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1. Introduction

Finite element (FE) model updating has great importance in damage detection of structures and calibration of the
considered mathematical models with respect to actual effects. While damage detection is possible with measured vibration
response data only, FE model updating might be more effective on the detection of damage location and severity [1]. Various
FE model updating approaches are available in the literature [2—8]. The most generic form of these approaches is based on the
determination of system eigenvalues and eigenvectors that are best-fitted with measured (or identified) ones [1]. The
problem of obtaining the best-fit between the measured and model parameters can be solved by single objective optimization
based weighted least-squares. In the single objective optimization, the optimal weights can be correlated with parametric
uncertainties. For this purpose, various stochastic model updating (SMU) methods have been employed by researchers within
the past decades. SMU methods deal with the quantification of reducible and/or irreducible uncertainties based on statistical
modelling. Here, reducible uncertainties are associated with the lack of information in mathematical model, environmental
noise or insufficient experimental data. Irreducible uncertainties are induced by variability in material properties due to
temperature, manufacturing effects, or possible changes in stiffness and/or mass parameters due to geometrical
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configurations [9]. SMU approaches are generally based on maximum likelihood estimation of prediction error by using
Monte Carlo Simulation (MCS) or Perturbation methods. MCS based methods define the reducible and irreducible un-
certainties by using the statistical parameters from the multiple sets of experimental data. At the next step, a probability
distribution is defined for modelling and measurement errors. MCS methods show high performance in the parameter
estimation quality [10,11]. However, the computational cost is noted to be remarkably high which makes the implementation
of MCS unreasonable especially for large mathematical models [12]. On the other hand, Perturbation methods considerably
reduces computational effort when compared to MCS based approaches. However, the Perturbation methods have some
limitations in terms of parameter estimation quality, since they consider small uncertainties for prediction error [9,13,14].
Various perturbation methods based on parameter-model variability estimation [15], or robust updating formulation by
random matrix theory for uncertain computational models [16] are also available in the literature.

Bayesian probabilistic framework arises as another efficient and useful method for SMU [17—22]. In the conventional
Bayesian FE model updating procedure, the optimal weights in the least-squares equation are associated with parameter
error uncertainties obtained from measurements. This procedure requires updating the posterior most probable value by
integrating the prior distributions over the whole parameter space [23]. This evaluation process was defined as difficult by
Beck and Au [24] due to the large dimension for numerical integration, and a Markov Chain Monte Carlo Simulation (MCMCS)
was employed to reduce the computational effort. In order to quantify the parametric uncertainties by multiple measurement
sets under different environmental conditions, Hierarchical Bayesian methods have also been implemented in the literature
[25]. In the Hierarchical Bayesian modelling, first a proper probability distribution is defined for the error equations between
the identified and model-based parameters. Second, the posterior parameters of the constructed probability model are ob-
tained by using direct integration, transitional [26] or evolutionary [27] MCMCS algorithm, Gibss sampling algorithm [28], or
Metropolis Hasting method [29]. In addition, a two-stage Bayesian model updating procedure was proposed by Ching and
Beck [30]. At the first step of the method, the modal identification procedure is completed, and experimental modal pa-
rameters are updated. At the next step, a prior distribution for stiffness parameters are defined, and finally most probable
model parameters are obtained by applying Bayes’ theorem [30]. This procedure is applied for both reference (undamaged)
and damaged cases, and a damage extent is defined in order to measure the severity of damage level.

To reduce the computational effort in Bayesian FE model updating, Bayesian Operational Modal Analysis (BAYOMA) can
also be employed for the estimation of parametric reducible uncertainties [31—33]. Estimation of the uncertainty of system
parameters by BAYOMA eliminates the requirement of multiple sets of measurements and time-consuming methods such as
MCS. Yuen and Kuok [34] presented a Bayesian FE model updating procedure based on the utilization of modal parameter
data obtained by BAYOMA. A similar methodology was introduced by Yan and Katafygiotis [35] utilizing the multiple setup
measurement data. In their study, only the local mode shape uncertainty obtained from BAYOMA is considered, and ei-
genvalues are assumed as well-estimated with zero uncertainty. When the uncertainty of eigenvalues is considered, the main
problem in the Bayesian FE model updating incorporated with BAYOMA lies in the calculation of cross-correlation between
the eigenvalues and eigenvectors. This problem is fundamentally induced by the scaling of eigenvectors. To overcome this
problem some two-stage Bayesian algorithms have been presented to the literature [36—38]. These two-stage approaches
consider an approximate block diagonal posterior covariance matrix for local modal parameters by using uncertainty laws for
BAYOMA, and they are restricted to large values of signal-to-noise ratios, only. However, neglecting the off-diagonal elements
may significantly change the values of the diagonal terms in the covariance matrix and it may lead to a rough estimation in the
model updating procedure.

This study presents an alternative Bayesian FE model updating approach utilizing the ambient vibration data from multiple
setup measurements. Consideration of mode shape norm constraints in the BAYOMA and Bayesian FE model updating pro-
cedure comes forward as the basic development upon the previous methods. The theory of the presented study is based on the
modelling of the prior probability distribution for prediction error between the system (from FE model) and identified (from
measurements) modal parameters by using BAYOMA. When compared to the previous Bayesian FE model updating methods
thatemploy BAYOMA, the most important novelty of the presented study resides in the utilization of norm constraint equalities
for local and global mode shape vectors (eigenvectors). By making use of this consideration, a zero correlation is derived
between the eigenvalues and eigenvectors. Thus, the presented method works well not only for large signal-to-noise ratios but
also for its lower values, and the computational effort is significantly reduced. The overall procedure rests on two stages. At first
stage, the MPVs and posterior uncertainties of eigenvalues (frequencies) and eigenvectors (mode shapes) are derived by the
Bayesian Fast Fourier Transform Approach (BFFTA). At second stage, system parameters (system modal and model parameters)
including eigenvalues, eigenvectors, stiffness and mass scaling parameters are updated by using Bayesian inference. In addi-
tion, the modelling error in the eigenvalue equations and prior distributions for stiffness scaling parameters are considered. The
resulting soft constraint approach, in which all uncertainty parameters are calculated within the procedure, is compared to the
rigid constraint approximation (prescribed prediction and/or modelling error). According to the numerical study, the
consideration of soft constraints results in significantly smaller posterior uncertainties. In addition, according to the laboratory
experiments in which insufficient number of measurement points were used, the presented methodology gives reasonable
results.
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2. Stage I: modal identification

Eigenvalues and eigenvectors obtained from a FE model are expected to represent the whole structure. However, the
modal information extracted from measurement data are constrained with the measurement points. In most cases, taking a
full-scale measurement may not be possible due to the lack of instruments. The eigenvalues can be obtained with a
reasonable accuracy by using a modal identification technique. However, the identified eigenvectors may not represent the
system eigenvectors properly when insufficient measurement points are available only. This problem can be confronted by
increasing the measurement setups. Thus, the posterior distribution of the modal parameters for each setup can be
considered as a proper prior estimation for system eigenvalues and eigenvectors. For this purpose, first, BFFTA can be
implemented to identify the most probable eigenvalues, eigenvectors, and their posterior uncertainties for the corresponding
measurement setup. Second, their posterior probability distributions can be estimated by Gaussian approximation.

According to the fast BFFTA presented by Au [39], the negative logarithm-likelihood function for modal parameters to be
identified, within the resonant frequency band of n" mode, at the i" setup, can be defined as follows,

Lni(®pi) = NiNppi In 7+ Ny pi(N; = 1InSe i + > In(SyiDiepi + Seni) + Sepifkni — drihnidni
X

_ 3 (1)
kni =S FuFiii Api= > SiDiniSe Re (F\iFy;)
ni = ki¥ ki ni = T N c X ki
k . k (snka,ni ""se,ni) :
where Lyi(®y) should be subjected to the constraint of 4)31 &ni = 1. In addition, ®pj = [Ani, Eni, Sni» Se.ni» $nil, is the set of modal
parameters to be identified and it comprises the eigenvalue (square of natural angular frequency), damping ratio, spectral
density of modal excitation that is scaled with respect to the unit norm for local mode shape, spectral density of prediction
error, and local mode shape vector (with unit norm), respectively. Fy; = Fast Fourier Transform (FFT) of acceleration response,
N; = number of measured degrees of freedom (DOF), N¢n = number of data within the selected frequency band, and Dy p;
denotes the dynamic amplification and it can be defined as follows,

Digni= [ (1~ Bai)? + 48%6km] + Buni=lui/ e h=2f)? (2)

where fi = excitation frequency. Minimizing Eq. (1) gives the most probable modal parameters for the it setup. At the next step,
the posterior probability distribution of the modal parameters can be well-estimated by using Gaussian approximation [39].

1 —~ —~
~5(@ni ~ On) Hy (O~ Op) (3)

P(®n|Z) =exp 3

In Eq. (3), “°” denotes the most probable value (MPV), Z;; = [Re(Fy;); Im(Fy;)] ¢ R is the augmented FFT vector of the
measured response at the ith setup, and H@ = Hessian of Lyj(®y;) under the norm constraint for the mode shape vector, at

O, = @m. Here, a zero correlation can be obtained between the spectrum parameters, ®s i = [Ani, £ni, Sni» Se,ni] and ¢pi due to
the norm constraint equation. Using the computational scheme proposed by Au and Xie [40], H@ is derived as a block di-

ni

agonal matrix after mathematical manipulations (see Appendix A).

H@ 0
H 6 — I: Os.ni He :| (4)
ni bui

Here,H~ = v2L(®sni: ®s) gpd Hg = V2L(®ni-®ni) 4 2 Iy, (@n; = Lagrange multiplier that enforces the unit norm of &.;).

s.ni ni

Note that Note that @,; corresponds to the maximum eigenvalue of V2L(®x-®n) and Hg is a semi positive definite matrix

i

whose eigenvector for the zero eigenvalue corresponds to ¢; [41].

_ ~T FATNREN ~T ~
Unj = =26 V2L Wy 5 dpHo i =0 (5)

3. Stage II: model updating

At this stage, first, the prior probability distributions required for FE model updating are defined. Here, the prior proba-
bility distribution of eigenvalues and eigenvectors are modeled by the posterior probability estimation obtained from the
modal identification stage. In addition, a prior probability distribution for modelling error in the eigenvalue equations is
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considered in order to avoid the mode matching problem. Then, the probability distribution function (PDF) of the model
parameters is estimated by using Bayes’ theorem. Finally, the FE model is updated by maximum likelihood estimation of the
posterior PDF that is obtained by Bayesian inference.

3.1. Prior probability distributions for eigenvalues and eigenvectors

In this study, the modal parameters (eigenvalues and eigenvectors) that are identified from the measurements are
associated with those from the FE model. For this purpose, a set of system modal parameters that are obtained from the FE
model can be defined by

Xni:ini + &ynj (6)

where, %, = [An, r;ﬂ Foid)n}T, Iy = selection matrix that extracts the measured DOFs at it setup, Ani = [im, &7 is the set
of most probable local modal parameters obtained at the modal identification stage, and e, ,; = prediction error. In addition, An
and ®,, denote the n™ mode eigenvalue and eigenvector (global mode shape vector) of the finite element model, respectively.
The error term, e,,; can be assumed to follow a zero mean Gaussian distribution. Therefore, this distribution can be modeled
by the posterior PDF of ¥,;. When ¢, ; is assumed to be linearly independent for each setup, the prior probability distribution
of the prediction error can be written as

m Ns

Nm N, T
= = n & 1 - -
DGXGQ—Hif(%MGmQ:JI_fﬂ{—j<m—Xm>H%<m—Xm>} (7)

where Ns = number of measurement setups, N, = number of considered modes, &, = [€,11,..., &N, N, ), and Os= [Oyq, ...,

ni

O, N, - In addition, H? ~denotes the Hessian with respect to y,; at %; = %,; and it can be estimated by the BFFTA. Thus, H?
can be written as a block diagonal matrix.

Jni

H~
On x1 Hgm

Xni

{ H-~ 01xNi] 8)

3.2. Estimation of prior stiffness and mass distributions

To construct a more reasonable probabilistic model, the prior probability distribution of mass and stiffness scaling pa-
rameters of FE model can be selected as truncated Gaussian PDF because negative model parameter values are not expected.

The prior probability distributions for mass parameters are assumed to be linearly independent (zero correlation between
each mass parameter). Thus, the prior PDF of mass scaling can be defined as below.

N,

p(p)= ] ) (9)

r=1

InEq.(9), p=1p1, p2, ... pnpl indicates the set of mass scaling parameters to be updated, p; = rth

Np = number of mass parameters. Here, p(p;) can be defined as,

mass scaling parameter, and

~ 2
exp{fw}, for p,>0
p(pr)

255 (10)

0, for pr < 0

where p,¢ = prior MPV of '™ mass parameter, S; = constant prior variance for each mass parameter. Similarly, the prior
probability distribution for stiffness parameters can be defined as below.
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Ny
p(®) = | [ p(tr)
r=1
2
exp{ - (0r550r0) }, for 6;>0 (1)
p(ﬁr)oC /9\0
0, for <0

InEq.(11),0 =[ 63, 0>, ... Ony] denotes the set of stiffness scaling parameters, 6, = r'P stiffness scaling parameter, Ero = prior
MPV of r'! stiffness scaling parameter, Sg = constant prior variance for each stiffness scaling parameter, and Ny = number of

stiffness scaling parameters.
3.3. Prior probability distribution for modelling error

Considering a general eigenvalue-eigenvector problem for a particular mode, n, the following equality can be constructed
for a modal updating problem,

K(0)®, = 2,M(p)®y, + em (12)

in which K(0), M(p) are parametric stiffness and mass matrices, and e, = modelling error which is assumed to be identical for
all modes. Assuming that e, follows a zero mean Gaussian distribution, the following PDF can be defined for a given set of
system modal parameters, = [ X1, -, AN, )

Plemlx) = (27S;) ™2 exp (e S="em) (13)

where S = expected variance of the modelling error which is assumed to be identical for each mode, and N = number of DOF
in the finite element model. The modelling error can be defined in terms of mass and stiffness scaling parameters as

em = [K(8) — 2aM(p)]®@n = Qn P, (14)

in which the parametric stiffness and mass matrices are defined as

Ny N,
KO) =Ko+ > 6:K:  M(p)=Mo+ > pM; (15)
r=1 r=1

where, Ko and My are N x N sized non-parametric components of stiffness and mass matrices, K;, and M; are N x N sized rth
non-parametric sub-structural stiffness and mass matrices, respectively. Substituting Eq. (14) into Eq. (13) leads to the
following conditional PDF.

N
"‘ _ 1 _
plenlz) = [ 2m5) ™2 exp( - J@1021s: 0nhn) (16)

n=1
3.4. Posterior probability distribution for system parameters
In this study, the model parameters (stiffness and mass scaling parameters) and system modal parameters are associated

with the prediction and modelling error terms. Applying the Bayes’ theorem, a posterior probability distribution for the
model and system modal parameters can be defined as

PO, P, Xley. ém) = Co X Pley[%) x Plem| @s) x P() x P(p) (17)

where ¢p is a normalizing constant. Substituting Egs. (7), (10), (11) and (16) into Eq. (17) and using the negative-logarithm
likelihood function for the result, the maximum likelihood estimation is transformed into a minimization problem.
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1 Mo N \T R 1 Mo N N2
LOp1) =5 > Y- (1 Tt = &) H (1l T = i) 4530 > (a2 ) B
n=1 ' n=1 i=1

‘ni

i=1

1 AT = 1 T

+§(e— 90) S?E] (9— eo) +§<p— po) S/;: (p— p0> (18)
INmNIn2 71 INmNIns- + 1 3™ @TQTs. 10,8
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In Eq. (18), norm constraints should be defined for I'pj®, and ®;,. Thus, Eq. (18) leads to a linear optimization problem as
below.

Nm N
10, 2%,0,B)=L(8,p,7) + > > tni (PRLGT 0P — 12 ) + B (B0 — 1) (19)
i=1 i=1
where o = [ot41, .. , an,n], and B=[6;, .. , fy,] are sets of Lagrange multipliers for the norm constraints. MPV of

system modal and model parameters can be estimated by minimizing Eq. (19).

3.4.1. MPV of system modal parameters

The posterior MPV of y is incorporated with measured response data as well as structural model parameters. Thus, the
minimization process performs a posterior modal identification and model updating together. In this context, minimizing Eq.
(19) with respect to 4, and @, gives the most probable system modal parameters incorporated with structural model pa-
rameters and measurements.

The first order derivative of Eq. (19) with respect to A, results in the following equation,

N, -1 N, R
Y 20 = da=(S6, 3 R | x (Sl + S H A (20)
0/n An=An € = Ani € P Ani

where A, = most probable eigenvalue for nth mode, G; = tI>£MTMtI>n, and gyn= <I>£KTMtI>n. Here, it is seen that A, depends

onS,, G,, and g which are initially unknown. For this reason, a proper initial guess for T is required. If the modelling error is
neglected, an initial guess for A, can be obtained as follows.

~ NS
An= (Z H- >
i=1 ™

Similarly, minimizing Eq. (19) with respect to @, results in the following equation.

Jj
0P,

1 Nq
x X;H;mxni (21)
i=

. =0
®,=0,

(22)
Ny R R N, R
= <{ ST (r;iZH$ni + 2am1N,) rm} + Qﬁ&: Qn> @y —28,Pn + > 1y rgin&b $ni=0
i=1 i=1 '

1=

Due to the fact that & is the null vector of H$ (H$ &ni =0), Eq. (22) leads to the following standard eigenvalue problem.

ni

An®; =B, @y -
1 R -
An=5 ;D:i(rni H, +20(niIN,)Foi +§Qns?n Qn o4

The most probable §, and ®, can be obtained as the minimum eigenvalue and its corresponding eigenvector of A,
respectively. However, the calculation of Eq. (24) requires the value of ry; and S; which are initially unknown since they
depend on ®;,. As a remedy, an initial estimation for @, can be obtained as the eigenvector (for minimum eigenvalue) of the
following matrix by assuming zero discrepancy between r;il I',i®, and ;, setting rpy; = 1, and neglecting the modelling error.
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Ns
Ano=Y_ l“giﬂg Ty (25)
7_1 n

1=

Optimal value of the Lagrange multiplier, ap; can be obtained by minimizing Eq. (19) with respect to ry;, as follows.

T'ni=T nj,0ni= Qnj

3 TT _
e =Ty Pp Fongmroi‘I’n — 20Ty =0
4
. T .
=0y = —%‘I’grgﬂ"@ Toi®n; Ty = BTy

3.4.2. MPV of model parameters

MPV of model parameters (0 and p) can also be obtained by minimization of Eq. (19). In the previous two-stage Bayesian
method by Au and Zhang [36], the prior distributions for 6 and p are considered as non-informative, and therefore, they are
eliminated in the derivation of posterior PDF. This elimination makes it necessary to use a minimization algorithm in the
maximum likelihood estimation. Defining proper prior distributions for 6 and p, however, results in a robust minimization
procedure. Thus, the MPVs of 0 and p can be easily obtained in a closed form solution by taking the first order derivatives of
Eq. (19).

Taking the first order derivative of Eq. (19) with respect to 0 yields;

N N
0 ~ ~ m —~ m
A _0 =851 - Bps+ 3 S 1GE G0 -3 S 16L g =0
00]9_p 0, by —

Nin o Noy
-0 = [3501 In, + nz;sglGlT(nGKn} x {90%01 + Z%*K}Engl(n

n=1

where

Gk, = [Ki®n .. Ky,Pn ]NxN,,? gk, = [(AnM(p) — Ko)Pn]n, 1 (28)
Similarly, minimizing Eq. (19) with respect to p gives the optimal mass scaling parameter vector as below.

9

Nm

n=1

i 0 :55501 - 505501 + ris;%;?vlncmnﬁ -
Noy -1 N
=p= {5501 Iy, + n; sjc{,lncmn} x {6055: + n; S, "Gy 8w,
where
Gy, =2 [Mi®n . MN®n]y 5 8u, =[(K(0) — AnMo)®uly,q (30)

Finally, the MPV of S, is obtained as below.

] B 1 o\ ot B
N s 0 =S'NmN-S: Iglcbngngncbn =0

N 2
> [1Qn®nl|

_n=1
=5 =T NN

4. Summary of computational procedure

In modal parameter identification by fast BFFTA for individual setups, a norm constraint for local mode shape is necessary.
Otherwise the minimization procedure becomes ill-conditioned due to the negative definite Hermitian structure of the
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Hessian matrix for the local mode shape. For mode shape assembly problems, a norm constraint for global mode shape is also
required to well match the identified local mode shape and corresponding part of the global mode shape. In the previous,
Bayesian FE model updating applications, norm constraint for global mode shape is not necessary. If the norm constraint for
&, is omitted in the presented methodology, A, will be constrained to be a semi-positive definite matrix and the most
probable @, can be obtained as the null vector of A,. This case will be possible if and only if there is no modelling and
measurement error, which is not expected in real applications. Therefore, the norm of ®;, is constrained to unity in this study.

The flow chart for the proposed procedure is presented in Fig. 1. Here, A= [A; ... Ay,]and® = [®; ... &y_].First,
the local spectrum parameters including eigenvalues (square of most probable natural angular frequency), damping ratio,
spectral density of modal excitation and prediction error should be obtained. Second, the local Hessian matrix for eigenvalues
and eigenvectors (most probable local mode shape) should be obtained for each measurement setup by Gaussian approxi-
mation. At the iteration step, the posterior most probable values for model parameters are updated until the prescribed
convergence criteria are satisfied.

5. Posterior uncertainty for system parameters

Posterior statistical parameters in terms of variance, standard deviation, and coefficient of variation can be estimated via
the posterior covariance matrix centered at the MPV of system parameters. Using the second order Taylor series expansion,
the covariance matrix can be calculated as the inverse of the Hessian matrix. Here, the Hessian matrix centered at the MPV of
system parameters is given by

Calculate optimal O ;, Hj
Hy by BFFTA

A 4

Calculate initial guess for A, and
®,, by using Egs. (21) and (25)

N

Y

Calculate optimal a,, by Eq. (26)

Update A, @, 0, p, and S; by
No using Egs. (20), (23), (27), (29)
and (31)

Check
convergence
criteria

G

Fig. 1. Flow chart for the proposed algorithm.
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J(e,e) J(9~P) J(e ] J(ew‘l’)

_ J(p,G) J(Pvp) J(p x) J(p@)

H=1%00 j00 jon joo (32)
J(‘I’ﬁe) J(‘b p) J(‘M) J(‘D o) Ny N

where ]J*¥) denotes the derivatives of Eq. (19) with respect to x, and y (see Appendix B). In addition,
Nz = Ny + N, + N (N + 1). Here, Eq. ((32) is obtained as a singular matrix due to the unit norm constraints for ®. Therefore,
the posterior covariance matrix should be calculated by taking the pseudo inverse of the Hessian [42].

6. The probabilistic damage detection concept

The fundamental aim of FE model updating is to calibrate mathematical models of the structures. During the lifespan of a
structure, it may undergo a damage after some extreme event such as an earthquake. In this case, an updated finite element
model can be obtained again by using ambient vibration measurements obtained from the possibly damaged structure. Thus,
it will be possible to detect the level and location of the damage by using the updated FE models for undamaged and possibly
damaged cases. Here, a level of damage is defined as the change in the stiffness scaling parameters. By using Gaussian
approximation for marginal distributions, Vanik et al. [43] defines the probability of exceedance of a certain damage level for
the r stiffness parameter as follows.

~ud ~pd
(1- dr)ﬂr — 0r

\/(1 —dr)?S i + Spa
9, 9,

pdam(d,) = @ (33)

~ud ~pd
where d; [0, 1] indicates the level of damage, 0: and ﬂf denote the most probable r™" stiffness scaling parameter that
represents the undamaged and probably damaged cases, respectively. In addition, S« and S, are posterior variance of rth
9 9,

stiffness parameter for the undamaged and damaged case, and @(.) = standard normal cumulative distribution function,
respectively.

7. Numerical and experimental analysis

In this section, first a numerical analysis is presented to verify the presented procedure. For comparison purposes, the
variations in the posterior uncertainties are investigated if the modelling and prediction errors are prescribed. Second, an
experimental study is presented to see the effect of incomplete measurement data on the results.

In the presented methodology, both the stiffness and the mass scaling parameters are considered as model parameters to be
updated. However, assuming both parameters are initially not well-estimated does not give reasonable results since an infinite
number of sets for most probable stiffness and mass scaling parameters can be found. For this reason, at least one of those
parameters should be assumed as well-estimated. The mass is generally much easier to be evaluated, and therefore the mass
scaling parameters are assumed to be well-estimated by assigning them a small prior variance in the presented examples.

7.1. Numerical analysis: torsional shear frame

A fifteen-story torsional shear frame structure is investigated to validate the proposed methodology. The plan view of the
investigated structure is presented in Fig. 2. The lateral stiffness in the x-x and y-y direction is considered as krx = 1000 kN/m and
kyy = 600 kN/m, respectively. In addition, story mass is m = 250 kg in both directions. Independent and identically distributed
(i.i.d.) Gaussian white noise excitations are generated with 300 s duration and 100 Hz sampling frequency, and they are assigned
as point forces to the mass center of the slab along translational and torsional directions, respectively. The measurement noise
root mean square (rms) level is set to be 20% of the rms of the noise-free simulated response, for each channel. The structure is
measured with four setups, and the sensor configuration of the setups is presented in Table 1. The acceleration responses of the
structure are measured at the center in the translational directions. Torsional acceleration measurements are omitted. Therefore,
torsional modes are not identified, but they are extracted from the updated finite element model.

Assuming the non-parametric stiffness and mass components are equal to zero (Ko = 0, Mg = 0), the parametric stiffness
and mass matrices are defined as,

Ngx=15 Ngy=15
KO) = > OuKa+ > OyKy (34)
r=1 r=1
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Fig. 2. Plan view (r" story) of the fifteen-story torsional shear frame structure.

Table 1
Multiple setup configuration.
Setup No Measured DOF
1 1x, 1y, 2x, 2y, 3x, 3y, 4x, 4y, 5x, 5y
2 4x, 4y, 5x, 5y, 6x, 6y, 7x, 7y, 8%, 8y
3 7x, 7y, 8x, 8y, 9x, 9y, 10x, 10y, 11x, 11y, 12x, 12y
4 11x, 11y, 12x, 13y, 13x, 13y, 14x, 14y, 15x, 15y

M(p)= Y pMe (35)

Model parameters for the investigated structure are first updated by assuming an undamaged case which should lead to
the actual stiffness scaling parameters as fx = fy, = 1.00 (forr =1, 2, 3, ... ,15). Next, a damaged case is considered in which the
inter-story stiffnesses in x-x direction are reduced by 30% in the first story and by 60% in the seventh story. Further, the inter-
story stiffnesses in y-y direction are reduced by 10% in the second story and by 25% in the fifth story. In this damaged case, the
stiffness scaling parameters are expected to be evaluated as fx; = 0.70, fx7 = 0.40, fy» = 0.90, flys = 0.75 and the remaining
stiffness scaling parameters should be 1.00.

The prior most probable values for stiffness parameters are selected as fxro = iy = 10 (overestimated) with a variance of
Sgo = 50. In addition, the prior mass parameters are assumed to be well-estimated with py, = 1 and Syo = 0.01. The resulting
prior probability distributions for stiffness and mass scaling parameters are presented in Fig. 3.

The updated natural frequencies for the first fifteen modes are presented in Table 2. Here, the translational modes indicate
the identified most probable values by using the presented algorithm. The torsional modes, however, are not measured in the
considered example. Therefore, their modal parameters cannot not be identified. Instead, the system modal parameters for
torsional modes are obtained from the eigenvalue analysis of the updated finite element model. It is seen that the identified
frequencies match well with their actual values. In addition, the identified stiffness scaling parameters and the corresponding
posterior coefficient of variations (c.o.v.) in the x-x and y-y directions are presented in Tables 3 and 4, respectively. Again, a
well-match is observed between the identified and actual stiffness scaling parameters, for both the undamaged and the
damaged cases.

In the literature, the modelling and prediction errors are generally defined as rigid constraints (they are assigned to the
selected prescribed values) which may not reflect the actual case. The presented method, however, defines soft constraints for
modelling and prediction errors. Therefore, the possible discrepancies due to the modelling and prediction error are updated
at each iteration step. Fig. 4 presents the cumulative probability density functions for damage with respect to the possible
damage levels. It is seen that the probabilities of damage show very small (nearly zero) variance around the most probable
damage levels. The reason of this fact is thought to be the result of using soft constraints for the modelling and prediction
error.

Some applications in the literature consider the measured eigenvalues as the prescribed values (rigid constraint) and the
possible prediction errors are neglected [1,44]. For the rigid constraint case, A is set to the MPVs that are identified from the
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Fig. 3. Prior probability distributions of (a) stiffness and (b) mass scaling parameters.

Table 2

Actual and updated natural frequencies with posterior c.o.v.
Mode Number Undamaged Case Damaged Case

Dir. Actual (Hz.) Updated (Hz.) cov. ( x 10719 Dir. Actual (Hz.) Updated (Hz.) cov. ( x 10719

1 y 0.79 0.79 0.22 y 0.77 0.77 4.68
2 X 1.02 1.02 033 X 0.94 0.94 3.48
3 Tors 1.50 1.50* - Tors 1.45 1.45* -
4 y 2.36 2.37 0.15 y 2.36 2.36 2.60
5 X 3.05 3.05 0.26 X 291 2.92 230
6 y 3.91 3.92 0.08 y 3.87 3.86 1.42
7 Tors 449 4.50* — X 4.55 4.56 1.10
8 x 5.04 5.04 0.11 Tors 442 441* -
9 y 5.42 5.42 0.03 y 5.28 528 1.01
10 y 6.87 6.86 0.01 y 6.78 6.78 0.72
11 X 6.99 6.99 0.05 X 6.84 6.84 0.83
12 Tors 7.43 7.43* — Tors 7.18 7.18* —
13 X 8.87 8.87 0.02 X 8.19 8.20 0.61
14 Tors 10.29 10.29* — Tors 10.08 10.08* —
15 Tors 13.06 13.07* — Tors 12.61 12.60* —

Table 3

Actual and updated stiffness parameters in the x-x direction.
Parameter Undamaged case Damaged case

Actual Updated cov( x 10714 Actual Updated cov( x 10714

1 1.0000 1.0044 1.0214 0.7000 0.7078 8.4405
Oy 1.0000 1.0114 1.2943 1.0000 1.0107 10.8562
O3 1.0000 1.0076 0.8476 1.0000 1.0059 8.6016
Oxa 1.0000 1.0089 1.0702 1.0000 1.0114 8.3922
Oys 1.0000 1.0089 1.0193 1.0000 1.0062 7.7128
Oxs 1.0000 1.0056 1.0326 1.0000 1.0043 6.9394
Ox7 1.0000 1.0109 1.0056 0.4000 0.4009 2.3786
Oy 1.0000 1.0010 1.0221 1.0000 1.0076 5.9229
[ 1.0000 1.0168 0.9642 1.0000 1.0074 6.5112
Ox10 1.0000 1.0000 0.7876 1.0000 1.0029 8.5295
011 1.0000 1.0057 0.8855 1.0000 1.0037 5.7305
Ox12 1.0000 0.9991 1.0363 1.0000 1.0090 10.6522
Ox13 1.0000 1.0076 1.0826 1.0000 1.0100 7.9952
Ox14 1.0000 1.0125 0.7692 1.0000 1.0016 11.6128
15 1.0000 0.9987 0.9038 1.0000 1.0003 14.9658

measurements [45]. In this study, however, the prediction error between the system and measured eigenvalues are
considered as parameters to be updated. Fig. 5 and Fig. 6 show the convergence speed of the estimated first stiffness scaling
parameter to its actual value and the variation of its posterior c.0.v. with respect to the number of considered modes, for the
cases of rigid and soft constraints for A, respectively. It is seen that the presented methodology (soft constraint approach)
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Table 4

Actual and updated stiffness parameters in the y-y direction.
Parameter Undamaged case Damaged case

Actual Updated cov ( x 10714 Actual Updated cov ( x 10714

01 1.0000 1.0090 1.4566 1.0000 1.0035 11.2068
Oy 1.0000 1.0105 1.0229 0.9000 0.9089 9.7372
fy3 1.0000 1.0133 0.9693 1.0000 1.0079 12.1623
Oy4 1.0000 0.9973 0.7562 1.0000 0.9944 15.5966
fys 1.0000 1.0085 1.2633 0.7500 0.7521 8.7421
fye 1.0000 1.0027 1.0756 1.0000 0.9971 6.4256
y7 1.0000 1.0021 1.5264 1.0000 1.0005 5.9322
fys 1.0000 1.0105 1.0523 1.0000 1.0014 4.3256
fyo 1.0000 1.0070 0.9145 1.0000 1.0105 7.1385
fy10 1.0000 1.0091 1.1580 1.0000 1.0158 9.9661
Oy11 1.0000 1.0137 1.6386 1.0000 1.0144 11.1286
Oy12 1.0000 0.9973 1.1325 1.0000 0.9957 12.5625
Oy13 1.0000 1.0093 1.4086 1.0000 0.9989 8.4346
Oy14 1.0000 0.9982 0.9373 1.0000 1.0085 10.0628
015 1.0000 1.0070 1.1548 1.0000 0.9924 12.0963

Probability of damage
o o
[} © -
Sy |
\ L
<2 ]

Plx P7x/
0.4 p / b
5y
0.2 q
0 . A . . J
-0.1 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Level of damage, d

Fig. 4. Probability of damage for the stiffness parameters (blue line: x-x direction, red line: y-y direction).

increases the convergence speed of the estimated stiffness parameters to the actual value when compared to the rigid
constraint approach. In addition, the presented methodology significantly reduces the posterior c.o.v. for the first stiffness
scaling parameter.

Fig. 7 and Fig. 8 show the variation of the estimated first stiffness scaling parameter and its posterior c.o.v. for the pre-
scribed variance of modelling and measurement error. Here, the prediction error for eigenvalues and eigenvectors were

1.05 | |
1 r |
\J ~/
w 0.95 —
o ]
0.9 -
085 [ 1 1 1 1 1 1 1 i
2 3 4 5 6 7 8 9 10

Number of considered modes

Fig. 5. Variation of estimated 64, versus the number of considered modes (red circle: rigid constraint, blue square: soft constraint for eigenvalues). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 6. Variation of posterior c.o.v. of 64, versus the number of considered modes (red circle: rigid constraint, blue square: soft constraint for eigenvalues).

defined to have a c.o.v. of 1%. The prescribed variance of modelling error was calculated according to the defined prediction
error. When the modelling error level is prescribed, the posterior uncertainties are affected by the chosen value even if the
identified MPVs for model parameters are close to the actual value. The definition of smaller error values does not guarantee a
smaller posterior c.o.v. for model parameters. In addition, some applications completely neglect the modelling error which
may also result in larger posterior uncertainty [36—38]. Results show that the soft constraint approach for modelling and
measurement error increases the convergence speed of most probable stiffness scaling parameters and shows a significant
decrease in the posterior coefficient of variation.

Fig. 9 and Fig. 10 show the updated first fifteen mode shapes for the damaged and undamaged cases. Here, the torsional
mode shapes were estimated from the updated FE model. The estimated mode shapes (presented by blue squares) match well
with the analytical results for both undamaged and damaged cases. In addition, the posterior c.o.v. values for the identified
mode shapes are presented in Table 5.

In order to see the effect of measurement noise on the FE model updating results, the damaged case for the considered
structure is investigated with respect to different noise levels. Here, the noise level is defined as the ratio of the rms values of
the noise and noise-free response. Fig. 11 presents the variations of the relative error between the most probable and actual
eigenvalues for the first three modes, and the posterior c.o.v. values with respect to noise level. Maximum error increases up
to 1% for the noise level of 100%. Posterior c.o.v. values show significant variation. However, their maximums remain in the
level of 10~8. In addition, Fig. 12 presents the variations of the relative error between the most probable and actual stiffness
scaling parameters, and their posterior c.o.v. values with respect to noise level. A similar trend is observed in the results for
the stiffness scaling parameters. It is seen that the relative error shows a reasonable increase for the larger noise levels. A

1.05 i T T T T T T T
1 {3 { 3 —{
<. 0.95 =
< i
0.9 J
0.85 | L | L | L | ]
2 3 4 5 6 7 8 9 10

Number of considered modes

Fig. 7. Variation of posterior c.o.v. versus the number of considered modes (red circle: rigid constraint, blue square: soft constraint for modelling and prediction
error).
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Fig. 8. Variation of posterior c.o.v. of 6y; versus the number of considered modes (red circle: rigid constraint, blue square: soft constraint for modelling and
prediction error).

significant increase is observed for the posterior uncertainties, but its maximum value also remains in a considerably small
level.

7.2. Experimental analysis: ten story shear frame model

In this section, the presented methodology is applied to a ten-story laboratory shear frame whose schematic represen-
tation is presented in Fig. 13. In the laboratory experiments, four piezo-electric accelerometers were used which are defined
with 1000 mV/g sensitivity and 11.4 pg/(Hz.)®> spectral noise density. The measurement system consists of a laptop computer
with a 1.5 GHz single CPU and Linux operating system, a 16 channel USBDUX-Sigma data acquisition box with 24 bit analog to
digital conversion. A first order analog lowpass filter with a cut-off frequency at 120 Hz, and a constant current supply was
used for each channel.

In order to shed light on the effect of incomplete measurement data onto the FE model updating results, three different
scenarios were considered. First, the structure was measured with four accelerometers in four setups, covering all DOF
(Fig.13d). Next, the measurement scenarios were created by the selection of measurement channels according to Table 6. As it
can be observed, the number of measured channels increases from Scenario-I to IIl. The acceleration responses were recorded
in the weak direction of the building and all measurement setups were acquired in different times with 250 Hz sampling
frequency and 5 min duration.

The inter-story stiffnesses of the structure were analytically calculated as [37.50 37.50 37.50 25.00 25.00 25.00 25.00 18.75
18.7518.75] KN/m according to the structural geometrical configuration and assumed material property. In addition, the story
mass was calculated as 2.355 kg for each story. For real life applications in which the nominal stiffness parameters are
assumed to be well estimated, one may take a prior estimation of 1.00. In this study, however, the prior estimation for stiffness
scaling parameters were intentionally considered as overestimated and assigned to 10.0 with a large variance. The prior mass
scaling parameters were selected as 1.00 with small variance (well-estimated).

Table 7 presents the identified MPVs of natural frequencies and their posterior c.0.v. values. Here, “MPV*” denotes the most
probable frequencies identified by BFFTA, and “MPV” denotes the most probable frequencies identified by using the presented
Bayesian FE model updating approach. Results show that the discrepancy between the updated and measured values are very
small. In addition, as the number of measured DOF increases, MPVs and their posterior c.o.v. for eigenvalues show no sig-
nificant changes.

Identified stiffness parameters and their posterior c.o.v. values are presented in Table 8. At first view, it is seen that the
identified stiffness parameters show a maximum difference of about 7% among Scenario-I and IIL This difference is considered
to be caused by the effect of insufficient measurement points in Scenario-1. Here, only the first five modes could be identified
by the presented method, because five DOFs were measured only. The absence of higher modes results in a relatively weaker
estimation for stiffness parameters. The results from Scenario Il show a small difference from Scenario III, since only the last
two modes out of ten were not considered. In addition, the posterior c.o.v. shows significant increase in case of insufficient
measurement points. Despite, a maximum relative difference of 7% in the stiffness parameters, the posterior most probable
mode shapes are observed to be identical for the considered scenarios (see Fig. 14).
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Fig. 9. Updated mode shapes (blue square) and analytical values (red line) for undamaged case: a-) y-y direction, b-) x-x direction, and c-) torsional.
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Fig. 10. Updated mode shapes (blue square) and analytical values (red line) for damaged case: a-) y-y direction, b-) x-x direction, and c-) torsional.
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Table 5
Posterior c.0.v. values for updated most probable mode shapes ( x 10~ '2).

17

Mode number Undamaged case

Damaged case

yy-dir xx-dir. yy-dir xx-dir.
1 3.86 4.25 57.35 69.93
2 5.25 4.92 77.42 91.16
3 5.85 6.04 89.83 103.25
4 7.23 8.23 110.21 123.86
5 9.16 9.95 132.36 145.79
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Fig.11. a-) Variation of relative error ratio (%) in eigenvalues with respect to noise level, and b-) variation of posterior c.o.v. of updated eigenvalues with respect to

noise level.
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Fig. 12. a-) Variation of relative error (%) in updated stiffness scaling parameters with respect to noise level, and b-) variation of posterior c.o.v. of updated
stiffness scaling parameters with respect to noise level.
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Fig. 13. a-) Schematic view of ten story shear frame structure, b-) view of the whole experimental setup, c-) data acquisition system, and d-) multiple setups
configuration (for scenario III).

Table 6
Sensor placement for considered measurement scenarios.
Setup Number Measured DOFs
Scenario [ Scenario II Scenario 111
1 1,4 2,3,4 1,2,3,4
2 4,6 4,5,6 3,4,5,6
3 6,8 56,7 56,78
4 8,10 7,9, 10 7,8,9, 10
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Table 7
MPVs and posterior c.o.v. for natural frequencies (“*” denotes the MPVs that are identified from the measurements by BFFTA).
Mode # Scenario 1 Scenario Il Scenario III
MPV* MPV c.o.v (%) MPV* MPV c.o.v (%) MPV* MPV c.0.v (%)
1 2.61 2.62 0.11 2.62 2.62 0.08 2.62 2.62 0.07
2 7.36 7.37 0.06 7.37 7.37 0.05 7.37 7.37 0.05
3 11.67 11.69 0.03 11.69 11.69 0.01 11.70 11.70 0.01
4 17.02 17.03 0.02 17.03 17.03 0.01 17.03 17.03 0.01
5 20.72 20.70 0.02 20.72 20.71 0.01 20.71 20.71 0.01
Table 8
Identified stiffness scaling parameters for considered measurement scenarios.
Stiffness Parameter Scenario [ Scenario II Scenario III
MPV c.o.v (%) MPV c.o.v (%) MPV c.o.v (%)
04 0.9544 0.3195 0.9916 0.2927 1.0154 0.1607
[ 0.9226 0.5147 0.8902 0.3729 0.8875 0.1700
03 0.9839 0.5701 0.9544 0.1484 0.9448 0.1025
04 1.1517 0.5723 1.0961 0.1512 1.1135 0.1015
s 0.9515 0.6093 1.0239 0.1944 1.0278 0.1288
s 1.0957 0.7114 1.0484 0.2180 1.0524 0.1497
07 1.1495 0.5564 1.1989 0.1774 1.1805 0.1177
g 1.1001 0.7402 1.0897 0.2214 1.0849 0.1311
g 1.0020 0.6004 1.0379 0.2192 1.0497 0.1314
f10 1.0596 0.5782 1.0316 0.2170 1.0443 0.1343
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Fig. 14. Updated mode shapes for considered scenarios.
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8. Conclusion

Motivated from the literature, this study presents a two-stage Bayesian finite element model updating procedure by using
the acceleration response obtained by multiple setups from ambient excitations. The main difference from the previous
studies stands on consideration of the prediction and modelling error terms. In the modal identification stage, BFFTA is
employed to the finite element model updating problem to quantify the prediction error term. A block diagonal covariance
matrix is obtained which indicates a zero-correlation between the eigenvalues and eigenvectors. Thus, a prior probability
distribution for the prediction error between the most probable and measured eigenvalues and eigenvectors are obtained for
each measurement setup. Finally, the posterior MPVs for model and system modal parameters are updated by using Bayes’
theorem. Numerical and experimental studies are presented to see the efficiency of the proposed methodology.

The proposed procedure results in lower posterior uncertainty when compared to the rigid constraint approach for
modelling and prediction error. The reason of this fact is considered to stem from using the posterior distribution of local
modal parameters obtained by BFFTA at each setup for prior probability distribution of eigenvalues and eigenvectors together
with the modelling error. Using a prescribed prediction error or neglecting the prediction error for eigenvalues results in
significant increase in the posterior uncertainty. Additionally, in case of multiple measurement setups and/or insufficient
measurement points, the presented methodology gives reasonable results for system parameters.

Appendix A

Calculation of Hessian matrix for local modal parameters

The Hessian matrix for the nth mode local modal parameters at i™" measurement setup can be calculated by following a
fast-computational procedure that is proposed by Au and Xie [40]. In this procedure, a constrained likelihood function,
Lc ni(®pi) with one independent mode shape equality constraint (for n™ mode and it" setup) is considered as below.

Lc,ni(®ni) =Lni(On) + @ 1iGjni (A1)

Here, @; ,; and Gj ,; denote the Lagrange multipliers and constraint equations. The Hessian matrix with respect to @y is
obtained as,

v2 Leni= VVE (Vz Loi + aj,niVz Gj,ni) Vve (A2)

where v, denotes a mapping function that always satisfies the constraint equations. The second order derivative of the
likelihood function is given by

L(ani~®sni) L(ania‘bni)

ni ni
(A3)
L[(]¢m Osni) L£1¢m )

i i

Vani = Vani(®ni) 0=V (Or) =v2

where v, G; and their derivatives are written as below.

@ .
0 sni ™ T
0= N ; Ve(® ) = o |’ Gi = bpidni — 1
m [l dnill (A4)
| P 04N, 5 04,4 Ouxn,
Ve = ;o VG =
Ona In— Onidp; O 2y,

Thus, the Hessian matrix under norm constraint is obtained as follows

27 (@i, Osni) o271 (Osii by
Iy Oy, lo. o Lo.o Iia Oy, V2L Oni) g Lém )
VZL e 2 |: ®sm®sm ®sm¢m :| o y (A 5)
c.ni = — = .
0N| «4 IN— i ¢E1 L¢m®5m Lo itrn +20n; ON, <4 IN— (I)nid)gi VZL((:d;:iiv@sni) v2 L(c¢nnih¢m)

where
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Derivative of A; with respect to @ p; can be obtained as follows.
0A; 9 SniDkni "
ni :Z _ni kni Re<FkiFki) (A.9)

00; i K 00 pi Se.ni (Snka‘ni + Se,ni)

In Eq. (A.9), it is seen that the derivative of A,; is a Hermitian matrix. Therefore, its eigenvalue decomposition should also
be Hermitian.

N
Api = Z‘TipipiT
i=1

(A.10)

My & o g ap; 1 opT

= pip; +0 Pi + OiPizo
a@)s,ni i—1 a®s,ni ™ la®s.ni ! ! la®s,ni

where 8p;/00®; ,; will be orthogonal to p;. Therefore, 9p; /0@ ,; should be equal to zero in order to keep Hermitian structure of
0Api /00 ;. Thus, the derivative of A(® ;) is obtained as below.

a®s,ni - < a®s’mpipj - @ ¢m¢m

A <~ d0; oa
ni 0 T [ + Z plpl (A] 1 )
a®5 ni

Thus, a zero correlation is obtained between @ ; and ¢,,; by making use of Egs. (A.7) and (A.11), as follows.
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Appendix B

Derivatives of the objective function

o Derivative of J(e,e)

00) 0% 1 5167
J( .0) =— N S Sei,oINXN + Z Sgn G nGKn (Bl)
00 l0_0 p—p 17 n=1
e Derivative of J®f)
RS Niy
J(Q_’p) _ {J(pe)} :m R = — S;1G?;HGM[] (BZ)
Plo—8 p—px=2 n=1
e Derivative of J(e‘)‘)
82_] S
L 7 AP AL )
0=0,p=p. =1 (53)

=[j0®) | jO0enm) ]y N N
JOB) = [o@nT gy @y T o

J(0i~q>n) — [25/;] &’EQnKi (lN - ;I\)na)zﬂ 1xN

e Derivative of |(PP)

2 Noy
R RS SE=- AN .
P lo—0 p=pu=7 ° n=1

« Derivative of J(P)
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J(PJ\) - {JO\,P)}T — a_z-l

opdA|, = (e jehn) Iy,

=0,p=p,1=%

_ ~T ~ T =
Pl = 51 (ZAnGMnGMnP — Gy 8w, + G{Anmod)n)
where

Gm, = [M; @, ... MNE]&)H}NXND

o Derivative of J(P®)

J(PSI’) — {J(‘I’,P)}T 24 = [J(P~‘I>1) J(pbem) ]prNmN

T

J(Ps‘l’n> — [{J(P1~'I)n)}T {J(pNetq)n)}T}Npr

J(Pma‘l’n) — [ngl‘i\)zgnlnMi (lN - (/I\)HEI\)E)}‘IXN

« Derivative of J™)

jon 9
%

Ns
| diag[s=!
R = |:C|lag (st\ G/A\“ + Z Hﬂ,)]
=Y i=1 NmxNp

0=0.p=p.y,

e Derivative of ](M’)

2
JA®) — (@ANT a(apfja)\ = [jae) () NN
0=0,p=p,x=%
N T
men) - [{J(m@n)}T {J(ANm;I»n)}T}NmeN

fin) [ 28 ®,2:M(p) (Iy - B2®,)] i n=m

0N otherwise

23

(B.6)

(B.9)

(B.10)
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« Derivative of J(®®)

@) &

T 2R A:diag“@“(b’) e J( @ ) T NN
0=0.p=p. =2
(B.11)
Ns
] ) — { > T (rﬁizﬂg, + zal’lilNi)FOi} +Q1S1Q0 — 26,1y
i=1 '
Appendix C
Non-parametric substructure stiffness and mass matrices for the presented numerical example
o Stiffness matrix, K;;
Forr=1,
10 O -1 0 0
00 O 0 0O
0 0 12 /4 0 00
0
K],(:k]x 00 0 0 00 6x39 (C.])
00 O 0 0O
00 O 0 0O
039,45
00 O O 0 O
01 0O 0 -10
00 1Lj/40 00
0
Kiy = kiy o0 0o o0 o0 of ¥ (C2)
00 O O 0 O
00 O 0 0O
03945

Forr=2,3,4,.,15
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03(r_2)x45
10 0 -10 o0
0 o0 0 o
2 2
B [T 0 LX/4 0 0 LX/4
X — X
10 0 1.0 0
0 o 0 o
0 —L,%/4 0 0 I2 /4
03(15_1)x45
03(r_2)x45
0 0 0 0 0 0
0 1 0 0 -1 o0
2 2
050 |0 O Ly/4 0 0 —Ly/4
Ky = kiy 00 0 00 0

0 -1 0 0 1

0
0 0 —L§/4 0 0 L§/4

03(15_1)x45

where, kix = Kix- + Kixy and Ky = Ky + Kpy .
e Mass matrix, M;;

Forr=1,

01.3(15-1)

01,3(15-1)

25

(C3)

(C4)
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i 10 0 0 0 0.
01 0 0 0O
(Lﬁ + Lf,)
0 12 00
M] =m
00 0 0 0O
00 0 0 0O
-0 0 0 0 0 O0-
) 039,45
Forr=2,..,14
i 03(r-2)x45
12 0 0
0 172 0
(L,Z( + L§)
0
01,3(-2) 24
M;=m
0 0 0
0 0 0
L O 0 0
i 03(15_1)x45
Forr =15
. 039,45
120 0
0 12 0
2,12
. (L2 +13)
MlS =m 06><39 24
0 0 0
0 0 0
. L0 o0 0

06,39
0 0 0
0 0 0
0 o0 0
12 0 0
0 12 0
L2 +12
. o E+L)
24
0 0 0
0 0 0
0 0
10 0
0 1 0
2 2
(LX+Ly)

01,3(15-1)

(C.5)

(C.7)
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