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In this paper, we study the defocusing nonlinear Schrodinger equa- Received 24 April 2019
tion with a locally distributed damping on a smooth bounded Accepted 20 April 2020
domain as well as on the whole space and on an exterior domain.
We first construct approximate solutions using the theory of mono-
tgne operqtors. Wezshow that approximate so[ut!ons deca.y exponen- locally distributed damping:
tlal'ly fast |n.the ‘L -sense by using the multiplier technlque'and a monotone operator theory;
unique continuation property. Then, we prove the global existence nonlinear Schrédinger

as well as the Lz-decay of solutions for the original model by passing equation; stabilization;

to the limit and using a weak lower semicontinuity argument, unique continuation
respectively. The distinctive feature of the paper is the monotonicity

approach, which makes the analysis independent from the com-

monly used Strichartz estimates and allows us to work without artifi-

cial smoothing terms inserted into the main equation. We in

addition implement a precise and efficient algorithm for studying

the exponential decay established in the first part of the paper

numerically. Our simulations illustrate the efficacy of the proposed

control design.
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1. Introduction

This paper is concerned with the stabilization of defocusing nonlinear Schrodinger
equations (dNLS)

i0y+Ay—yf y+ialx) y=0 in Q x(0,7),

J0) =y in O, (-0

where Q is a general domain, and a is a nonnegative function that may vanish on some
parts of the domain. We first study (dNLS) on a bounded domain Q in RY with bound-
ary T of class C°. In this case we assume y = 0 on I'. Then, we extend the theory to
unbounded domains in the particular cases Q = RY and Q being an exterior domain.
The nonlinear Schrodinger equation (NLS), central to classical field theory, gained
fame when its one dimensional version was shown to be integrable in [1]. Contrary to
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its linear type, it does not describe the time evolution of a quantum state [2]. It is rather
used in other areas such as the transmission of light in nonlinear optical fibers and pla-
nar wavequides, small-amplitude gravity waves on the surface of deep inviscid water,
Langmuir waves in hot plasmas, slowly varying packets of quasi-monochromatic waves
in weakly nonlinear dispersive media, Bose-Einstein condensates, Davydov’s alpha-helix
solitons, and plane-diffracted wave beams in the focusing regions of the ionosphere (see
for instance [3-7]).

The NLS model without a damping term can describe an evolution without any mass
and energy loss such as a laser beam propagated in the Kerr medium with no power
losses. However, it is always true that some absorption by the medium is indispensable
even in the visible spectrum [8]. The effect of the absorption can be modeled by adding
a linear (e.g., iay, a >0) or nonlinear (e.g., ialy|’y, a>0, g>0) damping term into the
model, depending on the physical situation. A localized damping, where the damping
coefficient a = a(x) depends on the spatial coordinate, can be used to obtain better
physical information by distinguishing the spatial region where the absorption takes
place or is detected, due to for example some impurity in the medium, from the rest of
the domain.

1.1. Assumptions

Throughout the paper (without any restatement) we will assume the following: The
power index p can be taken as any positive number. The nonnegative real valued func-
tion a(-) € W->°(Q) represents a localized dissipative effect.

If Q is a bounded domain we will assume that a satisfies the geometric condition
a(x) > ag > 0 (for some fixed ay € R;) for a.e. x on a subregion w C Q that contains

I'(x%), where
") ={xel: m(x) - v(x)>0}. (1.2)

Here, m(x) := x — x° (xop € RY is some fixed point), and v(x) represents the unit out-
ward normal vector at the point x € T'.

On the other hand, if Q is the whole space, we assume a(x) > ag > 0 in RY\Bg,
where By represents a ball of radius R' > 0. We assume the same if Q is an exterior
domain: Q:=RN\ O, where O CC By being O a compact star-shaped obstacle,
namely, the following condition is verified: m(x)-v(x) <0 on I'y, where Iy is the
boundary of the obstacle O which is smooth and associated with Dirichlet boundary
condition as in Lasiecka et al. [9]. In this case, the observer x, must be taken in the
interior of the obstacle O. Regarding to the localized dissipative effect, we consider
a(x) > ag > 0 in Q\Bg.

Moreover, in all cases, we assume that the damping coefficient a(-) satisfies:

IV a(x)]” <a(x), Vx € Q. (1.3)

The above assumption on the function a(-) was used for the wave equation with
Kelvin-Voight damping; see for instance Liu [10, Remark 3.1] and Burq and
Christianson [11].
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Remark 1.1. The assumption p >0 is in parallel with the general theory of defocusing
nonlinear Schrodinger equations when the initial datum is considered at the H'-level.
On the contrary, it is well known that solutions of the focusing nonlinear Schrodinger
equation (fNLS) may blow-up if p > 4/N even in the presence of a weak damping act-
ing on the whole domain for arbitrary initial data. The main result of this paper can be
extended to the case of the focusing problem via a Gagliardo-Nirenberg argument for
the allowable range p < 4/N. The critical case p = 4/N can also be treated with a small-
ness condition on the initial datum. These are rather classical arguments and will be
omitted here.

1.2. A few words on the previous work

The stabilization problem for the linear and nonlinear Schrodinger equations (NLS)
received significant attention in the last three decades. Tsutsumi [12] studied the stabil-
ization of the weakly damped NLS posed on a bounded domain at the energy and
higher levels. His results were extended to the weakly damped NLS posed on a bounded
domain subject to inhomogeneous Dirichlet/Neumann boundary conditions in a series
of papers by Ozsari et al. [13], Ozsar1 [14, 15], and to the weakly damped NLS posed
on the half-line subject to nonlinear boundary sources by Kalantarov & Ozsari [16]. In
addition, Lasiecka & Triggiani [17] proved the exponential stability at the L?—level for
the linear Schrodinger equation with a nonlinear boundary dissipation.

In all of the work mentioned above, damping was assumed to be effective on the
whole domain. However, there has also been some progress regarding the stabilization
with only a localized internal damping. The stabilization problem in L?—topology for
the defocusing Schrodinger equation with a localized damping of the form ia(x)y on
the whole Euclidean space in dimensions one and two were treated by Cavalcanti et al.
[18-20], and Natali [21, 22]. Cavalcanti et al [23] considered an analogous structure of
damping for the defocusing Schrodinger posed in a two dimensional compact
Riemannian manifold without boundary. Dehman et al. [24] studied the stabilization of
the energy solutions for the defocusing cubic Schrodinger equations with a locally sup-
ported damping on a two dimensional boundaryless compact Riemannian manifold as
well. For this purpose, the authors considered a damping term given by

ia(x)(I — A)"'a(x)dyy. Similar results on three dimensional compact manifolds were
obtained by Laurent [25]. Bortot et al. [26] established uniform decay rate estimates for
the Schrodinger equation posed on a compact Riemannian manifold subject to a locally
distributed nonlinear damping. Bortot & Cavalcanti [27] extended these results to con-
nected, complete and noncompact Riemannian manifolds. Rosier & Zhang [28]
obtained the local stabilization of the semilinear Schrodinger equation posed on n-
dimensional rectangles. Burq & Zworski [29] studied the exponential decay of the linear
problem on 2 - Tori at the L? - level. In addition, we would like to cite Aloui et al.
[30], who obtained the uniform stabilization of the strongly dissipative linear
Schrodinger equation, and the recent work of Bortot & Corréa [31] for the treatment of
the corresponding nonlinear model. It is worth mentioning that in [30, 31] the authors
considered a strong damping given by the structure ia(x)(—A)"/?
local smoothing effect that was crucial in their proof.

a(x)y which provides a
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1.3. Motivation

The main goal of the present paper is to achieve stabilization with the (natural) weaker
dissipative effect ia(x)y instead of relying on a strong dissipation such as

ia(x)(—=A)"?a(x)y. It will turn out that the assumption (1.3) enables us to avoid using
such strong dissipation. We want to achieve stabilization in all dimensions N > 1 and
for all power indices p > 0. For this purpose, we first construct approximate solutions to
problem (2.9) by using the theory of monotone operators. We show that these approxi-
mate solutions decay exponentially fast in the L>-sense by using the multiplier technique
and a unique continuation property. Then, we prove the global existence as well as the
L*-decay of solutions for the original model by passing to the limit and using a weak
lower semicontinuity argument, respectively. Here it should be noted that our nonlinear
structure f(|y]*)y (f(s) = s?/?) is much more general than those treated to date in the
context of stabilization with a locally supported damping. The current paper comple-
ments the work of Aloui et al. [30] on unbounded domains, because we prove the glo-
bal exponential decay for dNLS, while [30] obtained only a local exponential decay in
the linear setting. In addition, we implement a precise and efficient algorithm for study-
ing the exponential decay established in the first part of the paper numerically. Our
simulations illustrate the efficacy of the proposed control design.

1.4. Main result

We adapt to the following notion of weak solutions for problem (1.1).

Definition 1.1. Let y, € L*(Q) and set X = H}(Q) N LF*2(Q). Then, y € L>*(0, T; X) N
C([O, T];LZ(Q)) is said to be a weak solution of problem (1.1) if y satisfies y(0,-) =
yo() in L*(Q), and

[ [- 0010 000+ (7 5(0.0(0) g ]

0 (1.4)

#i ] [OF 20000 s @)~ 1(a6) 2(0).00) g ] =0

0
for all ¢ € C°(0, T; X).
The mass functional for the defocusing NLS is given by Eo(y(t)) :==1 | y(t)Hiz(Q).

Theorem 1.2 (Existence and stabilization). Let y, € X = HL(Q) N LFT2(Q). Then, (1.1)
admits a weak solution y in the sense of Definition 1.1. Moreover, there are C,y >0
(depending on ||yo||yy (q)) such that the following exponential decay rate estimate

Eo()’(t)) < CeiytEo(yo),t > Ty,
holds true for this weak solution provided Ty > 0 is sufficiently large.

The proof of the exponential decay estimate as in Theorem 1.2 is generally reduced
to showing that given R >0, an inequality of the form
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T T
J J ly|dxdt < CJ J a(x)|y]* dx dt (1.5)
Q\w 0JQ

0

must be satisfied for all y solving (1.1) with data satisfying ||yo||, < R. It is standard to
prove these kinds of inequalities by contradiction, since then one can obtain a sequence
of initial data satisfying ||yf||,, < R, whose corresponding solutions y* violate (1.5) with
say ¢ = k. The a priori bound ||y%||,, < R is used to pass to a subsequence of y* which is
expected to converge (in an appropriate sense) to a solution of the fully nonlinear
model, say u, which in particular vanishes on @ (or on RN \Br if Q is unbounded).
Then a unique continuation argument must be triggered to conclude that u is zero,
which indicates a contradiction based on a further standard normalization argument.
Unfortunately, there is no established wellposedness theory for NLS when it is consid-
ered on a general domain with arbitrary data and power index, especially in dimensions
three and higher. Absence of uniquesness and smoothing results for general domains
makes it quite difficult to handle the nonlinear terms in passage to the limits and obtain
a unique continuation property. This motivates us to follow a novel strategy for stabiliz-
ing locally damped pdes based on first working with approximate models whose nonlin-
ear parts are only Lipschitz. The approximate models possess the desired uniqueness
and strong regularity properties. We focus on exponentially stabilizing solutions of these
approximate models. This is considerably easier than working with the fully nonlinear
model because we can easily obtain a unique continuation property for the approximate
models. The biggest advantage is that we do not need to handle highly nonlinear terms
and therefore do not need to use smoothing properties generally implied by Strichartz
type estimates, which are not widely available or true on general domains. Once the
exponential stability for approximate models is established, the existence of a weak solu-
tion as well as its exponential stability for the original model (1.1) is achieved in a single
shot.

1.5. Orientation

The proof of Theorem 1.2 requires a combination of several steps:

Step 1: We shall first work on a bounded domain and construct approximate solutions.
This is achieved by using the m-accretivity of the nonlinear source By = |y[’y
on a suitably chosen domain. This allows us to replace By with its Yosida
approximations B,, = BJ,,, where J,’s are the resolvents of B. We construct an
infinite sequence of almost-linear (i.e., Lipschitz) problems (see (2.8)), whose
unique and strong solutions, say y,, can be easily obtained via the classical semi-
group theory.

Step 2: We obtain a unique continuation property (Lemma 2.1) which is valid for any
weak solution of the approximate solution model that vanishes on w. It is note-
worthy to mention that the unique continuation property is not stated for a lin-
ear model, but rather given for the approximate solution model whose
nonlinear part is globally Lipschitz in L?(Q). This allows us to simplify the
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proof of an important inequality (see Lemma 2.2). Uniqueness of solution for
the approximate model is critical in the proof of the unique continuation.

Step 3: By using the multipliers we show that the approximate solutions y,’s are nonin-
creasing at the L>— level, and moreover uniformly bounded in n at the H'-level.
The assumption (1.3) on the damping coefficient plays a critical role in control-
ling the H'-norm.

Step 4: The exponential decay of approximate solutions is reduced to proving the inequality
given in (2.29). This is proven by contradiction utilizing the unique continuation
property given in Step 2.

Step 5: As a last step, we use the classical compactness arguments based on the uniform
bounds of the approximate solutions in suitable spaces to pass to a subsequence
which converges to a soughtafter weak solution of the original model. The decay
of this weak solution is obtained via weak lower semicontinuity of the norm.

Step 6: We extend the proof of Theorem 1.2 to unbounded domains in the particular cases
where Q is either the whole space or an exterior domain.

Step 7: We finish the paper with a numerical section, based on a Finite Volume Method,
where illustrations verify the proved decay rate.

2, Approximate solutions, weak solution, unique continuation, stabilization

This section is devoted to the proof of the main result when Q is a bounded domain.
Monotone operator theory is used as in Ozsar1 et al. [13, Section 4] to construct
approximate solutions, except that the treatment here also includes the case of a space
dependent damping coefficient. Once such solutions are constructed we prove that they
obey a mass decay law at the L* level via a unique continuation property. Finally, we
pass to the limit to construct a weak solution. A similar mass decay for this weak solu-
tion is obtained via weak lower semicontinuity argument.

We start our construction of approximate solutions for problem (1.1) by replacing
the nonlinear source with its Yosida approximations. To this end, we consider the non-
linear operator B on L2(Q) defined by

D(B) = {y e L*(Q); I y € *(Q)}, (2.1)
By = |yfy, Vye D(B). 2.2)

It is well known that B is m-accretive (see e.g., Okazawa and Yokota [32, Lemma 3.1]).
Thus, we can define the (Lipschitz) Yosida approximations 5, of B in terms of the
resolvents J,;:

1 —1
Jo = (1 +ZB) (23)

and
B, =n(I—],) = BJ,. (2.4)
One can represent the operators B and B, as subdifferentials

B=0y and B,=0y,
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where ¥ and y,, are given by

1
V) = ri2 ||)’||$L+zz(g) for y € IF*3(Q) (2.5)
oo otherwise

and

b= min L2yl +v00

Vlep(g) (2.6)
=5, 1B YIL(Q + 0 y), ¥y € 1X(Q).
Moreover, one has
Y(Un(2) < ¥u(2) < ¥(2). (2.7)

Now, given y, € X, we choose a sequence of elements {y, o} C X N H?(Q) such that
Yn0 — Yo in X. We first consider the following approximate problems:

{iatyn—i—Ayn—Fn(yn):O in Q x (0,7),

2.8
}’n(o) = Yn,0 in Q, (28)

where Ey(yn) = Bn(yn) —ia(x) yn.
As B, is Lipschitz with say Lipschitz constant L,, we deduce that F,, is also Lipschitz.
Indeed, let y,z € L*(Q), then

1En(y) = Ea(@)lli2i0) < 1Ba(y) = Bu(@)l2() + 1) (v = 2)l12(0)
< (Lo + llallieiey) Ny = 2llizcay

By using the standard semigroup theory [33], we obtain a unique solution y,, which sol-
ves (2.8) and satisfies y, € C([0,00); H}(Q) N H*(Q)) N C! ([0, 00); L*(Q)).
Next, we prove the following unique continuation result for the approximate solutions:

Lemma 2.1 (Unique Continuation). Let n>1 be fixed and u € L™ (O, T, Hé(Q)) N
C([0, T); L*(Q)) be a weak solution of
{ iou+Au=Fu in Qx(0,T)

2.9
u=0 ae. in ox(0,T); >

then u=0on Q x (0,T).

Proof of Lemma 2.1. In order to prove this theorem, we will use the unique continu-
ation principle presented by [9]. The unique continuation argument of [9] does not dir-
ectly apply to the problem under consideration here, and there are some technical
challenges related with smoothness of solutions and the source function. In [9], unique
continuation was proved for H>2(Q x (0, T)) solutions assuming F,,, can be written as
go(x,t)u for some gy € L(Q), or for energy solutions assuming g, satisfies further
rather strong smoothness conditions. Although we can put F,,, in the form gou by sim-
ply defining
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qo(x, t) = u(x, t) if M(x, t) #0
0 lf u(x’ t) - Oa

one cannot use the unique continuation theory at the H>2(Q x (0, T)) level because the
solutions of (2.8) only belong to C([0, T]; H*(Q)) N H'(0, T; L*(Q)), which is rougher.
Similarly, we are also not in a position to use the unique continuation at the energy level
because g, does not satisfy the extra conditions given in [9] for energy solutions. In order to
deal with this difficulty, we will utilize the uniqueness of weak solution to (2.8) together with
a compactness argument. Uniqueness is unknown for the NLS with power nonlinearity on
high dimensional domains, but luckily we know it is true for the approximate model (2.8)
with Lipschitz nonlinearity. This is another advantage of using Yosida approximations here.

We start by shifting the topology up by constructing (sufficiently smooth) approxima-
tions of approximations. To this end, for a given n, let us consider the problem:

{ iOWm + Awyy, = frn(x, 1) in Q x (0, 7)

W, =0 ae. in ® x (0,T), (2.10)

together with w,,(0) = w0 € H*(Q) N HY(Q), where lim,, .o wyo = u(0) in HL(Q),
and f,, € L2(0, T; H*(Q)) N H' (O, T; LZ(Q)) s.t. lim, . fru = F,u in L*(Q). By the linear
theory of the Schrodinger equation, (2.10) has a solution w,, € L*(0, T; H*(Q)) N
H2(0, T; L*(Q)). Therefore, in particular w” € H>2(Q x (0,T)) and it also satisfies the
conditions given in [9][2.1.1 (b)]. Note that the right hand side of (2.10) is simply

6-Vwm+0~wm+fm

with respect to the notation given in [9]. Due to the unique continuation principle
[9][Cor 2.1.2-ii], we deduce that w,, = 0.

By using the multipliers on (2.10) and compactness arguments we can extract a sub-
sequence of w,, which converges to a weak solution w of (2.8). But then w(0) = u(0),
and w and u solve the same equation in the weak sense. But w cannot be anything
other than zero since all w, were zero. On the other hand, the weak solution of (2.8) is
unique, and therefore we must have 0 = w = u. O

Now, taking the L*-inner product of (2.8) with y, and looking at the imaginary parts,
we see that

Re (O )’n’)’n)Lz(Q) - Im(vyn’vyn)p(g) - Im(Bn( n)’)’n)Lz(Q) +(a(x) )’n)}’n)LZ(Q) =0,

=0 -0
(2.11)
where the third term vanishes, since by (2.4) we have
1
B(yn)s yn = | Bu(yn), =Bu(¥n n\Yn
(Ba(9m)3n) 20 ( (). 33 Barm) +Jn( ))Lm)
1 2
=~ 11Bu(m) @) + (Ba () Jn()) (0 (212

1 2
=~ [1Bu(yn)lzz(0) + Wn(m) ]2
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Hence, we obtain

1 d

3 ginlia = = s ax<o. @.13)

(2.13) implies that the mass E,o(t) :=1 |\yn(t)||%2(g> is non-increasing. Integrating
(2.13) on (0, T), we obtain

T
E,o(T) +J J a(x)|ya|* dx dt = E, 0(0), (2.14)
0 Jo

and from the assumption a(x) > ao > 0 a.e. on w, we get

T
aoj J lya|* dx dtSJ J ) yal® dx dt
0 Jo

T (2.15)
00 = Buol1) = =3 || bl ]
Q 0
and thus,
1
J J yal® dxdt < ——U lyal? dx] : (2.16)
0 2a 0
Therefore, by (2.16), we have the following estimate:
T 17 , 1 (T ,
E,o(H)dt == |yu|"dxdt + = |Vu| " dx dt
0 2)o Jo 2)o Q\w
1 5 ]T 1JTJ 5 (2.17)
< —— W dx| = | dx dt .
2610 |:JQ|)/ | 0 2 0 Q\u)ly |

I

We will prove in Lemma 2.2 below a useful inequality for the integral I,,. Before proving
this lemma, let us make a few more observations about the approximate solutions.
Multiplying (2.8) by -i and rearranging the terms we get

Or yn = iAyn — iBu(yn) — a(X) yn-
From the above identity, it follows that

Re (=Ayn + By (Yn), 0t Yn) 12() = Re (A yn + By (Yn), 1 Ayn — i B (yn) — a(®)yn) 12(0)
0,
= Re i|| Ayqft 2 T Re (Ayn,iB, (yn))LQ(m

+ Re (A Yn, a(‘r)yn)LQ(Q) + Re (Bn (yn): { Ayn)L2(Q)
0,

+ Re i||B 1 L2(Q) — Re(Bn(yn), a(x) ?Jn)LQ(Q) .
Taking into account

Re(Ayn.iBy (7)) 12y + RE(Br (4n):1 AYn) () = 05

from (2.18), we obtain
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Re (—Ayn + By (¥n), atyn)p(m = Re (Ayn. a(x)yn) 2 (q) — Re (Bn( n)> @(X) y,,)Lz(m
= —Re (73, Vals)n) s — |_alo) V" d

— Re (Bu(yn). a(%) 1) 12

(2.19)
It follows from Showalter [34, Chapter IV, Lemma 4.3] that
d
E‘pn(}’n) = Re(Bﬂ( n)’at )’n)U((Q))' (220)
Using (2.20), we get
d |1
Re (_Ayﬂ + By ( n)’atyﬂ)Lz(Q) = dt |:2 ||V)/n(t)||iz(g) + lpn(yn) . (2.21)
Combining (2.19) and (2.21), it follows that
i 3 o0+ 00|+ [ a0
— = g + ¥ a) | + | alx) |Vyal dx
% 5 00l + )| + | at) 19 .

= —Re (Vyn Va(x)yu)»(q) — Re (Bn( n),a(x)y,,)p(m.

Using (2.4), we obtain

1
—Re (Bu(yn).a(x) yn) i) = =, JQa(x)|Bn(yn)2 dx — La(x) Tn(yn) P2 dx < 0.

(2.23)
From (2.22) and (2.23) and taking into account the assumption (1.3), we have

d
a7 B yn ()0 + t/fn(yn)] + La(x) Vya|? dx

= —Re (Vyn, Va(x)yn)2(q—Re (Bn< n)> a(x) yﬂ)Lz(Q)

<0

< jQ|Va<x>| 1l [Vl dx < cjg|a<x>|f 1l [V ] .

(2.24)

Employing the inequality ab < J-a® + &b® (e >0) we obtain

d
¥ B 1y (D730 + Vi n)] + La(x) V| dx

2 (2.25)

< ¢ J |yn|2 dx + EJ a(x) |Vyn|2 dx.
4¢ Q Q

that is,

2

5 IOl +¥am)| + (1= 0| a(a) [V s
c ,
EJQ lyul” dx.

d
dt (2.26)
<
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Considering ¢ > 0 small enough, we conclude that

a1 Ol <& d (2.27)
72 llyn ||H5(Q>+lpn( n) =% g lyal"dx. .

Integrating (2.27) in variable ¢ € [0, T], we get

1 1 c (T
3 DO+ a0m) < 3 omaliger +vaOma) + 5 | | P 228

Lemma 2.2. There exists some ng > 1, such that for any fixed n > ny, the corresponding
solution y, of (2.8) will satisfy the inequality

T T
J J lya|2dxdt < CJ J a(x)|y|* dxdt (2.29)
Q\w 0 JQ

0
for some ¢ (which depends on ||y0||Hé(Q)).

Proof of Lemma 2.2. The initial datum y, € H}(Q) in the original model (1.1) is either
zero (case (i)) or not zero (case (ii)).

In the first case, namely if y, = 0, then we can simply set y, o = 0 for n > 1, which
will trivially converge to y, = 0 in H}(Q), and the corresponding unique solution of
(2.8) will be y, = 0. Therefore, (2.29) will readily hold.

In the second case, where y, # 0, we can choose two strictly positive numbers ¢, L >
0 such that

0 < £ <|lyollp2() and [lyollp(q) < L, (2.30)

say for instance £ = 3||yo|l;2(q) >0, and L = 2/lyoll1(@) > 0. On the other hand, we

know that y, ¢ are chosen to strongly converge to y, in H3(Q). Therefore, there exists
np > 0 such that for all n > ng, y, will satisfy

0 <L <lymollz@ < lyolliz(@) and [0l @) < lymollgi) < L- (2.31)

Now, we claim that under the condition (2.31) on y, ¢, the solution y, of (2.8) satisfies
(2.29). In order to prove the claim, we argue by contradiction. Now, if the claim is false,
then no matter what we choose for the constant ¢ in (2.29), we can find an initial datum
for problem (2.8) whose corresponding solution violates (2.29). For example if ¢ = k > 1,
then there exists an initial datum, say )’ﬁ,o € H*(Q) N HL(Q), satisfying the properties

0 < €< lypollzie) < ol and [yollpe) < 195 ollme) < L. (2.32)

but whose corresponding solution, say y*, violates (2.29) in the sense

T T

J J |yl dxdt > kJ J a(x) |y | dxdt. (2.33)
Q\w 0JQ

0

Moreover, we can say this for each k > 1, and hence obtain a sequence of initial data
{yﬁ,o},fozl, each of whose elements satisfy (2.32) and a sequence of corresponding solu-
tions {y¥};7,, each of whose elements solves (2.8) but also satisfies (2.33).

Since y* is bounded in L™ (0, T; H}(Q)), we obtain a subsequence of y% (denoted same)
which converges (weakly-*) to some u in L™ (0, T; Hé(Q)) Moreover, F, (y’,‘l) is bounded in
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L (0, T; L(P“)/(Q)); therefore there is some y such that F, (yﬁ) (indeed a subsequence of
it) weakly-* converges to in L* (0, T; L¢+2'(Q)). 1t follows that Ok is bounded in
L>(0, T;H(Q)) and (a subsequence of) it weakly-* converges to u, in L™ (0, T; H~'(Q)).
By compactness, we have y* converges strongly to u in L™ (0, T; LZ(Q)) and a.e. on [0, T] X
Q. Then, we have y = F,(u), and u satisfies the main equation of the approximate model
(2.8). Moreover, since the left hand side of (2.33) is bounded, we have

T
J J a(x)|y* [ dxdt — o. (2.34)
Q

0

Therefore, using the assumption a(x) > ag > 0 on w, we have
T
J J Yk P dxdt — o, (2.35)
0 Jo

which implies that u =0 on o since y* strongly converges to u in L® (0, T; LX(Q)).
Therefore, u must be zero by unique continuation property. But then we define

T
V= \/ J J % [Pdxdt (2.36)
0 JQ-w

together with vy = y* /v. Dividing both sides of (2.33) by vZ, we obtain in the same way

T
j J a(x)|vi|*dxdt — 0, (2.37)
Q

0
which implies

T
J J |vi|*dxdt — 0. (2.38)

0

But we also know that y* — u =0 in L2 (0, T; LZ(Q)), and hence vy — 0. We in par-
ticular have

5Ol 2 0
1v(0)] 120 = w > P (as k — o0). (2.39)

On the other hand, the energy dissipation law yields

To
B o(To) = By o(0) = | [ oot )P (240)
0
Combining (2.17) and (2.40), we infer
r 1 1 (T
J E’;O(t)dtg—EﬁO(o)+—J J vk P dxdt
0o a " 2)o Jow

T
<l lEﬁ,o<To> +j j a<x>|y,’z|2dxdt]
ag 0JQ

1" k2
+ = Ly, | dxdt.
2 )y Q\w
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Since Eﬁ’o(t) is a non-increasing function, one has from the above inequality the follow-
ing estimate:

ap) ~ 4o Jo

1T L2
+= |y, | dxdt.
2)o AN\w

From (2.41), we deduce that, for sufficiently large Ty > 0, there exists C = C(ao, Tp)
verifying

To
B o(To) (TO - i) < | "], o
@ (2.41)

To To
Ef o (Tp) <C U J a(x)|yk|* dxdt +J J |yﬁ|2dxdt]. (2.42)
0 JQ 0 JO\w
Combining (2.40) and (2.42) we finally deduce that
To To
Ef(0)<C (J J a(x)|yk > dxdt +J J |y’:,|2dxdt>. (2.43)
0 JQ 0 JO\w
From (2.43) we infer for any k € N, that
El(; n<0) - To 2
=< C J J a(x)|ve|"dxdt +1 |. (2.44)
Vi 0o Jo

Thus, we guarantee the existence of M >0 such that

1 2 % ol Ek,(0)
§||Vk(0)||u(g>= =—5

= <M forall k€N, (2.45)
2vy vy

which establishes a bound for the initial data v¢(0) in L*-norm. This contradicts with
(2.39). Hence, by contradiction, y,, must satisfy (2.29). O

We notice that the equations (2.40)-(2.43) are all valid for yf, replaced by y,, too. It
follows from (2.14) that

To
Eno(To) < E,0(0) < C J J a(x)|y|*dxdt, (2.46)
0 Q

where C is a positive constant.
Now, combining (2.14) and (2.43), and using the inequality (2.29) given in the above
lemma, we obtain

To
E.o(Ty) <C J J a(x)]y,,|2dxdt
0 Jo

(2.47)
= C (E»0(0) — E,0(To)).
Therefore,
E,o(To) < <1—|—CC> E.0(0). (2.48)

Repeating the procedure for nTo, n € N, we deduce
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E,o(nTy) < ( —En,0(0)

for all n > 1.
Let us consider, now, t > Ty, and then write t = nTy +r, 0 < r < Ty. Thus,

Eno(t) < Eyo(t — 1) = Eyo(nTy) < = ) =0
(1+C) (14+¢)%

mln(HC) and Ay = %:C) > 0, we obtain

Setting Cy = e
Eno(t) < Co e ™'E,(0); Vt> Ty, (2.49)

which proves the exponential decay to problem (2.8).
Combining (2.7), (2.49), and (2.28), it follows that

CoC
()l + ¥ Ua(m) <55 Il (2.50)

The inequality (2.50) and the boundedness of the sequence {y, ¢} in X enable us to
conclude that

{y.} is bounded in  L*(0, T; Hy (Q)) (2.51)
{Ja(yn)} is bounded in L (0, T; L¥#*2(Q)) — L#*? (0, T; L¥*D(Q)). (2.52)
Notice that
Bu(yn) = B(Ja(yn)) = Ua(a)l’ Ju(yn)- (2.53)
So, from (2.52) and (2.53), we get
{B, y,} is bounded in L@+ (0, T; LPTY(Q)). (2.54)

On the other hand, by (2.51) and (2.54) we observe
10 yull = sup  {(Oym @)1 }

lloll =1

= s‘l‘lp {(Ayn @) () = (IBu(Vn) @) 1oy = (3() Y ) 2()}
Plla=1

< ” S‘l‘lp {IIVyull2@) VOl + 1Bayull oy o) 10l )
Q|ly=1

Hllall ynllrz () l@ll2@) } < +oo,
so that
{0 y,} is bounded in  L>(0,T; X’). (2.55)

Combining (2.51), (2.52), (2.54) and (2.55), it follows that {y,} has a subsequence
(still denoted by {y,}) such that

ya—y in  L=(0,T; H(Q)). (2.56)

Jaw)— Y in L¥(0, T; LP7*(Q)). (2.57)
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*

Buya)— Z in  L¥(0,T;L¢Y(Q)). (2.58)

& yu— Oy in L (0, T; X"). (2.59)

By Aubin-Lions” Theorem, J. L. Lions, [35, Lemma 5.2 on page 57], there exist a y €
L2(0, T; L*(Q)) and a subsequence {y,} (still denoted by {y,}) such that

Yu =y in  L%(0,T;L*(Q)) (2.60)

Ya—y ae in Q x (0,T). (2.61)

Note that the operator B is also m-accretive when considered on C. So, by

Showalter, [34, page 211], we have that the resolvents ], given in (2.3) are contractions
in C, that is,

[Ju(2) = Ju(w)| < |z —w|, Vz,w € C, (2.62)
Note that in the pointwise sense B, and J, are essentially the same operators given in

the beginning of this section, except that we are considering them on C instead L*(Q).
From above, let’s define

Il C ||| =inf{|x|: x € C}.
Thanks to Showalter [34, Proposition 7.1, item ¢, page 211], we obtain
1Bu(w)| < [[B(w)[| = [B(w)], Vw € C, (2.63)

where the equality on the right hand side of (2.63) is due to the fact that the operator
B given in (2.2) is single-valued in C.

On the other hand, from (2.4), we have w — J,(w) =1 B,(w). Thus, combining this
fact with (2.62) and (2.63), we obtain

[Jn(2) = w| < |Ju(2) = Ju(wW)| + [Ju(w) — w|

1
< |z—w|+; | B (w)] (2.64)
1
<l|z—w|+= |Bw)|, Vw,z € C.
n
It follows from (2.61) that
lyn —y| — 0 ae. in Qx (0,7T). (2.65)

Now, let (x,t) € Q x (0, T) such that the convergence (2.65) holds and z = y, and
w =y in (2.64) and letting n — oo, taking into account (2.65), it follows that

Ja(yn) —y ae in Q x (0,00). (2.66)
Moreover, taking into account (2.66) and the fact that the map B(z) = |z|f z is con-
tinuous, we infer
B(Ju(yn)) — B(y) = lyffy ae.in Q x (0,00).
Making use of the definition of the Yosida aproximations B, given in (2.53), it results that
Bu(yn) — Iy y ae in Q x (0,00). (2.67)
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Now, combining (2.52), (2.66) and (2.54), (2.67), we have, thanks to Lions’ Lemma,
[J. L. Lions, [35], Lemma 1.3, page 12], the following convergences:

Ju(yn) = ¥ in L®(0, T; L*(Q)). (2.68)
Baya) — Iy  in L2 (0, T; L¢P+ (Q)). (2.69)

So, by convergences (2.57), (2.58) (2.68) and (2.69), we get that Y =y and Z = |y|p y
almost everywhere in Q x (0, T).
Moreover, the convergence (2.68) allows us to infer jointly with (2.56) that

y e L®(0,T; X). (2.70)
Finally, let ¢ € C°([0, T); X). Then, from (2.8), we have

T
| =000, 0(0) ) +1 (T30(0) T(0)) g

T
+iL [<|yn(t)|1> In(®). () v (@), o) — ialx) yn(t),w(t))y(m}dtz 0.

From (2.56) and (2.69) by passing to the limit as n — oo, we obtain the variational for-
mula given in (1.4).
From (1.4), it follows that y belongs to the space

W ={yec*0,T;X) such that 0; y € L*(0, T; X")}.

Then, employing Showalter [[34], proposition 1.2, page 106], we have that W can be
continuously embedded in the space C([0, T]; L>(Q)) and, therefore, combining this fact
with (2.70), we obtain that y satisfies Definition 1.1. Moreover, from (2.49), (2.56) and
weak lower - semicontinuity of the norm, we obtain the decay estimate (2.49). Hence,
the proof of Theorem 1.2 is complete.

3. Unbounded domains

The results presented in this article for bounded domains extend easily to the whole
space and exterior domains. To this end, we consider the damping term ia(x)y with

a(x) > ap > 0 in RY\By where By represents a ball of radius R’ > 0.

(i) If Q=RN, then we can take some r >0 such that r > R’ and work locally in the
bounded set B,. Following the steps in the proof of Lemma 2.2, we can find u=0
in B,\Br and then employ Lemma 2.1 to conclude that u=0 in Br as well, and
consequently u =0 everywhere because the ball B, was taken arbitrary.

(if)  Similarly, the result remains valid for an exterior domain Q := RN \O, where O is
a compact star-shaped obstacle whose boundary I'y is smooth and associated with
Dirichlet b.c. as in [9] and m(x) - v(x) <0 on I'y. As in the case of the whole
space, we can consider a ball Bry which contains the obstacle strictly, namely,
O CC By and we take, as before, a(x) > ap > 0 in Q\Bgr. Now, the observer x,
must be taken in the interior of the obstacle O. So, let us consider r > 0 such that
r > R'. The idea is to employ Lemma 2.1 in order to conclude that if u=0 in
(QN B,)\(QN Bg) then u=0 in QN Bg.
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For an observer x, located in the interior of the obstacle ), we have that the inner
product (x — xp) - v(x) <0 on I'p, namely, Iy is the uncontrolled or unobserved part
according to terminology used in [9], so that the unique continuation principle pre-
sented by [9] is verified. Finally, it is worth mentioning that in the context of
unbounded domains, the convergence (2.68) remains valid by considering ideas similar
to those used in Cavalcanti et al. [15, (3.43)].

Remark 3.1. It is important to mention that the UCP developed in [9] can be naturally
extended to a finite number of the observers xi,x;,...,x, with a finite number of
respective compact star-shaped obstacles O; whose closures are pairwise disjoint. To
this end, one can simply use the following vector field:

x—x, i=1,...,n with x; € O,,x € Q
q(x) == { »J s 3.71)

| and smootly extended in Q\(O,UO,U...UO,).

4. Numerical approximation

In this final section, we will show some numerical results supporting 1.2 in R*. In par-
ticular, a Finite Volume scheme is implemented.

4.1. Presentation of the scheme

We consider that the domain Q C R* in (1.1). We approximate the domain using an
admisible mesh (see [36]) composed by a set 7 of convex polygons, denoted as the con-
trol volumes or cells, a set of faces € contained in hyperplanes of R?, and a set of points
P, representing the centroids of the control volumes. The size of the mesh will be given
by h := maxgc7{diam(K)}.

To generate the mesh, we have made use of the open-source code PolyMesher
[37], which contructs Voronoi tessellations iteratively refined through a Lloyd’s method
in order to guarantee its regularity.

We will denote by K € 7 a control volume or cell inside the mesh, which in turn
has centroid xx € R?, a measure m(K) (in our case: the area of K), a set of neighboring
cells AV'(K), and a set Ex of faces 6 € Ex C € = Ejpy U Eexe, Where & is the set of
inner faces and &£, is the set of boundary faces. We will also write ¢, = nAt for a given
timestep At. We will denote y} as the numerical approximation of the solution of prob-

lem (1.1) over the cell K at the time t,,. We will also write y,’?r% = M VK € T, the
proposed Finite Volume scheme for this problem will be defined as follows;

. Yy nt3  m(K) |y1n<+1|217 — |y172'|2p n+1 n : n+y
() S5 Docs oo = iy UK 08 im0l =0
K — VK

Fgo=10L—yk) 0€&m o=K|L, LeT
Flré,a = —T)g>» 0 E€E:0€Ek

o =m(0)/|xxk — x|, 6€Ew LeT:0=K|L
1, = m(0)/d(xk,0), 0 € Eexy:0 € Ex

(4.72)
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The discretization of the nonlinear term comes from the work of Delfour, Fortin and
Payre [38], which was proposed in order to preserve the Energy at H' level if there is
no damping term. The numerical solution over he whole domain [0, T] x Q will de
denoted by yr ar, such that yz7 a(xk,t,) = yk. In some cases, we will write y" instead
of yr a¢(ts) for the sake of clarity.

Given the symmetric structure of the matrix involved in the induced linear system of
equations, a GMRES method is used to solve it. The nonlinear problem is solved using
a Picard Fixed Point iteration with a tolerance equal to 10~° before moving to the
next timestep.

4.2. Properties and convergence analysis

In order to state the properties of the scheme (4.72), we will need some notation. We
will denote the discrete L> norm as follows:

"l @) = Y ilPm(K).

KeT

In a similar fashion, we define the discrete L* norm as

n2 n
Hy HLgp(Q) = Z |yK|2pm(K)-
7 KeT

The discrete version of the Hy, norm will be defined as:

ni2 n|2
lly HH(]),T(Q) = ZTU‘DJ}l %

ge€

where 1, is defined as in (4.72), and for K € 7 and L € N (K),

; {yﬁ—yl’é, if 6 =KJ|L € Einy
Day = .
—¥v% if €&

The following property holds:

Theorem 4.1. The numerical scheme (4.72) admits the existence of a unique solu-
tion y1 At

Proof. For a given n € {0,1,...,N}, and assuming that y} = 0,VK € 7, we take (4.72)

and multiply it by %', sum over K € 7, and extract the imaginary part. This will

lead us to conclude that y}™' =0, VK € 7, and hence the existence of solutions is
proved. Uniqueness follows after noticing that the linear system induced by the numer-
ical scheme has finite dimension with respect to the vector of unknowns y%™, and

hence has unique solution. 0

Let us define the discrete version of the mass functional E, (y(t)) as follows:

n 1 n 2
EM = EZ lye|'m(K), neN.
KeT

1
If we multiply the numerical scheme by )_/?2, sum over K € 7, and extract the imagin-
ary part, we get the following result:
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Theorem 4.2. If a(x) =0, Vx € Q in (4.72), then the following property is true Vn € N:
EY = gint) (4.73)
Ifa(x) > a9 >0, x € w CQ, then

E9>E", wvneN.

A consequence of the previous procedure reads as follows:

Corollary 4.3. Let y7 A be the solution of (4.72) such that E(gO) < 00. Then, there exists a
constant Co,, depending on y° and T, such that

ly7aclle < Coo (4.74)
where [|y"[| , := maxger|yk/-

We will also define the discrete version of the Energy functional at H' level:

nglDayI +Z IyKI (4.75)

065 K e’T

The following property holds:

Theorem 4.4. Let y7 A be the numerical solution induced by the scheme (4.72) such that
1y At”iz( ;<o If a(x) =0, Vx € Q in (4.72); then the following property holds true
’ T(Q

Vn € N:
En ) = g, (4.76)

If a(x) > ay >0, x € w CQ and a(x) € W->(Q), then there exists a constant C> 0,
depending on T, a(x), and y°, such that

EM <E9 4 ¢ (4.77)

Proof. We multiply (4.72) by ) ?17}7 £, sum over K € T, and extract the real part. We get
n+l )’K - . m(K) n+112p _ |on(2p

Re<zzp ) r (|y = i)

KeT oe€k

KeT

(4.78)

After using the identity Re(a(b —a)) =1 (|b)* — |a* — |b — a|*) for a,b € C, and reor-
dening the sum, the first term in (4.78) becomes

1_
Re(Z ZF”*ZyK > = Z;—”(Iy}f—y}il DRV )

KeT oe€k oel
_ E T”( ‘D"+1| )
o€l

With this, (4.78) turns into the following:
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Uiy _ oo - ik = Ik
— MY — E R /KK 4.79

If a(x) =0, then we get (4.76). If not, then we will need to recall the following from

the numerical scheme:
. 2p n |2p
)’In<+1 — ¥k 1 n+i |}’n+1| — |yl n+1 nty
= F,?——=2% R +y XKV - (4.80)
W) 2 ey g R R et

Replacing (4.80) in (4.79) will lead us to study the following:

ZZ ”+2yK 1A;yln(:za(x ZF”"'Z

KeT KeT o€k

n+1|2p
_Za(x ) m(K) [y | |)’1<| ly n+2| (4.81)

K
ket P = kP

— i3 m(K) @)y P

KeT

After extracting the real part in (4.81) the third term at the right hand side vanishes
and the second term is a strictly negative number. For the first term, again using the

identity Re(a(b —a)) =1 (|b* — |a|* — |b— al’) and reordering the sum, we get

Re(Z a(xK)yIn:% Z 1_31"<+a> Z Z ( P+ )( a(x) — a(xx))

KeT oek KeT (768,(
=303 ) (- P g - )
KeT o€k
+ZZ*613€K Re( ()/ J’K) JFJ’K(YnH —n+1))_
KeT o€k

(4.82)

The second term in (4.82) is strictly negative. Hence, and given the regularity condition
of the damping function a(x) € W">(Q), we can infer the existence of a constant Cj,
depending on a(x), such that

Re <Z a(xK)y;?r% Z F}?j) <G Z Z ( n+1| + [kl )
KeT o€k KeT oe&
+ G Z Z v OF = k) H ok GrT =y

KeT UESK

G n n
<S (e, +wmg)

+Q§:§:%@W“l+ﬂﬂf)

KeT o€k

Cly°lz:,

»-lkl\o

Hence, (4.79) will turn into
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1 (n+1)_ (n) ) VK Lk
AtEl AtE + Re zZm( Ja(xk)yx * Y

KeT

m 9 012
<—E -C 3
— At + 4 1“)’ HLT(Q)

Multiplying the previous result by At and repeating the upper bound # times will lead us to
(1) o o), 9C 02
Ef U< E A 1 nAt|ly ||L2m)’

and because ||)°]|7. < oo, we can infer the existence of a constant C, depending on T,
T(Q)
yo, and a(x), such that
(n+1) (0)
Em < g0 4 ¢
Thus, the theorem is proved. O

On the other hand, if we go back to (4.77) and compare it with the definition (4.75),
we get the following result:

Corollary 4.5. Let y" be the solution of (4.72) such that ||y ||L2 ) < 0o and E ) < o0,
Then, there exist some constants C; and C,, depending on y a(x) and T, such that

"l @) < G ¥ EN. (4.83)

and

"l @) < Co» V€N, (4.84)

This upper bound will help us to prove the convergence of the numerical scheme.

Theorem 4.6. For m € N, let {ym},erp> Ym = Y7, A1, (X, 1) be a sequence of solutions of
(4.72) induced by their respective initial conditions {y°,}, .y C X, while using a sequence of
admissible meshes T, and timesteps At,, such that h, — 0 and At,, — 0 when m — oo.
Then, there exists a subsequence of the sequence of numerical solutions, still denoted by
{¥m} merp Which converges to the weak solution y(t) given by the Definition 1.1 when m — oco.

Proof. We will start by proving that 8,y,, is bounded in X’; this is
10yl x, == sup {[(ym )iz (o]}

ol =1
i( DDA CARS <7>K>

= Ssup
H(PHszl KeT,, o€k

i e = e ot oy (4.85)
- — e Uk k) oxm(K)

ZPK;,,, ( P — [yl
=5 (agunt qum(K)>‘}

Kek

< 0.
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The first term in the right hand side of (4.85) can be rewritten as follows

N
+3 +\
S S (i ) pat
n=0 KeT o€y
N

=33 mm (- y,”ﬁ) Pk~ PLpyg

=0 K|L€£mt dKIL
After (4.83) and the regularity of ¢, we can write
+5 +
Z Z ra<yz Ty 2)¢K < o0. (4.86)
KeT,, o€k
For the second term in (4.85), we will consider three cases.

e If p <1, we have

n+12 n12
|)’ +l| i — |yl ? n+1 ) (yn+1 n)— (K)
Z 1 02 + ¥k Z | + yk) Pxlm
KeT K | = |yl KeT
<2/l9llz @yl @
which is bounded.
o If 1 <p <2, then
n+112p 1. n 2P
Vi n+1 |y1,,<|2 In<+1 +)’1n<)(7’1<m(K)
KeT |)/ | |y1<|
<2llollys 1 S0 (P2 + b2 ) miK).

KeT,
Using Young’s inequality, we get

S (b b ) m <K>§K;m<<2P2;2)(y"“|2p+|y,<| ) +2)mi)

KeT,

which is also bounded due to (4.84), (4.74), and by the fact that |Q| < oco.
o If p > 2, then we have

e P — yil®
ntl . 4 k) prm(K)
KeT,, |)’ | | K|
< 2ol 1z, 33 (e 4 pr ) mix)
e m

which is bounded by the same reasons argued in the previous point.

Hence, we conclude that the second term in (4.85) is bounded for any p > 0; this is,

ZD’

KeT |)/

P — |y |

P K YR pxm(K)
K

n+1| < o0. (4.87)
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Regarding the third term in (4.85): thanks to (4.73), and the regularity properties of
a(x), we observe that

}’H’%_ C n
> aleyk Foxm(K) < (I o +llolli @) <oo (488)
Kek

where C, is a constant depending on a(x). Combining (4.86), (4.87) and (4.88), we con-
clude that

{Oym} is bounded in  L>(0,T;X’). (4.89)

Therefore, due to the fact that

[

Hé Q) < L*(Q) —>H%(Q),

and thanks to the Aubin-Lions Theorem, we can extract a subsequence, still denoted by
{¥m}men» such that

ym — y  strongly in  L*(0, T; L*(Q)). (4.90)

We will now prove that this y is the weak solution given by Definition 1.1. Let ¢ €
C(0, T; X) such that Vo -n =0 in 9Q x [0, T]. Multiplying the numerical scheme
(4.72) by A (@ (xx, nAt) + @ (xx, (n + 1)At)) = %g‘o(xK,t,H%), and summing over K €
T and over n =0, ..., N with T = NAt, we get:

N N
IZ Z m(K) ntl _yK XK, n+1 + Z Z TK|L< n+— _yK ) (.X'K, tn+1)At

n=0 KeT n=0 KeT N(K)
N
_ Z Z |yn+2 Pyt P (XK tyy1) AL + iz Z cl(xK)yK+1 P (XK b 11) At = 0.
n=0 KeT n=0 KeT

(4.91)

We can re-write the first term in (4.91), after using summation by parts and recalling
that ¢ € C°(0, T; X):

iZZm(K) nt1 —}’K) xK, n+1 = 122 < O (XK tag1) — . @ (xK, ty— 1))

n=0 KeT n=0 Ke

Hence, because {y} ., is bounded in L®((0, T) x ,L*(Q)), then as m — oo,

—’Z S < P (xi0o 1) — : P (xk tn—l)> . _iJT ng(x, D¢, (x, t)dxdt.  (4.92)

n=0 KeT 0

The second term in (4.91) can also be re-written as follows:
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N -
Z TKIL(J’ —)’K> P (XK by ) At

N _ et (4.93)
1 1 XK> byyl) — XL Lyl

=2 m(KIL)(y"+E—y"+>¢( - +)d PLLI)

K|L

On the other hand,

N p(n+1)At
ZJ J 7. 0t (% £) AP (x, nAt)dxdt = Z z n+2J A (x,t,y1)dxAt
n—=0 J nAt K

(4.94)
n=0 KeT
= -+
- Z > ( L )J Vo (% ty41) - ng, 1) (4.95)
n= K‘Legmt K‘L
By the same reasons argued in (4.92), we have that
N p(n+1)A T
ZJ J 1, a0(%, 1) AP (x, nAt)dxdt — J J y(x, t) AP (x, t)dxdt (4.96)
n=0 nAt Q 0JQ

as m — 0o. Now, subtracting the right hand side of (4.93) from (4.95)

N nal Q?)XK,tn% - @ xL,tn%
> > mKIL) (yK —J +2> (JKLV‘P("’%%) “ng1dy — t) ~ 9 +)>At.

n=0 K|LEEy diit

(4.97)

Because of the regularity properties of ¢, we have that (4.97) goes to 0 when m — oo
Hence, and thanks to (4.94) and (4.96),

S SN L L

d
n=0 K|L&im KL

J y(x, 1) AQ (x, t)dxdt.
0

0

The third and fourth terms in (4.91) can be treated in a similar way because y,
L>(0,T; X); hence, and due to (4.90), we have

T
Z Z |y”Jrz @ (%K> n+1)At — J J ly(x, )P y(x, )@ (x, t)dxdt, as m — oo.
n=0 KeT 0.JQ
Finally,
N T
iZZa (xx yK (p XK> Hl)At — IJ J a(x)y(x, t)p(x, t)dxdt, as m — oo.
n=0 KeT 0JQ

Thus, when passing to the limit in (4.91) and integrating by parts, we conclude that y is
the weak solution of (1.1); concluding the proof.

|
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Figure 1. Numerical solution at different timesteps. Cells with black dots indicate the zone where the
damping function is in place.

4.3. Example |

In the following example, we will use the given numerical scheme to solve equation
(1.1) for p=2, T=500, Q being disk with ratio r=10, » C Q:x? +y2 > 82, and a
damping function defined as follows:

2
(\/(x2 + %) —8) , 87 <xr+yr<10°

0, otherwise.

ax,y) =

Observe that the damping fulfills condition (1.3). The initial condition is given by

Yo :lexp <—<(x— 1)’ + (y - 1)2+§(x— 1))). (4.98)

2

In our computations, we’ve used At = 2% = 0.015625 and h=0.64851, where 2000 poly-

gons were used to approximate the domain. Figure 1 illustrates the state of the numer-
ical solution at different times, while Figure 2 left shows the evolution of the energy
with time. In this case the decay is exponential, as expected from Theorem 1.2.

4.4. Example Il

As a second experiment, we will repeat Example I but using p=2, T=500, and the
damping function
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log(Mass)

7 0 100 200 300 400 500 0 100 200 300 400 500
Time Time

Figure 2. Energy decays for both examples. Left: decay for Example I. Right: decay for Example II.

2
a(xy) = (exp(\/xz—f—yz—S)—l), 82 < x?+y? < 10%

0, in othercase.

This function also fulfills condition (1.3). Figure 2 right shows the time evolution of the
energy. The decay in this case is also exponential, replicating the theoretical result (1.2)
proved in the previous sections.

4.5. Example Il

We will now consider an exterior domain, as stated in Section 3. The new domain Q
will be defined as:

Q={(xy) € R*:5< /x? 4y <20},
while the effective damping subset will be given by
o={(xy) eR: \/x2+y* > 17}.
The initial condition to be used is
y(x,0) = exp <— (x2 + (y — 10)* + %x))

For these calculations, we've done At = 3 = 0.0156, and the domain was approximated
using 5000 polygons with h = 0.76172. Figure 3 illustrates the initial condition and the time
evolution of the mass functional. Its decay follows an exponential trend, as expected.

4.6. Example IV

As a final experiment, we will repeat the previous case but using the following
domain

Q= {(xy) e R*:7 < /x? +y* <20}.
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Figure 3. Results for the experiment with an exterior domain. Left: the initial condition. Right: semi-
log plot for the time-evolution of the mass funcion.
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Figure 4. Left: The initial condition. Black dots denote the cells where the damping function is acting
effectively. Right: Time evolution of the mass functional, at semi-log scale.

The effective damping subset will be given by w = {(x,y) € R*: \/x2+y2 > 17a0 €
(—m,0)}, where « is the angle of the point (x, y) with respect to the positive x axis.
This is equivalent to the geometric condition (1.2) for a point x° = (0,y) such
that y — +o0.

For our calculations, we’ve used At = 2%-, = 0.0312, T=10000, and h=0.80958 for a
domain approximated using 5000 polygons. The left panel of Figure 4 shows the initial
condition and the zone where the damping is acting effectively; while the right panel
shows the decay of the Mass funcional in semi-log scale. We can clearly see the expo-
nential decay rate, as expected from Section 3.

5. Final conclusions

The following table summarizes the new contributions of the present paper compared
with the works cited in the introduction.
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5.1. Strong stability versus uniform energy decay rates

Making use of the assumption (1.3), we obtain exponential decay at the L* level. When
(1.3) is no longer valid, the constant on the right hand side of (2.28) will depend on
C = C(T, |[yol ). In this case, instead of exponential decay rate estimates one just has
that the energy Eo(t) goes to zero when f goes to infinity (as in Cavalcanti et al. [23]).
Indeed, fix T; > T,, where T; > 0 considered large enough comes from the unique
continuation property. Then, from (2.46) there exists a constant C = C(L, Tjj) such that

T
Eo(0) < C(L, T(’;)J Jga(x) ly* dxdt. (5.1)
0

The identity of the energy yields

T
Jo JQa(x) |y\2 dxdt = —E, (Ta‘) + Ey(0). (5.2)

Combining (5.1) and (5.2) and since Eo(T;) < Eo(0), we infer
Eo(T;)(1+ C(L, Ty)) < C(L, T3 ) Eo(0),
from which we conclude that

. C(L. Ty)
Ey(Tp) < <W>EO<O)’

and, consequently, since the map #—Ey(t) is non-increasing, we deduce

1
Eo(T) < v,Ey(0), VT > Ty, where v, := | = , 5.3
o(T) < 71 Eo(0) o " (c0+1> (53)

and Cp = Co(L, T;). From the boundedness YOl @) < C(T, |lyolly) one has
Ily(T)|] o < C,(T), and as we have proceed above we conclude that

1
Eo(2T) < 9,Eo(T), VT > Ty, where y, := (~ > (5.4)
C+1

and C; = C; (CI(T), Ta‘) Thus, from (5.3) and (5.4) we arrive at
E(2T) < (117,) Eo(0), VT > To, with 3,7, <1,
and recursively we obtain for all n € N, that
Eo(nT) < (7172 7a) Eo(0), VT > To, with 1,757, < 1. (5.5)

Thus, if we assume, by contradiction, that the map t—E,(t) is bounded from below,
namely, if there exists o > 0 such that Eq(t) > « for all t>0, then from (5.5) it follows
that Ey(nT) < 9" Ey(0) for some y < 1, and we obtain a contradiction. Consequently
Eo(t) goes to zero when t goes to infinity. O

From the above, we are adjusted with Liu and Rao final results [10], namely, uniform
stability or just uniform and exponential decay rate estimates. However, they exploit the
assumption (1.3), looking for resolvent estimates, while in our case we are looking for
global solutions in H'— level bounded by Hu(t)||Hé<Q) < C(|lyollx)-
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