving new

ata points the weight of the grid will be high because of the

igh weight of the new data. In case the grid does not receive any

ew data and its data points age over the time to become below

ome threshold, DGStream decides to delete this grid. In this way,

GStream’s grids can be adapted to support the nonstationary

ata stream.

.2. Divide the multi-dimensional data stream into grids

DGStream divides the multi-dimensional space of the input data

nto density grids; we used this technique because it is impractical

o maintain all the raw data. These small grids each has its density

hich is associated with its data records counted in it (Alhanjouri

 Ahmed, 2012). And after that, the clustering process keeps these

ensity grids and deals with each grid as a local unit to output the

nal cluster set. Fig. 2 shows how the density grids can be used

etween the online and offline phases to cluster the data streams.

R. Ahmed, G. Dalkılıç and Y. Erten / Expert Systems With Applications 141 (2020) 112947 5

Fig. 3. Black points are the representative points in each cell.

4

t

r

c

i

a

t

t

h

s

s

r

c

a

i

m

d

t

b

d

e

o

a

t

l

o

p

d

r

i

m

t

p

f

o

t

r

n

t

f

p

f

s

a

2

4

g

t

D

Fig. 4. DGStream algorithm pseudocode.

Fig. 5. MainClustering method pseudocode in DGStream algorithm.

i

c

u

D

p

u

t

t

a

c

p

g

d

t

d

a

g

i

v

s

i

t

c

a

c

a

t

t

o

t

d

t

i

A

t

a

t

.3. Choosing representative points from the density grids

In the clustering step, instead of taking all the data points

o process together, it is better to choose a set from them to

epresent the whole data stream we want to process. As in CURE

lustering algorithm (Guha, Rastogi, & Shim, 2001), it adapts the

dea of choosing points from each cluster which are well scattered

nd can represent the cluster. After this process, it shrinks them

owards the mean of the cluster by some fraction to mitigate

he outliers’ effects. Using representative points in clustering

elps in identifying both spherical and non-spherical clusters and

peed up the clustering process. Therefore, DGStream uses the

ame principle of choosing well-scattered representative points to

epresent all the read time horizon bunch of objects such that the

hosen representative points attempt to capture the physical shape

nd the geometry of the dataset. Choosing representative points

nstead of all the data points they represent in DGStream, provides

any benefits. It saves execution time because this leads us to

eal only with these representative points instead of all the data

hey represent. For example, in the case of computing the distance

etween two clusters, the only needed distance to compute is the

istance between the closest pair of representative points from

ach cluster. It also saves the system memory because we need

nly to store the representative points as input to the clustering

lgorithm. In this regard, there are other techniques to do this like

he constructions in De Silva and Carlsson (2004) . For instance, the

azy-witness construction robustly computes topological invariants

f geometric objects. It samples the dataset and uses only a com-

aratively small subset point cloud that can accurately capture the

ataset shape. It firstly selects landmark points from the dataset

andomly. On the other hand, for achieving more spaced points,

t may select this subset by performing a sequential maximum-

inimum selection such that selecting the point that maximizes

he minimum distance to all the selected points chosen so far.

As we said; it is important for the chosen representative data

oints to capture the data stream from which they are chosen

rom, i.e. the original stream and the chosen representative set

f points must have the same shape. It is clear from Fig. 3 that

he black points that are used in the pre-clustering process are

epresenting the input stream. Moreover, every time we read a

umber of examples from the incoming stream, according to the

ime horizon parameter, we choose well-scattered data points

rom the read data to represent it and continue repeating this

rocess as the stream flow over time. The non-chosen data points

rom the stream will be labeled to the resulted clusters, as we will

ee later in this paper. This step benefits in giving our algorithm

 good time improvement (Alhanjouri & Ahmed, 2012; Mekky,

016), as depicted in the experimental results section.

.4. DGStream clustering process

Fig. 4 outlines the overall DGStream algorithm. First, the al-

orithm reads a large number of normalized data points, and

hen it chooses a number of points to represent these. After that,

GStream can build the SP tree of density grids and computes the
nitial cluster set by clustering the tree leaves. Then, it updates the

haracteristic vectors of the clustered grids from their initial val-

es. Depending on the values stored in the characteristic vectors,

GStream classifies the grids to dense and sparse ones. The other

oints which are not chosen are labeled to the output clusters

sing some strategy for labeling the points to the best clusters

hey can belong. After that, whenever some data record arrives,

he online phase of DGStream reads and maps it to the most suit-

ble density grid in the SP tree, and accordingly updates the grid’s

haracteristic vector values. While in the offline phase, at every

re-specified gap time, DGStream computes the densities of the

rids and checks out if there is any sparse grid upgrade to become

ense or if there is any grid that must be marked as a sparse grid

o be deleted afterwards. The cluster set is checked and corrected

ynamically by calling MainClustering method indicated in Fig. 5 .

To hold the dynamic characteristics of data streams, DGStream

lgorithm progressively decreases the density for each dense

rid over time if it does not receive any data records. This is an

mportant stage since the dense grids may become sparse and

ice versa. A sparse grid can be upgraded to become dense if new

tream objects are mapped to it. That is why the algorithm must

nspect the density for each grid and depending on that, it calls

he MainClustering procedure at every gap time to adjust the final

luster set result (line 4 in the code in Fig. 4). The grid density is

lways changing. DGStream updates the grid’s density only in the

ase the grid receives new input data records instead of updating

ll data records’ weights and therefore the SP tree grids’ charac-

eristic vectors as well at each time step. The time of receiving

he last data record, which is the time of updating the density

f the grid which received that record, should be recorded to be

he last update time of that grid which is considered when a new

ata record is mapped to the grid (Chen & Tu, 2007). Following

his step saves θ (N) to θ (1) in running time, which means that

t improves time efficiency since N, the number of grids, is large.

dditionally, this leads to memory saving since there is no need

o resave all the densities and all the corresponding timestamps of

ll records of the updated and not updated grids. What we need

o save for each grid is the characteristic vector.

6 R. Ahmed, G. Dalkılıç and Y. Erten / Expert Systems With Applications 141 (2020) 112947

s

s

l

f

s

C

a

d

d

i

D

r

s

r

r

s

c

b

T

o

p

w

i

d

t

s

s

i

w

D

a

s

b

C

t

c

h

C

o

e

t

s

I

a

a

M

c

e

t

t

i

s

a

t

r

p

S

t

a

b

o

i
4.5. Removing sparse grids

The very high number of grids is a critical big challenge

DGStream algorithm faces especially when the data has high-

dimensions. And since most of the grids are either empty i.e.

contains very few number of data records or do not receive stream

data records for long periods, the number of these sparse grids

increases extremely fast as the data stream flows in a high speed,

which causes an overall system slowness. So, the solution is to

detect the grids whose density become less than some specified

threshold due to small data input and remove them afterwards.

Only the dense grids taken into consideration in processing and

storing. The other sparse grids are neglected and removed af-

terwards. After that, if one removed grid receives a number of

records, it will be added back to the SPTree grids but with a zero

density in a hope to be upgraded to a dense one.

4.6. Labeling all points to the resulted cluster set

As it has been mentioned before, the clustering process occurs

only on the well-chosen data points from the incoming stream

after each time horizon. So, now is the time to do the labeling

step which works with the rest of the not-chosen stream data

points in placing each to the existing point to the most suitable

or similar macro-cluster in the resulted macro-clusters so far.

Each data point is assigned to the macro-cluster that contains the

closest representative point to this one. After doing the labeling

step, all the stream data points will be allocated to macro-clusters.

Additionally, there is a post-processing step that specialized in

merging and deleting such macro-clusters. That is macro-clusters

with the same density and close enough to each other if found,

they will be merged in one macro-cluster in the post-processing

step. In addition, when there is any macro-cluster whose weight is

lower than some specified threshold value, it will be deleted from

the cluster set and considered as an outlier.

4.7. Handling outliers

Generally, the datasets have outliers as a result of the problems

that may be faced while entering data or errors in the mea-

surement process. The distances between the outlier points and

the nearest micro-clusters are high and more than the specified

threshold in the DBSCAN offline algorithm. DGStream has its own

strategy to deal with the outliers. It detects them and marks these

points as outliers. After that, while the algorithm continues read-

ing data points from the stream, and if some outliers near each

other form such a dense grid with weight more than the specified

threshold value, it is upgraded to become a new micro-cluster.

Otherwise, if its weight becomes less and less due to the decay

factor aging, and it becomes less than some threshold, DGStream

safely deletes it without degrading the algorithm quality. Handling

outliers is a very important step to finish the clustering process

in the data stream clustering to save both time and space of the

system.

4.8. DGStream clustering stability

It is attractive to use stability-based principles when we want

to choose our models. Interestingly, it does not require a specific

model to be applied to, but it can be applied to any clustering

algorithm. One could intuitively assume that clustering stability is

very much related to simple solutions that have the most stable

parameters, but this is not necessarily true. Many studies show

that the more complicated solutions can also be stable by choosing

their parameters well, that it is needed to look at the theoretical

results when deciding the stability-based model selection.
So, we can claim that algorithm A is stable if it almost

urely outputs the same clustering result on a sample whose

ize approaches to infinity every time we run it. That is

im m →∞

P r(A (W m

) = C k) ; m is the sample size, W is the relative

requency, C k is the k output clustering result. Then, we can mea-

ure the instability from instability (A) := 1 − lim m →∞

P r(A (W m

) =
 k) , which yields zero if algorithm A is stable. Instability of

n algorithm is also obtained by computing the expected

istance between two clustering’s results on two different

atasets of the same size (Von Luxburg et al., 2010) that is

nstability (A) := E(distance (C k (x n) , C k (̀x n))) .

When it comes to our proposed algorithm, stability of

GStream lies in its robustness against independent resampling,

andom fluctuations in the data, and the replacements of the sub-

amples. We achieve this by choosing the best combinations with

ight values for the parameters and so we can get good clustering

esults with the best stability and avoid wrong ones such as wrong

plit for at least one true cluster or wrong merge for at least two

lusters. In more detail, in DGStream to evaluate the clustering sta-

ility, we need to run it several times on slightly different datasets.

o achieve this, we need to generate a number of troubled versions

f the dataset. These dataset versions are generated by subsam-

ling or adding noise and outliers. In subsampling, we need to

ork with samples of different sizes. We drew such random noise-

nlaid subsamples. In order not to lose the structure we want to

iscover by clustering with our algorithm, we must not change

he samples too often. On the other hand, we might observe no

ignificant stability results if the change in the dataset is not

ufficient. So, it is a trade-off which we must cautiously deal with

n all cases. Then, as usual, doing the dimensionality reduction to

ork with a low-dimension dataset is important. In this regard,

GStream doesn’t commit any over-sensitive reactions to noise

nd outliers, which is considered as the most prominent factor in

tumbling these bad results of splitting or merging clusters.

Let’s compare our algorithm with the stable approach proposed

y Carlsson and MÃŠmoli (2010) regarding clustering stability.

arlsson and Memoli’s approach constructs a hierarchical rela-

ionship among data to do the clustering process. DGStream is a

lustering algorithm based on density and grids which detects and

andles the dense clusters in the dataset in a different way from

arlsson and Memoli’s approach. Carlsson and Memoli’s approach

btains an existence and uniqueness theorem instead of a non-

xistence result obtained by (Kleinberg, 2002) previously which

ells that it is impossible for any standard clustering algorithm to

imultaneously satisfy scale invariance, richness, and consistency.

n Carlsson and Memoli’s approach, the stability and convergence

re established for a single linkage hierarchical clustering (SLHC)

nd that relaxes Kleinberg’s impossibility result. Carlsson and

emoli’s approach allows getting a hierarchical output from

lustering methods, and then one can obtain uniqueness and

xistence. Carlsson and Memoli convergence results also refine

he Hartigan’s previous observation (Hartigan, 1985) regarding

he underlying density. It does single linkage (SL) clustering of an

ndependent, identically distributed (i.i.d.) samples from that den-

ity. The convergence results adopt general settings and it neither

ssumes such a smooth manifold underlying space nor assumes

hat the underlying probability measure must be with a density

elated to any reference measure. It does not matter how the

oints are distributed inside the space grids in the dataset. So, the

LHC is insensitive to variations in the density (Hartigan, 1981).

DGStream does care about how the data is distributed inside

he space grids, the order of arrival of the records, time they

rrived and enter the clustering process is important in DGStream

ecause DGStream employs a decay factor which ages the points

ver time. The point may exist and may belong to some cluster

n some time, while it does not exist later or may belong to

R. Ahmed, G. Dalkılıç and Y. Erten / Expert Systems With Applications 141 (2020) 112947 7

a

a

d

i

o

l

i

g

c

p

t

o

c

i

g

p

s

n

w

d

o

w

T

c

n

w

t

c

u

5

a

p

(

(

d

d

(

1

a

w

s

T

0

c

i

w

6

5

d

8

m

c

d

M

c

o

b

t

a

Table 1

Performance matrices for clustering 80 0 0 data records from

Chameleon synthetic dataset by using DenStream, DStream, Clus-

Tree, and DGStream stream clustering algorithms.

DenStream DStream ClusTree DGStream

Time (ms) 8569 9389 6734 3238

F1-score 0.2964 1 0.92 0.9575

Purity 1 1 1 0.918

Precision 1 1 1 0.921

Recall 0.174 1 0.85 0.997

t

m

a

e

l

s

n

i

H

d

t

C

T

w

e

e

o

g

g

p

a

a

D

p

a

c

m

a

d

t

r

r

w

a

c

o

F

a

a

b

i

r

m

t

s

5

C

a

f

d
nother cluster. It depends mainly on the timestamp of the point

nd its assigned weight and what happens to its weight by the

ecay factor as the time goes. So, DGStream is not an order

nvariant method; clustering a set of pints randomly in a different

rder can produce a different cluster set. In topology as well; the

ocation of the point, to which grid it belongs is also of interest

n DGStream. Therefore, the order of the records in the space

rids also matters and that is what DGStream depends on while

apturing the shape of the dataset, and deciding to merge these

oints together to form a cluster, and separating those points from

hose to form two or more clusters depending on the distribution

f data points in the dataset. Moreover, at any time, DGStream

an output a real-time result of the obtained cluster set up to that

nstant.

DGStream deals with weighted data points and hence weighted

rids and these weights controlled by decay factor which ages the

oints and so the grids over time. This approach makes DGStream

trong against random fluctuations in the data. DGStream takes

otice of which data is outdated and deletes it. It is also aware of

hich grid at which time must be upgraded to become dense or

owngraded to become a candidate to be deleted later. It is aware

f clusters when they must be merged with another clusters or

hen one becomes necessary to be divided into two clusters.

he number of clusters in DGStream is a parameter in a constant

hange with time in line with the shape of the data which is

aturally in a constant change. Grids change due to their ages,

hich expose deleting some, while emerging others to address

he evolving data over time better. DGStream is based on intuitive

onsiderations to achieve good stability, and that is why it can be

sed in a wide range of practical real-life applications.

. Experimental results

DGStream algorithm is an algorithm which combines quality

nd efficiency. We evaluated the quality and the efficiency of our

roposed algorithm DGStream and compared it with DenStream

 Cao et al., 2006), DStream (Chen & Tu, 2007), and ClusTree

 Kranen et al., 2011). We mainly conducted our experiments and

emonstrated their results on five datasets. One is a synthetic

ataset, which is Chameleon dataset. And the others, KDDCup’99

 Hettich & Bay, 1999), Covertype (Blackard, Dean, & Anderson,

998), Adult (Kohavi & Becker, 1996), and NSE Stocks (NSE, 2017)

re real-world datasets. For both synthetic and real-world datasets,

e focus on the numeric variables. So, for all datasets, we first

tandardize the features by minimum-maximum normalization.

his means, the minimum value in one feature is mapped to

 and the maximum value in it is mapped to 1. Note that this

onsiderably improves the clustering result. The algorithms were

mplemented in Java programming language and the experiments

ere conducted on an Intel Core(TM) i7-4510U CPU @ 2.60GHz,

.00GB RAM machine.

.1. Chameleon synthetic dataset results

The Chameleon dataset is an important and famous synthetic

ataset in data mining and machine learning field, and contains

0 0 0 elements. In this study, we used the first and second nu-

erical attributes of the dataset. The chameleon dataset is a

omplicated dataset with nested arbitrary shaped clusters, multi-

ense clusters with a lot of noise (Alhanjouri & Ahmed, 2012;

ekky, 2016). Our experiments show good results in both the

lustering quality and efficiency. For the same dataset, Chameleon,

ur proposed algorithm DGStream, gives a better result in quality

y solving the overlapping problem between clusters and reduces

he noise. Also, it catches the outlier points much better, and so,

 more accurate shape of clusters appears. Applying DGStream on
he synthetic dataset gives very good results that demonstrate how

uch our proposed algorithm solved the problems that CluStream

nd all other k-means based algorithms are suffering from. In our

xperiment with Chameleon dataset evaluation, we set the horizon

ength value h to 10 0 0. Every time we read h samples from the

tream, we update the current result of the cluster set with these

ew h samples and continue repeating this process. This process

mproves the quality of clustering over time (Cao et al., 2006;

ahsler & Bolaños, 2016). Fig. 6 .a shows the original Chameleon

ataset containing all the 80 0 0 data records. Fig. 6 b,c,d,e show

he results for clustering the dataset with DenStream, DStream,

lusTree, and our proposed algorithm, DGStream respectively.

hese results show that our algorithm handles the outliers better

ith high accuracy and within lower time compared to the oth-

rs. rDenStream (xiong Liu, fei Guo, Kang, & Huang, 2009) is an

nhanced version from DenStream algorithm which handles the

utliers as well but with high time complexity. So, our algorithm

ave better quality results in determining the real clusters in the

iven dataset with a more appropriate output.

Table 1 shows the Chameleon synthetic dataset clustering

erformance metrics results of our proposed algorithm DGStream,

long with other streaming algorithms. Performance metrics

re time, purity, precision, recall, and F1-score. It is clear that

GStream algorithm and all other compared algorithms can

erfectly determine the true classes. The purity values of all

lgorithms are approximately or almost exactly 1. That does not

ontradict the empirical study in Carnein, Assenmacher, and Traut-

ann (2017) for comparing the most important stream clustering

lgorithms which operate on t8.8k dataset, a similar synthetic

ataset, to calculate the purity of the algorithms. We notice that

he clustering output depends on the insertion order. Regarding

ecall, DGStream works well in retrieving almost all the relevant

ecords to each cluster without lifting except a little. That is

hy DGStream’s recall is better and almost outperforms all other

lgorithms. However, neither the precision nor the recall alone

an measure the success of the prediction, especially in the case

f very imbalanced classes like our dataset examples. Therefore,

1-score is the best to be calculated for the algorithm evaluation

ccording to it is the harmonic mean or weighted average of recall

nd precision. It is clear that the score for DGStream is a little bit

etter than ClusTree’s F1-score measure, but in DenStream case,

t is much better, that is because the DenStream algorithm cannot

etrieve all the required records, which resulted in its bad recall

easure. Finally in the other important measure, which is the

ime; DGStream is remarkably faster than all other algorithms as

hown in Table 1 .

.2. Real-world datasets results

We tested DGStream on three real-world datasets; KDDCup’99,

overtype, and Adult. Each dataset poses different challenges

nd different cluster shapes. The details are described in the

ollowing sub-subsections. Applying DGStream on the real-world

atasets gives very good results, which indicates that our proposed

8 R. Ahmed, G. Dalkılıç and Y. Erten / Expert Systems With Applications 141 (2020) 112947

Fig. 6. Results for clustering 80 0 0 points from Chameleon Synthetic dataset by DenStream, DStream, ClusTree, and DGStream stream clustering algorithms.

Fig. 7. Results for clustering 80 0 0 points from KDDCup’99 real-world stream data by DenStream, DStream, ClusTree, and DGStream stream clustering algorithms.

Table 2

Performance matrices for clustering 80 0 0 data records from KDD-

Cup’99 real-world stream data by using DenStream, DStream, Clus-

Tree, and DGStream stream clustering algorithms.

DenStream DStream ClusTree DGStream

Time (ms) 16513 15295 4458 1737

F1-score 0.969 0.9995 0.979 0.99066

Purity 1 1 1 0.9815

Precision 1 1 1 0.98147

Recall 0.966 0.999 0.96 1

Table 3

Performance matrices for clustering 20,0 0 0 data records from KDD-

Cup’99 real-world stream data by using DenStream, DStream, Clus-

Tree, and DGStream stream clustering algorithms.

DenStream DStream ClusTree DGStream

Time (ms) 9091 10917 6081 4570

F1-score 0.0498 1 0.95 0.9993

Purity 1 1 1 0.9987

Precision 1 1 1 0.9986

Recall 0.981 1 0.905 1

c

i

a

t

s

t

r

2

s

h

i

T

w

4

t

w

5

f

5

f

s

l

t

f

t

t

p
algorithm improves both quality and efficiency compared to all

existing density-based stream clustering algorithms so far.

5.2.1. KDDCup’99 real-world dataset results

Among the most popular real-world datasets used for clus-

tering data streams that we utilize is the KDDCup’99 dataset.

This dataset contains 4,898,431 network traffic data records. Its

attributes describe information about the connection such as the

duration of the connection or the protocol type. And it’s class label

predicts if the connection was normal or attack, and there are 22

different attack types (Hettich & Bay, 1999).

We use the first and second numerical features of the data

set, then we standardize the dataset according to the number of

points we operate on. Firstly, we consider clustering the first 80 0 0

observations from this dataset with a time horizon of 10 0 0. Fig. 7 a

shows the first 80 0 0 data records from the original KDDCup’99

real-world dataset. Fig. 7 b,c,d,e show the results for clustering the

same number of data records from the dataset with DenStream,

DStream, ClusTree, and our algorithm, DGStream respectively.

Here, too, we observed the same outcomes as in the previous

experiment with the synthetic Chameleon dataset, that our algo-

rithm is more successful in handling the outliers and with less

time complexity than all other stream algorithms.

For this dataset, the clustering with DGStream gives good

performance metric results as shown in Tables 2 and 3 . All stream

algorithms along with DGStream give very good purity results.

For the F1-score, the same, all algorithms perform very well or

near perfect results and that is due to the good measures for

both precision and recall for all algorithms. About the time perfor-

mance, our proposed algorithm, DGStream, is the best with much

better than all other compared stream algorithms. The time for
lustering 80 0 0 points from KDDCup’99 dataset is 1737 ms. While

t is 16513 ms, 15295 ms, and 4458 ms for DenStream, DStream,

nd ClusTree respectively.

Since this data contains more than just 80 0 0 points, we clus-

ered more than this number of points to test and compare the

calability of the stream clustering algorithms. Again, we repeated

he above process with the first 20,0 0 0 observations, and the

esults are in the Fig. 8 and Table 3 . All algorithms, in clustering

0,0 0 0 points from KDDCup’99, produce high purity clusters. As

hown in Fig. 8 it is clear that DGStream is the best in outputting

igh accurate clustering results.

DGStream’s precision and recall values are nearly perfect and so

ts F1-score. The same applies to the results of DStream algorithm.

he average running times, in the case of 20,0 0 0 data records

ith the time horizon of value 10 0 0 are 9091, 10917, 6081, and

570 ms. for DenStream, DStream, ClusTree, and DGStream respec-

ively are shown in Table 3 ., DGStream is the fastest algorithm

hen compared with the other stream clustering algorithms.

.2.2. Covertype real-world dataset results

Real-world dataset, Covertype, appears to be a challenging one

or most of the stream clustering algorithms. It contains about

81,012 data records where each record describes a defined area of

orest. The information its attributes use to describe the area are

uch as the area slope, the area shade or its elevation, and a class

abel attribute that is a number from one to seven which shows

he forest cover type. The US Forest Service (USFS) determined the

orest cover types for the observations (Blackard et al., 1998). In

his paper, we used the first and the third numerical attributes,

hen we standardized the dataset according to the number of

oints we operated on. Firstly, we consider clustering the first

R. Ahmed, G. Dalkılıç and Y. Erten / Expert Systems With Applications 141 (2020) 112947 9

Fig. 8. Results for clustering 20,0 0 0 points from KDDCup’99 real-world stream data by DenStream, DStream, ClusTree, and DGStream stream clustering algorithms.

Fig. 9. Results for clustering 80 0 0 points from Covertype real-world stream data by using DenStream, DStream, ClusTree, and DGStream stream clustering algorithms.

Fig. 10. Results for clustering 30,0 0 0 points from Covertype real-world stream data by using DenStream, DStream, ClusTree, and DGStream stream clustering algorithms.

Table 4

Performance matrices for clustering 80 0 0 data records from Cover-

type real-world stream data by using DenStream, DStream, ClusTree,

and DGStream stream clustering algorithms.

DenStream DStream ClusTree DGStream

Time (ms) 8883 9383 4058 1899

F1-score 0.3051 1 0.882 0.973

Purity 1 1 1 0.9688

Precision 1 1 1 0.9687

Recall 0.18 1 0.79 0.97713

Table 5

Performance matrices for clustering 30,0 0 0 from Covertype real-

world stream data by DenStream, DStream, ClusTree, and DGStream

stream clustering algorithms.

DenStream DStream ClusTree DGStream

Time (ms) 14423 9589 7974 6178

F1-score 0.6385 1 0.8833 0.9488

Purity 1 1 1 0.91

Precision 1 1 1 0.9098

Recall 0.469 1 0.791 0.9913

8

i

o

w

3

C

t

w

w

m

a

b

a

v

D

i

b

t

t

b

i

i

i

4

s

s

i

i

t

p

s

T

a

s

i

dataset.
0 0 0 observations from this dataset with a time horizon of 10 0 0,

n order to make a fair comparison between all stream algorithms

n both synthetic and real-world datasets. Tables 4 and 5 , along

ith Figs. 9 and 10 show the results for clustering 80 0 0 and

0,0 0 0 data records from the dataset with DenStream, DStream,

lusTree, and our algorithm, DGStream respectively. It is clear that

he DGStream clustering result is the highest quality compared
ith the other algorithms. It handles the outliers accurately and

ith high efficiency.

Table 4 shows the clustering results based on other perfor-

ance metrics for Covertype dataset first 80 0 0 observations. Most

lgorithms yield high purity after slowly increasing in purity to

ecome perfect as the clusters adjust. F1-score in both DGStream

nd DStream are the highest due to the high value of their recall

alues, as F1-score depends on both precision and recall. While

enStream’s F1-score is low depending on its recall measure, and

n ClusTree case, F1-score is quite better also because its recall is

etter. To test and compare the running time efficiency, we run

he experiments many times for each algorithm and then compute

he average time consumed for each algorithm. We observed the

est performance is for our proposed algorithm, DGStream, and it

s much faster than all other stream algorithms. While DStream

s the worse one, time performance is 9383 ms and ClusTree

s better than DStream and DenStream, its time performance is

058 ms. But ours is the best, its time performance is 1899 ms, as

hown in Table 4 .

Again, we repeated the above process with the first 30,0 0 0 ob-

ervations, and the results are in the Fig. 10 and Table 5 , DGStream

s the most successful algorithm to capture the dataset shape and

n handling the outliers. All algorithms produce high purity clus-

ers. DStream’s F1-score is perfect due to the perfect values of its

recision and recall values. Our algorithm has the second-best F1-

core because of its high precision and mostly perfect recall values.

he average running times, in this case, are 14423, 9589, 7974

nd 6178 ms for DenStream, DStream, ClusTree, and DGStream re-

pectively. Therefore, DGStream is the fastest among all algorithms

n clustering 30,0 0 0 data records from Covertype real-world

10 R. Ahmed, G. Dalkılıç and Y. Erten / Expert Systems With Applications 141 (2020) 112947

Fig. 11. Results for clustering 80 0 0 points from Adult real-world stream data by using DenStream, DStream, ClusTree, and DGStream stream clustering algorithms.

Fig. 12. Results for clustering 32,500 points from Adult real-world stream data by DenStream, DStream, ClusTree, and DGStream stream clustering algorithms.

Table 6

Performance matrices for clustering 80 0 0 data records from Adult

real-world stream data by using DenStream, DStream, ClusTree, and

DGStream stream clustering algorithms.

DenStream DStream ClusTree DGStream

Time (ms) 11451 2922 5758 1661

F1-score 0.575 1 0.8538 0.99553

Purity 1 1 1 0.99115

Precision 1 1 1 0.9911

Recall 0.404 1 0.745 1

Table 7

Performance matrices for clustering 32,500 data records from Adult

real-world stream data by using DenStream, DStream, ClusTree, and

DGStream stream clustering algorithms.

DenStream DStream ClusTree DGStream

Time (ms) 49880 29723 11958 11615

F1 -score 0.685 1 0.848 0.9995

Purity 1 1 1 0.999

Precision 1 1 1 0.999

Recall 0.521 1 0.736 1

m

t

a

f

D

f

T

f

i

C

5

w

l

t

t

s

f

s

t

a

t

D

d

1

t

o

o

t

s

p

c

C

B

P

E

(

p

t

o

t

d

a

s
5.2.3. Adult real-world dataset results

The Adult real-world dataset, also known as “Census Income”

(Kohavi & Becker, 1996), predicts whether the income exceeds

50 K / yr or not. We use the first and third numerical features of the

Adult real-world dataset. We standardize the dataset according

to the number of points we operate on. Firstly and as we did

with previously datasets all, we considered clustering the first

80 0 0 observations from this dataset with a time horizon of 10 0 0.

Tables 6 and 7 , along with Figs. 11 and 12 show the results for

clustering the 80 0 0 and 32,500 of data records from the dataset

with DenStream, DStream, ClusTree, and our algorithm, DGStream

respectively. We observed in the previous experiments with the

synthetic Chameleon, real-world KDDCup’99 and real-world Cover-

type datasets, that our algorithm is better in handling the outliers

with less time complexity than all other stream algorithms. Clus-

tering with Adult confirms the same result. Therefore, DGStream

algorithm is better in both quality and efficiency among the most

important algorithms for clustering data streams.

For this data set, the clustering with DGStream gives good

performance metric results as shown in Tables 6 and 7 . Purity is

perfect with all stream algorithms for both 80 0 0 and 32,50 0 data

records. For the F1-score, apart from the DenStream algorithm, all

the other algorithms give very good results and that is due to the

good outcomes for both precision and recall. DenStream’s recall
easure is bad and that is why its F1-score is poor. We can notice

hat our proposed algorithm’s time performance is the best among

ll other compared stream algorithms. The average running time

or clustering 80 0 0 data points from Adult dataset is 1661 ms in

GStream algorithm. While it is 11451 ms, 2922 ms, and 5758 ms

or DenStream, DStream, and ClusTree respectively as shown in

able 6 . The average running time for clustering 32,500 data points

rom Adult dataset is 4885 ms for DGStream algorithm. While it

s 11959 ms, 6237 ms, and 5206 ms for DenStream, DStream, and

lusTree respectively as shown in Table 7 .

.2.4. Stock marketing real-world dataset results

In this experiment, we chose clustering the NSE Stocks real-

orld dataset. It is the National Stock Exchange of India’s stock

istings for each trading day of 2016 and 2017. The data is compiled

o facilitate machine learning tasks on stocks, without disturbing

he Stock APIs. The data has been obtained from the NSE official

ite (NSE, 2017), The National Stock Exchange of India Ltd . Retrieved

rom https://www.nseindia.com/ . In clustering open-ended data

treams such as stock market data, it is important to capture

emporal dependencies. While Bayesian networks (Buntine, 1991)

nd dependency networks (Heckerman, Chickering, Meek, Roun-

hwaite, & Kadie, 20 0 0) model the dependencies of variables,

ynamic Bayesian Networks model discrete time temporal depen-

encies (Dean & Kanazawa, 1988; Friedman, Murphy, & Russell,

998). However, in our stream clustering, we want to model

he continuous data record timestamps, that is the arrival times

f data records. Therefore, sampling is a solution we can apply

n continues variable in order to use such a technique. Never-

heless, the sampling rate would have to be determined. Slow

ampling ends up with poor data representation, and fast sam-

ling leads to a need for multiple steps of past dependence with

ostly clustering of the stream (Gunawardana, Meek, & Xu, 2011).

ontinuous-Time Noisy-Or (Simma et al., 2008), Continuous Time

ayesian Networks (Nodelman, Shelton, & Koller, 2002; 2012),

oisson Networks (Rajaram, Graepel, & Herbrich, 2005; Truccolo,

den, Fellows, Donoghue, & Brown, 2005), and Poisson Cascades

 Simma & Jordan, 2010), are such recent solutions proposed for this

roblem. In clustering this real-world dataset, NSE Stocks, we used

he numerical features; “OPEN” which is the opening market price

f the equity symbol on the date, and the “TOTTRDQTY” which is

he total traded quantity of the equity symbol. We standardize the

ataset according to the number of points we operate on.

In this context, we try to discover the temporal dependencies

nd relations between intervals in NSE open-ended data stream

tates. DGStream learns how the recently arrived records affect

https://www.nseindia.com/

R. Ahmed, G. Dalkılıç and Y. Erten / Expert Systems With Applications 141 (2020) 112947 11

Fig. 13. Results for clustering same size of different sam ples from NSE real-world stream data without replacement by using DenStream, DStream, ClusTree, and DGStream

stream clustering algorithms.

t

S

e

c

p

r

a

m

r

r

S

F

t

s

t

s

o

i

c

r

fi

p

o

f

t

F

a

c

h

e

d

Table 8

Performance matrices for clustering same size of different sam ples from NSE real-

world stream data without replacement by DenStream, DStream, ClusTree, and

DGStream stream clustering algorithms.

DenStream DStream ClusTree DGStream

Time (ms) Sample 1 34,210 33,896 7053 3430

Sample 2 35,283 36,599 8938 3375

Sample 3 57,484 9500 5723 3287

Sample 4 35,574 39,461 6825 3464

F1-score Sample 1 0.97 1 0.98 0.9993

Sample 2 0.97 1 0.98 1

Sample 3 0.98 1 0.98 1

Sample 4 0.98 1 0.98 1

Purity Sample 1 1 1 1 0.9989

Sample 2 1 1 1 1

Sample 3 1 1 1 1

Sample 4 1 1 1 0.9996

Precision Sample 1 1 1 1 0.9994

Sample 2 1 1 1 1

Sample 3 1 1 1 0.9996

Sample 4 1 1 1 1

Recall Sample 1 0.95 1 0.95 0.9992

Sample 2 0.95 1 0.96 0.9997

Sample 3 0.98 1 0.96 1

Sample 4 0.96 1 0.96 0.9989

i

s

p

c
he currently arriving ones and the near future arriving as well.

tock markets’ consecutive data is all related and depends on

ach other. We have conducted experiments with a sampling that

an benefit the stability setting. Therefore, we generated such

erturbed versions of many samples from this dataset without

eplacement, and then added noise to these samples. Then by

pplying DGStream several times on them, we find that the most

eaningful one is the seasonal sampling. The depicted clustering

esults for clustering the different same size samples from this

eal-world stream data by DGStream, and comparison with Den-

tream, DStream, and ClusTree clustering algorithms are shown in

ig. 13 . The average values of some performance matrices for all

hese experiments and comparisons are all in Table 8 . In every

ample, we cluster 10,0 0 0 observations from the dataset with a

ime horizon of 10 0 0. In this sampling, the results show how the

tock records in the past affects related future stock records based

n their types, daily prices and arrival time, and so they emerged

n related micro-clusters and also the same macro-clusters. It is

lear from the results in Table 8 that evaluating purity, precision,

ecall, and F1-score in all experiments, DGStream is still the top

rst or second most of the time. We again repeated the same sam-

ling steps with replacement and applied our algorithm and the

ther compared algorithms several times on 40,0 0 0 data points

rom NSE dataset. In this experiment, we measured and compared

he time efficiency of our algorithm with the other algorithms.

ig. 14 shows that DGStream is the best followed by ClusTree

lgorithm. It is clear from Fig. 14 that DGStream can identify the

lusters better. It gives the best results in clustering quality and

andling outliers compared to other algorithms. In all previous

xperiments, we observed with both the synthetic and real-world

atasets, that our algorithm outperforms all other algorithms
n handling the outliers, learning the underlying dependency

tructure of data records, time performance, and equality. Ap-

lying the clustering algorithms to NSE dataset verifies the same

laim that our proposed algorithm DGStream is the best in both

12 R. Ahmed, G. Dalkılıç and Y. Erten / Expert Systems With Applications 141 (2020) 112947

Fig. 14. Time efficiency for clustering different sizes samples from NSE real-

world stream data with replacement by using DenStream, DStream, ClusTree, and

DGStream stream clustering algorithms.

6

t

a

c

d

f

f

g

b

D

C

W

p

c

m

R

A

A

A

A

A

A

A

B

B

B

B

C

C

C

C

D

D

E

F

quality and efficiency among the most important stream clustering

algorithms.

6. Conclusions and future work

6.1. Conclusions

In this study, we proposed a new stream clustering algorithm,

DGStream. It is a density and grid-based algorithm with insightful

implications for clustering stream data. DGStream algorithm has

been tested and compared over many datasets, both synthetic

and real-world datasets and under different scales and compared

with DenStream, DStream, and ClusTree stream algorithms in

the same field. So, experimentally under the same conditions

and datasets, we have demonstrated that DGStream outperforms

several well-known density-based stream clustering algorithms. It

can find datasets with clusters of arbitrary shapes, multi-density

and without the prior knowledge of parameters like the number

of clusters. It is shown by many experiments that our proposed

algorithm is significantly fastest among all the compared algo-

rithms; it achieves the best time efficiency along with the best

quality. Its recall measurement is always high due to its ability in

assigning almost all relevant records to the corresponding correct

clusters with, to a large extent, perfect purity, which means that

our algorithm can create clusters much close to the true structure

of the stream data. DGStream has also many good features; it is

a strong and robust algorithm to noise and presence of outliers;

needs only one-pass for processing stream data; it considers the

evolving data by employing a decaying function that decreases the

weights of the outdated data over time. Therefore, it is suitable for

real-world applications where the most interest is in the recent in-

formation while the old information decreases over time like stock

marketing. From all conducted experiments, we can say that our

proposed algorithm outperformed all other density-based stream

clustering algorithms in both efficiency and accuracy. However, we

have to realize that stream clustering algorithms cluster streaming

data from different points of view, and choosing between them

depends on what we want to achieve from applying them, such

as more accuracy is better than more reliability in some instances,

and sometimes for particular application low time complexity is

the most important property. Therefore, we can say for sure that

for some applications or for a particular dataset and under specific

conditions there is an algorithm that is much better than one

another.
.2. Future work

As future work, we will look at ways to detect dense grids so

hen to tune the parameters according to how much the density is

nd how many grids in the space have this density. In addition, we

an go in more deeply work with adapting parameters to be more

ynamic. Another improvement may be entering the prediction

actor and trying to predict which grids might be useless in the

uture, depending on how the incoming stream points map to

rids and in this aspect, we can focus more at the grids at the

orders of the clusters.

eclaration of competing interest

None.

redit authorship contribution statement

Rowanda Ahmed: Visualization, Methodology, Data curation,

riting - original draft, Software, Validation. Gökhan Dalkılıç: Su-

ervision, Project administration, Writing - review & editing, Con-

eptualization, Investigation. Yusuf Erten: Supervision, Project ad-

inistration, Writing - review & editing.

eferences

ggarwal, C. C. , Han, J. , Wang, J. , & Yu, P. S. (2003). A framework for clustering evolv-

ing data streams. In Proceedings of the 29th international conference on very large
data bases-volume 29 (pp. 81–92). VLDB Endowment .

grawal, R. , Gehrke, J. , Gunopulos, D. , & Raghavan, P. (1998). Automatic subspace

clustering of high dimensional data for data mining applications. ACM, 27 (2),
94–105 .

hmed, R. D. , Dalkılıç, G. , & Erten, M. (2018). Survey: Running and comparing stream
clustering algorithms . CEUR Workshop Proceedings .

lazeez, A. A. A. , Jassim, S. , & Du, H. (2017). EINCKM: An enhanced prototype-based
method for clustering evolving data streams in big data. In Proceedings of the

ICPRAM (pp. 173–183) .

lhanjouri, M. A., & Ahmed, R. D. (2012). New Density-Based Clustering Technique:
GMDBSCAN-UR. International Journal of Advanced Research in Computer Science,

3 (1). http://hdl.handle.net/20.500.12358/24451 .
mini, A. , Saboohi, H. , Ying Wah, T. , & Herawan, T. (2014). A fast density-based

clustering algorithm for real-time internet of things stream. The Scientific World
Journal, 2014 , 926020 .

nkerst, M. , Breunig, M. M. , Kriegel, H.-P. , & Sander, J. (1999). Optics: ordering

points to identify the clustering structure. In Proceedings of the ACM SIGMOD
record: 28 (pp. 49–60). ACM .

abcock, B. , Datar, M. , Motwani, R. , & O’Callaghan, L. (2003). Maintaining variance
and k-medians over data stream windows. In Proceedings of the twenty-sec-

ond ACM SIGMOD-SIGACT-SIGART symposium on principles of database systems
(pp. 234–243). ACM .

arbará, D. (2002). Requirements for clustering data streams. ACM SIGKDD Explo-

rations Newsletter, 3 (2), 23–27 .
lackard, J. A., Dean, D. J., & Anderson, C. (1998). The forest covertype dataset https:

//archive.ics.uci.edu/ml/datasets/covertype .
untine, W. (1991). Theory refinement on Bayesian networks. In Proceedings of the

seventh conference on uncertainty in artificial intelligence (pp. 52–60). Morgan
Kaufmann Publishers Inc .

ao, F. , Estert, M. , Qian, W. , & Zhou, A. (2006). Density-based clustering over an

evolving data stream with noise. In Proceedings of the SIAM international confer-
ence on data mining (pp. 328–339). SIAM .

arlsson, G. , & MÃŠmoli, F. (2010). Characterization, stability and convergence of
hierarchical clustering methods. Journal of Machine Learning Research, 11 (Apr),

1425–1470 .
arnein, M. , Assenmacher, D. , & Trautmann, H. (2017). An empirical comparison of

stream clustering algorithms. In Proceedings of the computing frontiers conference

(pp. 361–366). ACM .
hen, Y. , & Tu, L. (2007). Density-based clustering for real-time stream data. In Pro-

ceedings of the 13th ACM SIGKDD international conference on knowledge discovery
and data mining (pp. 133–142). ACM .

e Silva, V. , & Carlsson, G. E. (2004). Topological estimation using witness com-
plexes. SPBG, 4 , 157–166 .

ean, T. L. , & Kanazawa, K. (1988). Probabilistic temporal reasoning. In Proceedings
of the AAAI (pp. 524–529) .

ster, M. , Kriegel, H.-P. , Sander, J. , Xu, X. , et al. (1996). A density-based algorithm for

discovering clusters in large spatial databases with noise. In Proceedings of the
KDD: 96 (pp. 226–231) .

riedman, N. , Murphy, K. , & Russell, S. (1998). Learning the structure of dynamic
probabilistic networks. In Proceedings of the fourteenth conference on uncertainty

in artificial intelligence (pp. 139–147). Morgan Kaufmann Publishers Inc .

http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0001
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0002
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0003
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0004
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0004
http://hdl.handle.net/20.500.12358/24451
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0006
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0007
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0008
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0009
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0009
https://archive.ics.uci.edu/ml/datasets/covertype
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0010
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0011
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0012
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0013
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0014
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0015
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0016
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0017
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0018
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0018

R. Ahmed, G. Dalkılıç and Y. Erten / Expert Systems With Applications 141 (2020) 112947 13

G
G

G

G

H

H

H

H

H

H

I

J

J

K

K

K

L

M

M

M

N

N

R

R

S

S

S

T

T

V

x

fi

5

ama, J. (2010). Knowledge discovery from data streams . Chapman and Hall/CRC .
uha, S. , Meyerson, A. , Mishra, N. , Motwani, R. , & O’Callaghan, L. (2003). Cluster-

ing data streams: Theory and practice. IEEE Transactions on Knowledge and Data
Engineering, 15 (3), 515–528 .

uha, S. , Rastogi, R. , & Shim, K. (2001). Cure: An efficient clustering algorithm for
large databases. Information Systems, 26 (1), 35–58 .

unawardana, A. , Meek, C. , & Xu, P. (2011). A model for temporal dependencies in
event streams. In Proceedings of the advances in neural information processing

systems (pp. 1962–1970) .

ahsler, M. , & Bolaños, M. (2016). Clustering data streams based on shared density
between micro-clusters. IEEE Transactions on Knowledge and Data Engineering,

28 (6), 1449–1461 .
artigan, J. A. (1981). Consistency of single linkage for high-density clusters. Journal

of the American Statistical Association, 76 (374), 388–394 .
artigan, J. A. (1985). Statistical theory in clustering. Journal of Classification, 2 (1),

63–76 .

eckerman, D. , Chickering, D. M. , Meek, C. , Rounthwaite, R. , & Kadie, C. (20 0 0). De-
pendency networks for inference, collaborative filtering, and data visualization.

Journal of Machine Learning Research, 1 (Oct), 49–75 .
ettich, S., & Bay, S. (1999). The UCI KDD archive Department of Information and

Computer Science, University of California, CA, 152 [http://kdd.ics.uci.edu]. irvine .
inneburg, A. , Keim, D. A. , et al. (1998). An efficient approach to clustering in large

multimedia databases with noise. In Proceedings of the KDD: 98 (pp. 58–65) .

saksson, C. , Dunham, M. H. , & Hahsler, M. (2012). Sostream: Self organizing den-
sity-based clustering over data stream. In Proceedings of the international work-

shop on machine learning and data mining in pattern recognition (pp. 264–278).
Springer .

ain, A. , Zhang, Z. , & Chang, E. Y. (2006). Adaptive non-linear clustering in data
streams. In Proceedings of the 15th ACM international conference on information

and knowledge management (pp. 122–131). ACM .

ia, C. , Tan, C. , & Yong, A. (2008). A grid and density-based clustering algorithm for
processing data stream. In Proceedings of the second international conference on

genetic and evolutionary computing (pp. 517–521). IEEE .
leinberg, J. M. (2002). An impossibility theorem for clustering. In S. Becker,

S. Thrun, & K. Obermayer (Eds.), NIPS (pp. 446–453). MIT Press, ISBN
0-262-02550-7 .

ohavi, R., & Becker, B. (1996). Adult dataset[online] available: http://archive.ics.uci.

edu/ml/datasets .
ranen, P. , Assent, I. , Baldauf, C. , & Seidl, T. (2011). The clustree: Indexing micro–

clusters for anytime stream mining. Knowledge and Information Systems, 29 (2),
249–272 .

iu, H. , Hou, X. , & Yang, Z. (2016). Design of intrusion detection system based on
improved k-means algorithm. Computer Technology and Development, 1 , 101–105 .

anning, C. , Raghavan, P. , & Schütze, H. (2010). Introduction to information re-

trieval. Natural Language Engineering, 16 (1), 100–103 .
árquez, D. G. , Otero, A. , Félix, P. , & García, C. A. (2018). A novel and simple strategy

for evolving prototype based clustering. Pattern Recognition, 82 , 16–30 .
ekky, A. R. (2016). Fuzzy neighborhood grid-based DBSCAN using representa-

tive points. Feature Engineering in Hybrid Recommender Systems, Third Interna-
tional Conference on Data Mining, Internet Computing, and Big Data, July 21–23

(pp. 63–73). Konya, Turkey .
odelman, U. , Shelton, C. R. , & Koller, D. (2002). Continuous time Bayesian net-

works. In Proceedings of the eighteenth conference on uncertainty in artificial in-

telligence (pp. 378–387). Alberta, Canada: Morgan Kaufmann Publishers Inc. Au-
gust 01–04 .

odelman, U., Shelton, C. R., & Koller, D. (2012). Expectation maximization and com-
plex duration distributions for continuous time Bayesian networks. arXiv: 1207.

1402 .
ajaram, S. , Graepel, T. , & Herbrich, R. (2005). Poisson-networks: A model for struc-

tured point processes. In Proceedings of the 10th international workshop on arti-

ficial intelligence and statistics (pp. 277–284). Citeseer .
uiz, C. , Spiliopoulou, M. , & Menasalvas, E. (2010). Density-based semi-supervised

clustering. Data Mining and Knowledge Discovery, 21 (3), 345–370 .
ilva, J. A. , Faria, E. R. , Barros, R. C. , Hruschka, E. R. , De Carvalho, A. C. , &

Gama, J. (2013). Data stream clustering: A survey. ACM Computing Surveys
(CSUR), 46 (1), 13 .
imma, A. , Goldszmidt, M. , MacCormick, J. , Barham, P. , Black, R. , Isaacs, R. , &
Mortier, R. (2008). Ct-nor: representing and reasoning about events in contin-

uous time. In UAI’08 Proceedings of the Twenty-Fourth Conference on Uncertainty
in Artificial Intelligence (pp. 4 84–4 93). Helsinki, Finland. July 9–12 .

imma, A. , & Jordan, M. I. (2010). Modeling events with cascades of poisson pro-
cesses. In UAI’10 Proceedings of the Twenty-Sixth Conference on Uncertainty in Ar-

tificial Intelligence (pp. 546–555). Catalina Island, CA. July 8–11 .
horiya, D. , & Shukla, M. (2015). Study of density based clustering techniques

on data streams. International Journal of Engineering Research and Application

(IJERA), 5 (2), 40–47 .
ruccolo, W. , Eden, U. T. , Fellows, M. R. , Donoghue, J. P. , & Brown, E. N. (2005).

A point process framework for relating neural spiking activity to spiking his-
tory, neural ensemble, and extrinsic covariate effects. Journal of Neurophysiology,

93 (2), 1074–1089 .
on Luxburg, U. , et al. (2010). Clustering stability: An overview. Foundations and

Trends® in Machine Learning, 2 (3), 235–274 .

iong Liu, L. , fei Guo, Y. , Kang, J. , & Huang, H. (2009). A three-step clustering algo-
rithm over an evolving data stream , 1 , 160–164 .

Rowanda Ahmed received B.S. and M.S. degrees both

in Computer Engineering from Islamic University, Gaza,

Palestine, in 2011. She has worked at various universities
as a teacher assistant or as an instructor and in two min-

istries in Palestine as an engineer. Currently, she is a Ph.D.
student at the Izmir Institute of Technology. Her fields of

studies are data mining and data stream clustering. She
has four papers published. Her research interest areas are

machine learning, data science, big data, natural language

processing, and deep learning.

Gökhan Dalkılıç received B.S. degree in Computer Engi-

neering from Ege University, Izmir, Turkey, in 1997, M.S.
degrees in Computer Science from University of Southern

California, Los Angeles, USA, in 1999, and from Ege Uni-
versity International Computing Institute, Izmir, Turkey,

in 2001, and Ph.D. degree in Computer Engineering from
Dokuz Eylül University, Izmir, Turkey, in 2004. He had

been a visiting lecturer in University of Central Florida,
Orlando, and the USA from January 2003 to December

2003. He has been an Associate Professor of the Depart-

ment of Computer Engineering of Dokuz Eylül University,
Izmir, Turkey. His research areas are cryptography, sta-

tistical language processing, and computer networks. His
elds of studies are lightweight authentication, cryptography, and NLP. He has over

0 papers and 4 books to his name.

Yusuf Erten received B.S. degree in Electronics Engineer-

ing from University of Birmingham, England, MS degrees
in Computer Science from Missouri Institute of Technol-

ogy, the USA, and the Ph.D. degree in Computer Engineer-
ing from Middle East Technical University, Ankara, Turkey.

He has worked at various national and international com-

panies in the ICT sector as an engineer, and at differ-
ent universities as a faculty member for many years. Cur-

rently, he is a faculty member at Izmir Bakıçay Univer-
sity. His research interests are computer networks, secu-

rity, and reliability.

http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0019
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0020
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0021
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0022
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0023
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0024
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0025
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0026
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0026
http://kdd.ics.uci.edu
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0028
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0029
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0030
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0031
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0050
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0050
http://archive.ics.uci.edu/ml/datasets
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0032
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0033
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0034
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0035
http://refhub.elsevier.com/S0957-4174(19)30665-7/othref0003
http://refhub.elsevier.com/S0957-4174(19)30665-7/othref0003
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0036
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0036
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0036
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0036
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0036
http://arxiv.org/abs/1207.1402
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0037
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0038
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0039
http://refhub.elsevier.com/S0957-4174(19)30665-7/othref0005
http://refhub.elsevier.com/S0957-4174(19)30665-7/othref0005
http://refhub.elsevier.com/S0957-4174(19)30665-7/othref0005
http://refhub.elsevier.com/S0957-4174(19)30665-7/othref0005
http://refhub.elsevier.com/S0957-4174(19)30665-7/othref0005
http://refhub.elsevier.com/S0957-4174(19)30665-7/othref0005
http://refhub.elsevier.com/S0957-4174(19)30665-7/othref0005
http://refhub.elsevier.com/S0957-4174(19)30665-7/othref0005
http://refhub.elsevier.com/S0957-4174(19)30665-7/othref0005
http://refhub.elsevier.com/S0957-4174(19)30665-7/othref0006
http://refhub.elsevier.com/S0957-4174(19)30665-7/othref0006
http://refhub.elsevier.com/S0957-4174(19)30665-7/othref0006
http://refhub.elsevier.com/S0957-4174(19)30665-7/othref0006
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0040
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0041
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0042
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0042
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0042
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0043
http://refhub.elsevier.com/S0957-4174(19)30665-7/sbref0043

	DGStream: High quality and efficiency stream clustering algorithm
	1 Introduction
	2 Related work
	2.1 Static clustering algorithms
	2.1.1 DBSCAN: Density-based spatial clustering of application with noise
	2.1.2 DENCLUE: DENsity-based CLUstering
	2.1.3 OPTICS: Ordering points to identify clustering structure
	2.1.4 CLIQUE

	2.2 Stream clustering algorithms
	2.2.1 Denstream
	2.2.2 DStream
	2.2.3 Clustree

	3 Performance metrics and basic definitions
	3.1 Basic definitions
	3.2 Performance metrics

	4 Our proposed algorithm methodology: DGStream
	4.1 Dataset input and standardization
	4.2 Divide the multi-dimensional data stream into grids
	4.3 Choosing representative points from the density grids
	4.4 DGStream clustering process
	4.5 Removing sparse grids
	4.6 Labeling all points to the resulted cluster set
	4.7 Handling outliers
	4.8 DGStream clustering stability

	5 Experimental results
	5.1 Chameleon synthetic dataset results
	5.2 Real-world datasets results
	5.2.1 KDDCup’99 real-world dataset results
	5.2.2 Covertype real-world dataset results
	5.2.3 Adult real-world dataset results
	5.2.4 Stock marketing real-world dataset results

	6 Conclusions and future work
	6.1 Conclusions
	6.2 Future work

	Declaration of competing interest
	Credit authorship contribution statement
	References

