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ABSTRACT
In this paper, we study the defocusing nonlinear Schr€odinger equa-
tion with a locally distributed damping on a smooth bounded
domain as well as on the whole space and on an exterior domain.
We first construct approximate solutions using the theory of mono-
tone operators. We show that approximate solutions decay exponen-
tially fast in the L2-sense by using the multiplier technique and a
unique continuation property. Then, we prove the global existence
as well as the L2-decay of solutions for the original model by passing
to the limit and using a weak lower semicontinuity argument,
respectively. The distinctive feature of the paper is the monotonicity
approach, which makes the analysis independent from the com-
monly used Strichartz estimates and allows us to work without artifi-
cial smoothing terms inserted into the main equation. We in
addition implement a precise and efficient algorithm for studying
the exponential decay established in the first part of the paper
numerically. Our simulations illustrate the efficacy of the proposed
control design.
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1. Introduction

This paper is concerned with the stabilization of defocusing nonlinear Schr€odinger
equations (dNLS)

i @tyþ Dy� jyjp yþ i aðxÞ y ¼ 0 in X � ð0,TÞ,
yð0Þ ¼ y0 in X,

(
(1.1)

where X is a general domain, and a is a nonnegative function that may vanish on some
parts of the domain. We first study (dNLS) on a bounded domain X in R

N with bound-
ary C of class C2. In this case we assume y ¼ 0 on C: Then, we extend the theory to
unbounded domains in the particular cases X ¼ R

N and X being an exterior domain.
The nonlinear Schr€odinger equation (NLS), central to classical field theory, gained

fame when its one dimensional version was shown to be integrable in [1]. Contrary to
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its linear type, it does not describe the time evolution of a quantum state [2]. It is rather
used in other areas such as the transmission of light in nonlinear optical fibers and pla-
nar wavequides, small-amplitude gravity waves on the surface of deep inviscid water,
Langmuir waves in hot plasmas, slowly varying packets of quasi-monochromatic waves
in weakly nonlinear dispersive media, Bose-Einstein condensates, Davydov’s alpha-helix
solitons, and plane-diffracted wave beams in the focusing regions of the ionosphere (see
for instance [3–7]).
The NLS model without a damping term can describe an evolution without any mass

and energy loss such as a laser beam propagated in the Kerr medium with no power
losses. However, it is always true that some absorption by the medium is indispensable
even in the visible spectrum [8]. The effect of the absorption can be modeled by adding
a linear (e.g., iay, a> 0) or nonlinear (e.g., iajyjqy, a> 0, q> 0) damping term into the
model, depending on the physical situation. A localized damping, where the damping
coefficient a ¼ aðxÞ depends on the spatial coordinate, can be used to obtain better
physical information by distinguishing the spatial region where the absorption takes
place or is detected, due to for example some impurity in the medium, from the rest of
the domain.

1.1. Assumptions

Throughout the paper (without any restatement) we will assume the following: The
power index p can be taken as any positive number. The nonnegative real valued func-
tion að�Þ 2 W1,1ðXÞ represents a localized dissipative effect.
If X is a bounded domain we will assume that a satisfies the geometric condition

aðxÞ � a0 > 0 (for some fixed a0 2 Rþ) for a.e. x on a subregion x � X that contains

Cðx0Þ, where
Cðx0Þ ¼ fx 2 C : mðxÞ � �ðxÞ > 0g: (1.2)

Here, mðxÞ :¼ x� x0 (x0 2 R
N is some fixed point), and �ðxÞ represents the unit out-

ward normal vector at the point x 2 C:
On the other hand, if X is the whole space, we assume aðxÞ � a0 > 0 in R

NnBR0 ,
where BR0 represents a ball of radius R0 > 0: We assume the same if X is an exterior
domain: X :¼ R

N n O, where O �� BR0 being O a compact star-shaped obstacle,
namely, the following condition is verified: mðxÞ � �ðxÞ � 0 on C0, where C0 is the
boundary of the obstacle O which is smooth and associated with Dirichlet boundary
condition as in Lasiecka et al. [9]. In this case, the observer x0 must be taken in the
interior of the obstacle O: Regarding to the localized dissipative effect, we consider
aðxÞ � a0 > 0 in XnBR0 :

Moreover, in all cases, we assume that the damping coefficient að�Þ satisfies:

jr aðxÞj2 � aðxÞ, 8x 2 X: (1.3)

The above assumption on the function að�Þ was used for the wave equation with
Kelvin-Voight damping; see for instance Liu [10, Remark 3.1] and Burq and
Christianson [11].
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Remark 1.1. The assumption p> 0 is in parallel with the general theory of defocusing
nonlinear Schr€odinger equations when the initial datum is considered at the H1-level.
On the contrary, it is well known that solutions of the focusing nonlinear Schr€odinger
equation (fNLS) may blow-up if p � 4=N even in the presence of a weak damping act-
ing on the whole domain for arbitrary initial data. The main result of this paper can be
extended to the case of the focusing problem via a Gagliardo-Nirenberg argument for
the allowable range p < 4=N. The critical case p ¼ 4=N can also be treated with a small-
ness condition on the initial datum. These are rather classical arguments and will be
omitted here.

1.2. A few words on the previous work

The stabilization problem for the linear and nonlinear Schr€odinger equations (NLS)
received significant attention in the last three decades. Tsutsumi [12] studied the stabil-
ization of the weakly damped NLS posed on a bounded domain at the energy and
higher levels. His results were extended to the weakly damped NLS posed on a bounded
domain subject to inhomogeneous Dirichlet/Neumann boundary conditions in a series

of papers by €Ozsarı et al. [13], €Ozsarı [14, 15], and to the weakly damped NLS posed

on the half-line subject to nonlinear boundary sources by Kalantarov & €Ozsarı [16]. In
addition, Lasiecka & Triggiani [17] proved the exponential stability at the L2�level for
the linear Schr€odinger equation with a nonlinear boundary dissipation.
In all of the work mentioned above, damping was assumed to be effective on the

whole domain. However, there has also been some progress regarding the stabilization
with only a localized internal damping. The stabilization problem in L2�topology for
the defocusing Schr€odinger equation with a localized damping of the form iaðxÞy on
the whole Euclidean space in dimensions one and two were treated by Cavalcanti et al.
[18–20], and Natali [21, 22]. Cavalcanti et al [23] considered an analogous structure of
damping for the defocusing Schr€odinger posed in a two dimensional compact
Riemannian manifold without boundary. Dehman et al. [24] studied the stabilization of
the energy solutions for the defocusing cubic Schr€odinger equations with a locally sup-
ported damping on a two dimensional boundaryless compact Riemannian manifold as
well. For this purpose, the authors considered a damping term given by

iaðxÞðI � DÞ�1aðxÞ@ty: Similar results on three dimensional compact manifolds were
obtained by Laurent [25]. Bortot et al. [26] established uniform decay rate estimates for
the Schr€odinger equation posed on a compact Riemannian manifold subject to a locally
distributed nonlinear damping. Bortot & Cavalcanti [27] extended these results to con-
nected, complete and noncompact Riemannian manifolds. Rosier & Zhang [28]
obtained the local stabilization of the semilinear Schr€odinger equation posed on n-
dimensional rectangles. Burq & Zworski [29] studied the exponential decay of the linear
problem on 2 - Tori at the L2 - level. In addition, we would like to cite Aloui et al.
[30], who obtained the uniform stabilization of the strongly dissipative linear
Schr€odinger equation, and the recent work of Bortot & Corrêa [31] for the treatment of
the corresponding nonlinear model. It is worth mentioning that in [30, 31] the authors

considered a strong damping given by the structure iaðxÞð�DÞ1=2aðxÞy which provides a
local smoothing effect that was crucial in their proof.
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1.3. Motivation

The main goal of the present paper is to achieve stabilization with the (natural) weaker
dissipative effect iaðxÞy instead of relying on a strong dissipation such as

iaðxÞð�DÞ1=2aðxÞy: It will turn out that the assumption (1.3) enables us to avoid using
such strong dissipation. We want to achieve stabilization in all dimensions N � 1 and
for all power indices p> 0. For this purpose, we first construct approximate solutions to
problem (2.9) by using the theory of monotone operators. We show that these approxi-
mate solutions decay exponentially fast in the L2-sense by using the multiplier technique
and a unique continuation property. Then, we prove the global existence as well as the
L2-decay of solutions for the original model by passing to the limit and using a weak
lower semicontinuity argument, respectively. Here it should be noted that our nonlinear

structure f ðjyj2Þy (f ðsÞ ¼ sp=2) is much more general than those treated to date in the
context of stabilization with a locally supported damping. The current paper comple-
ments the work of Aloui et al. [30] on unbounded domains, because we prove the glo-
bal exponential decay for dNLS, while [30] obtained only a local exponential decay in
the linear setting. In addition, we implement a precise and efficient algorithm for study-
ing the exponential decay established in the first part of the paper numerically. Our
simulations illustrate the efficacy of the proposed control design.

1.4. Main result

We adapt to the following notion of weak solutions for problem (1.1).

Definition 1.1. Let y0 2 L2 Xð Þ and set X ¼ H1
0 Xð Þ \ Lpþ2 Xð Þ. Then, y 2 L1 0,T;Xð Þ \

C 0,T½ �; L2 Xð Þ
� �

is said to be a weak solution of problem (1.1) if y satisfies y 0, �ð Þ ¼
y0 �ð Þ in L2 Xð Þ, andðT

0
� y tð Þ, @t u tð Þ
� �

L2 Xð Þ þ i r y tð Þ,ru tð Þ
� �

L2 Xð Þ

h i
dt

þ i
ðT
0

hjy tð Þjp y tð Þ,u tð ÞiL pþ2ð Þ0 Xð Þ;Lpþ2 Xð Þ � i a xð Þ y tð Þ,u tð Þ
� �

L2 Xð Þ

h i
dt ¼ 0

(1.4)

for all u 2 C1
0 0,T;Xð Þ:

The mass functional for the defocusing NLS is given by E0 y tð Þ
� �

:¼ 1
2 ky tð Þk2L2 Xð Þ:

Theorem 1.2 (Existence and stabilization). Let y0 2 X ¼ H1
0 Xð Þ \ Lpþ2 Xð Þ. Then, (1.1)

admits a weak solution y in the sense of Definition 1.1. Moreover, there are C, c > 0
(depending on ky0jjH1

0 Xð Þ) such that the following exponential decay rate estimate

E0 y tð Þ
� �

� Ce�ctE0 y0ð Þ, t � T0,

holds true for this weak solution provided T0 > 0 is sufficiently large.

The proof of the exponential decay estimate as in Theorem 1.2 is generally reduced
to showing that given R> 0, an inequality of the form
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ðT
0

ð
Xnx

jyj2dxdt � c
ðT
0

ð
X
a xð Þjyj2 dx dt (1.5)

must be satisfied for all y solving (1.1) with data satisfying ky0jjX � R: It is standard to
prove these kinds of inequalities by contradiction, since then one can obtain a sequence

of initial data satisfying kyk0jjX � R, whose corresponding solutions yk violate (1.5) with

say c¼ k. The a priori bound kyk0jjX � R is used to pass to a subsequence of yk which is
expected to converge (in an appropriate sense) to a solution of the fully nonlinear

model, say u, which in particular vanishes on x (or on R
NnBR0 if X is unbounded).

Then a unique continuation argument must be triggered to conclude that u is zero,
which indicates a contradiction based on a further standard normalization argument.
Unfortunately, there is no established wellposedness theory for NLS when it is consid-
ered on a general domain with arbitrary data and power index, especially in dimensions
three and higher. Absence of uniquesness and smoothing results for general domains
makes it quite difficult to handle the nonlinear terms in passage to the limits and obtain
a unique continuation property. This motivates us to follow a novel strategy for stabiliz-
ing locally damped pdes based on first working with approximate models whose nonlin-
ear parts are only Lipschitz. The approximate models possess the desired uniqueness
and strong regularity properties. We focus on exponentially stabilizing solutions of these
approximate models. This is considerably easier than working with the fully nonlinear
model because we can easily obtain a unique continuation property for the approximate
models. The biggest advantage is that we do not need to handle highly nonlinear terms
and therefore do not need to use smoothing properties generally implied by Strichartz
type estimates, which are not widely available or true on general domains. Once the
exponential stability for approximate models is established, the existence of a weak solu-
tion as well as its exponential stability for the original model (1.1) is achieved in a single
shot.

1.5. Orientation

The proof of Theorem 1.2 requires a combination of several steps:

Step 1: We shall first work on a bounded domain and construct approximate solutions.
This is achieved by using the m-accretivity of the nonlinear source By ¼ jyjpy
on a suitably chosen domain. This allows us to replace By with its Yosida
approximations Bny ¼ BJny, where Jn’s are the resolvents of B. We construct an
infinite sequence of almost-linear (i.e., Lipschitz) problems (see (2.8)), whose
unique and strong solutions, say yn, can be easily obtained via the classical semi-
group theory.

Step 2: We obtain a unique continuation property (Lemma 2.1) which is valid for any
weak solution of the approximate solution model that vanishes on x. It is note-
worthy to mention that the unique continuation property is not stated for a lin-
ear model, but rather given for the approximate solution model whose
nonlinear part is globally Lipschitz in L2 Xð Þ: This allows us to simplify the
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proof of an important inequality (see Lemma 2.2). Uniqueness of solution for
the approximate model is critical in the proof of the unique continuation.

Step 3: By using the multipliers we show that the approximate solutions yn’s are nonin-
creasing at the L2� level, and moreover uniformly bounded in n at the H1-level.
The assumption (1.3) on the damping coefficient plays a critical role in control-
ling the H1-norm.

Step 4: The exponential decay of approximate solutions is reduced to proving the inequality
given in (2.29). This is proven by contradiction utilizing the unique continuation
property given in Step 2.

Step 5: As a last step, we use the classical compactness arguments based on the uniform
bounds of the approximate solutions in suitable spaces to pass to a subsequence
which converges to a soughtafter weak solution of the original model. The decay
of this weak solution is obtained via weak lower semicontinuity of the norm.

Step 6: We extend the proof of Theorem 1.2 to unbounded domains in the particular cases
where X is either the whole space or an exterior domain.

Step 7: We finish the paper with a numerical section, based on a Finite Volume Method,
where illustrations verify the proved decay rate.

2. Approximate solutions, weak solution, unique continuation, stabilization

This section is devoted to the proof of the main result when X is a bounded domain.
Monotone operator theory is used as in €Ozsarı et al. [13, Section 4] to construct
approximate solutions, except that the treatment here also includes the case of a space
dependent damping coefficient. Once such solutions are constructed we prove that they
obey a mass decay law at the L2 level via a unique continuation property. Finally, we
pass to the limit to construct a weak solution. A similar mass decay for this weak solu-
tion is obtained via weak lower semicontinuity argument.
We start our construction of approximate solutions for problem (1.1) by replacing

the nonlinear source with its Yosida approximations. To this end, we consider the non-
linear operator B on L2 Xð Þ defined by

D Bð Þ ¼: y 2 L2ðXÞ; jyjp y 2 L2ðXÞ
� �

, (2.1)

By ¼: jyjpy, 8y 2 D Bð Þ: (2.2)

It is well known that B is m-accretive (see e.g., Okazawa and Yokota [32, Lemma 3.1]).
Thus, we can define the (Lipschitz) Yosida approximations Bn of B in terms of the
resolvents Jn:

Jn ¼: 1þ 1
n
B

� ��1

(2.3)

and

Bn ¼: n I � Jnð Þ ¼ B Jn: (2.4)

One can represent the operators B and Bn as subdifferentials

B ¼ @ w and Bn ¼ @ wn,
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where w and wn are given by

w yð Þ ¼
:

1
pþ 2

kykpþ2
Lpþ2ðXÞ for y 2 Lpþ2ðXÞ

1 otherwise

8><
>: (2.5)

and

wn yð Þ ¼
:

min
v2L2ðXÞ

n
2
kv� yk2L2ðXÞ þ w vð Þ

� 	
¼ 1

2n
kBn ykL2ðXÞ2 þ w Jn yð Þ, y 2 L2ðXÞ:

(2.6)

Moreover, one has

w Jn zð Þð Þ � wn zð Þ � w zð Þ: (2.7)

Now, given y0 2 X , we choose a sequence of elements fyn, 0g � X \ H2 Xð Þ such that
yn, 0 ! y0 in X : We first consider the following approximate problems:

i@t yn þ D yn � Fn ynð Þ ¼ 0 in X � 0,Tð Þ,
yn 0ð Þ ¼ yn, 0 in X,

(
(2.8)

where Fn ynð Þ :¼ Bn ynð Þ � ia xð Þ yn:

As Bn is Lipschitz with say Lipschitz constant Ln, we deduce that Fn is also Lipschitz.
Indeed, let y, z 2 L2 Xð Þ, then

kFn yð Þ � Fn zð ÞjjL2ðXÞ � kBn yð Þ � Bn zð ÞjjL2ðXÞ þ ka �ð Þ y � zð ÞjjL2ðXÞ
� Ln þ kajjL1ðXÞ


 �
ky� zjjL2ðXÞ:

By using the standard semigroup theory [33], we obtain a unique solution yn which sol-
ves (2.8) and satisfies yn 2 C 0,1½ Þ;H1

0 Xð Þ \H2 Xð Þ
� �

\ C1 0,1½ Þ; L2 Xð Þ
� �

:

Next, we prove the following unique continuation result for the approximate solutions:

Lemma 2.1 (Unique Continuation). Let n � 1 be fixed and u 2 L1 0,T;H1
0 Xð Þ

� �
\

C 0,T½ �; L2 Xð Þ
� �

be a weak solution of

i@tuþ Du ¼ Fnu in X� 0,Tð Þ
u ¼ 0 a:e: in x� 0, Tð Þ;

(
(2.9)

then u 	 0 on X� 0,Tð Þ:

Proof of Lemma 2.1. In order to prove this theorem, we will use the unique continu-
ation principle presented by [9]. The unique continuation argument of [9] does not dir-
ectly apply to the problem under consideration here, and there are some technical
challenges related with smoothness of solutions and the source function. In [9], unique
continuation was proved for H2, 2 X� 0,Tð Þð Þ solutions assuming Fnu can be written as
q0 x, tð Þu for some q0 2 L1 Xð Þ, or for energy solutions assuming q0 satisfies further
rather strong smoothness conditions. Although we can put Fnu in the form q0u by sim-
ply defining
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q0 x, tð Þ :¼
Fnuð Þ x, tð Þ
u x, tð Þ if u x, tð Þ 6¼ 0

0 if u x, tð Þ ¼ 0,

(

one cannot use the unique continuation theory at the H2, 2 X� 0,Tð Þð Þ level because the

solutions of (2.8) only belong to C 0,T½ �;H2 Xð Þ
� �

\ H1 0,T; L2 Xð Þ
� �

, which is rougher.
Similarly, we are also not in a position to use the unique continuation at the energy level
because q0 does not satisfy the extra conditions given in [9] for energy solutions. In order to
deal with this difficulty, we will utilize the uniqueness of weak solution to (2.8) together with
a compactness argument. Uniqueness is unknown for the NLS with power nonlinearity on
high dimensional domains, but luckily we know it is true for the approximate model (2.8)
with Lipschitz nonlinearity. This is another advantage of using Yosida approximations here.
We start by shifting the topology up by constructing (sufficiently smooth) approxima-

tions of approximations. To this end, for a given n, let us consider the problem:

i@twm þ Dwm ¼ fm x, tð Þ in X � 0,Tð Þ
wm ¼ 0 a:e: in x � 0, Tð Þ,

�
(2.10)

together with wm 0ð Þ ¼ wm0 2 H4 Xð Þ \H1
0 Xð Þ, where limm!1 wm0 ¼ u 0ð Þ in H1

0 Xð Þ,
and fm 2 L2 0,T;H2 Xð Þ

� �
\H1 0,T; L2 Xð Þ

� �
s.t. limm!1 fm ¼ Fnu in L2 Qð Þ: By the linear

theory of the Schr€odinger equation, (2.10) has a solution wm 2 L2 0,T;H4 Xð Þ
� �

\
H2 0,T; L2 Xð Þ
� �

: Therefore, in particular wm 2 H2, 2 X� 0,Tð Þð Þ and it also satisfies the
conditions given in [9][2.1.1 (b)]. Note that the right hand side of (2.10) is simply

~0 � rwm þ 0 � wm þ fm

with respect to the notation given in [9]. Due to the unique continuation principle
[9][Cor 2.1.2-ii], we deduce that wm 	 0:
By using the multipliers on (2.10) and compactness arguments we can extract a sub-

sequence of wm which converges to a weak solution w of (2.8). But then w 0ð Þ ¼ u 0ð Þ,
and w and u solve the same equation in the weak sense. But w cannot be anything
other than zero since all wn were zero. On the other hand, the weak solution of (2.8) is
unique, and therefore we must have 0 	 w 	 u: w

Now, taking the L2-inner product of (2.8) with yn and looking at the imaginary parts,
we see that

Re @t yn , ynð ÞL2 Xð Þ � Im ryn ,rynð ÞL2 Xð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

� Im Bn ynð Þ, yn
� �

L2 Xð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

þ a xð Þ yn , ynð ÞL2 Xð Þ ¼ 0,

(2.11)

where the third term vanishes, since by (2.4) we have

Bn ynð Þ, yn
� �

L2 Xð Þ ¼ Bn ynð Þ,
1
n
Bn ynð Þ þ Jn ynð Þ

� �
L2 Xð Þ

¼ 1
n

kBn ynð Þk2L2 Xð Þ þ Bn ynð Þ, Jn ynð Þ
� �

L2 Xð Þ

¼ 1
n

kBn ynð Þk2L2 Xð Þ þ kJn ynð Þkpþ2
Lpþ2 Xð Þ:

(2.12)
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Hence, we obtain

1
2

d
dt

kynk2L2 Xð Þ ¼ �
ð
X
a xð Þjynj2 dx � 0: (2.13)

(2.13) implies that the mass En, 0 tð Þ :¼ 1
2 kyn tð Þk2L2 Xð Þ is non-increasing. Integrating

(2.13) on 0,Tð Þ, we obtain

En, 0 Tð Þ þ
ðT
0

ð
X
a xð Þjynj2 dx dt ¼ En, 0 0ð Þ, (2.14)

and from the assumption a xð Þ � a0 > 0 a.e. on x, we get

a0

ðT
0

ð
x
jynj2 dx dt �

ðT
0

ð
X
a xð Þ jynj2 dx dt

¼ En, 0 0ð Þ � En, 0 Tð Þ ¼ � 1
2

ð
X
jynj2 dx


 �T
0

,

(2.15)

and thus, ðT
0

ð
x
jynj2 dx dt � � 1

2a0

ð
X
jynj2 dx


 �T
0

: (2.16)

Therefore, by (2.16), we have the following estimate:ðT
0
En, 0 tð Þdt ¼ 1

2

ðT
0

ð
x
jynj2dx dt þ

1
2

ðT
0

ð
Xnx

jynj2dx dt

� � 1
2a0

ð
X
jynj2dx


 �T
0

þ 1
2

ðT
0

ð
Xnx

jynj2dx dt|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
In

:
(2.17)

We will prove in Lemma 2.2 below a useful inequality for the integral In. Before proving
this lemma, let us make a few more observations about the approximate solutions.
Multiplying (2.8) by –i and rearranging the terms we get

@t yn ¼ iDyn � iBn ynð Þ � a xð Þ yn:

From the above identity, it follows that

Re (−Δ yn + Bn (yn), ∂t yn)L2(Ω) = Re (−Δ yn + Bn (yn), iΔyn − iBn (yn) − a(x)yn)L2(Ω)

=
�����������0
Re i‖Δ yn(t)‖2

L2(Ω) + Re (Δ yn, iBn (yn))L2(Ω)

+ Re (Δ yn, a(x)yn)L2(Ω) + Re (Bn (yn), iΔyn)L2(Ω)

+
������������0
Re i‖Bn(yn(t))‖2

L2(Ω) − Re(Bn(yn), a(x) yn)L2(Ω) .

Taking into account

Re Dyn, iBn ynð Þ
� �

L2 Xð Þ þ Re Bn ynð Þ, i Dyn
� �

L2 Xð Þ ¼ 0,

from (2.18), we obtain
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Re �Dyn þ Bn ynð Þ, @t yn
� �

L2 Xð Þ ¼ Re Dyn , a xð Þynð ÞL2 Xð Þ � Re Bn ynð Þ, a xð Þ yn
� �

L2 Xð Þ

¼ �Re ryn ,ra xð Þynð ÞL2 Xð Þ �
ð
X
a xð Þjrynj2 dx

� Re Bn ynð Þ, a xð Þ yn
� �

L2 Xð Þ:

(2.19)

It follows from Showalter [34, Chapter IV, Lemma 4.3] that

d
dt

wn ynð Þ ¼ Re Bn ynð Þ, @t yn
� �

L2 Xð Þð Þ: (2.20)

Using (2.20), we get

Re �Dyn þ Bn ynð Þ, @t yn
� �

L2 Xð Þ ¼
d
dt

1
2
kryn tð Þk2L2 Xð Þ þ wn ynð Þ


 �
: (2.21)

Combining (2.19) and (2.21), it follows that

d
dt

1
2
kyn tð Þk2H1

0 Xð Þ þ wn ynð Þ

 �

þ
ð
X
a xð Þ jrynj2 dx

¼ �Re ryn,ra xð Þynð ÞL2 Xð Þ � Re Bn ynð Þ, a xð Þ yn
� �

L2 Xð Þ:

(2.22)

Using (2.4), we obtain

�Re Bn ynð Þ, a xð Þ yn
� �

L2 Xð Þ ¼ � 1
n

ð
X
a xð ÞjBn ynð Þj2 dx �

ð
X
a xð ÞjJn ynð Þjpþ2 dx � 0:

(2.23)

From (2.22) and (2.23) and taking into account the assumption (1.3), we have

d
dt

1
2
kyn tð Þk2H1

0 Xð Þ þ wn ynð Þ

 �

þ
ð
X
a xð Þ jrynj2 dx

¼ �Re ryn,ra xð Þynð ÞL2 Xð Þ�Re Bn ynð Þ, a xð Þ yn
� �

L2 Xð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�0

�
ð
X
jra xð Þj jynj jrynj dx � C

ð
X
ja xð Þj

1
2 jynj jrynj dx:

(2.24)

Employing the inequality ab � 1
4e a

2 þ eb2 (�> 0) we obtain

d
dt

1
2
kyn tð Þk2H1

0 Xð Þ þ wn ynð Þ

 �

þ
ð
X
a xð Þ jrynj2 dx

� C2

4e

ð
X
jynj2 dx þ e

ð
X
a xð Þ jrynj2 dx:

(2.25)

that is,

d
dt

1
2
kyn tð Þk2H1

0 Xð Þ þ wn ynð Þ

 �

þ 1� eð Þ
ð
X
a xð Þ jrynj2 dx

� C2

4e

ð
X
jynj2 dx:

(2.26)
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Considering e > 0 small enough, we conclude that

d
dt

1
2

kyn tð Þk2H1
0 Xð Þ þ wn ynð Þ


 �
� C2

4e

ð
X
jynj2dx: (2.27)

Integrating (2.27) in variable t 2 0,T½ �, we get

1
2
kyn tð Þk2H1

0 Xð Þ þ wn ynð Þ �
1
2
kyn, 0k2H1

0 Xð Þ þ wn yn, 0ð Þ þ
C2

4e

ðT
0

ð
X
jynj2dxdt: (2.28)

Lemma 2.2. There exists some n0 � 1, such that for any fixed n � n0, the corresponding
solution yn of (2.8) will satisfy the inequalityðT

0

ð
Xnx

jynj2dxdt � c
ðT
0

ð
X
a xð Þjynj2dxdt (2.29)

for some c (which depends on ky0kH1
0 Xð Þ).

Proof of Lemma 2.2. The initial datum y0 2 H1
0 Xð Þ in the original model (1.1) is either

zero (case (i)) or not zero (case (ii)).
In the first case, namely if y0 	 0, then we can simply set yn, 0 	 0 for n � 1, which

will trivially converge to y0 	 0 in H1
0 Xð Þ, and the corresponding unique solution of

(2.8) will be yn 	 0: Therefore, (2.29) will readily hold.
In the second case, where y0 6	 0, we can choose two strictly positive numbers ‘, L >

0 such that

0 < ‘ < ky0kL2 Xð Þ and ky0kH1
0 Xð Þ < L, (2.30)

say for instance ‘ ¼: 1
2 ky0kL2 Xð Þ > 0, and L ¼: 2ky0kH1

0 Xð Þ > 0: On the other hand, we

know that yn, 0 are chosen to strongly converge to y0 in H1
0 Xð Þ: Therefore, there exists

n0 > 0 such that for all n � n0, yn will satisfy

0 < ‘ < kyn, 0kL2 Xð Þ � ky0kL2 Xð Þ and ky0kH1
0 Xð Þ � kyn, 0kH1

0 Xð Þ < L: (2.31)

Now, we claim that under the condition (2.31) on yn, 0, the solution yn of (2.8) satisfies
(2.29). In order to prove the claim, we argue by contradiction. Now, if the claim is false,
then no matter what we choose for the constant c in (2.29), we can find an initial datum
for problem (2.8) whose corresponding solution violates 2:29ð Þ: For example if c ¼ k � 1,
then there exists an initial datum, say ykn, 0 2 H2 Xð Þ \ H1

0 Xð Þ, satisfying the properties

0 < ‘ < kykn, 0kL2 Xð Þ � ky0kL2 Xð Þ and ky0kH1
0 Xð Þ � kykn, 0kH1

0 Xð Þ < L, (2.32)

but whose corresponding solution, say ykn, violates 2:29ð Þ in the senseðT
0

ð
Xnx

jyknj
2dxdt > k

ðT
0

ð
X
a xð Þjyknj

2dxdt: (2.33)

Moreover, we can say this for each k � 1, and hence obtain a sequence of initial data
fykn, 0g

1
k¼1, each of whose elements satisfy (2.32) and a sequence of corresponding solu-

tions fykng
1
k¼1, each of whose elements solves (2.8) but also satisfies (2.33).

Since ykn is bounded in L1 0,T;H1
0 Xð Þ

� �
, we obtain a subsequence of ykn (denoted same)

which converges (weakly-
) to some u in L1 0,T;H1
0 Xð Þ

� �
: Moreover, Fn ykn

� �
is bounded in
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L1 0,T; L pþ2ð Þ0 Xð Þ
� �

; therefore there is some v such that Fn ykn
� �

(indeed a subsequence of

it) weakly-
 converges to in L1 0,T; L pþ2ð Þ0 Xð Þ
� �

: It follows that @tykn is bounded in

L1 0,T;H�1 Xð Þ
� �

and (a subsequence of) it weakly-
 converges to ut in L1 0,T;H�1 Xð Þ
� �

:

By compactness, we have ykn converges strongly to u in L1 0,T; L2 Xð Þ
� �

and a.e. on 0,T½ � �
X: Then, we have v ¼ Fn uð Þ, and u satisfies the main equation of the approximate model
(2.8). Moreover, since the left hand side of (2.33) is bounded, we haveðT

0

ð
X
a xð Þjyknj

2dxdt ! 0: (2.34)

Therefore, using the assumption a xð Þ � a0 > 0 on x, we haveðT
0

ð
x
jyknj

2dxdt ! 0, (2.35)

which implies that u 	 0 on x since ykn strongly converges to u in L1 0,T; L2 Xð Þ
� �

:

Therefore, u must be zero by unique continuation property. But then we define

�k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT
0

ð
X�x

jyknj
2dxdt

s
(2.36)

together with vk ¼ ykn=�k: Dividing both sides of (2.33) by �2k, we obtain in the same wayðT
0

ð
X
a xð Þjvkj2dxdt ! 0, (2.37)

which implies ðT
0

ð
x
jvkj2dxdt ! 0: (2.38)

But we also know that ykn ! u 	 0 in L2 0,T; L2 Xð Þ
� �

, and hence �k ! 0: We in par-
ticular have

kvk 0ð ÞkL2 Xð Þ ¼
kykn 0ð ÞkL2 Xð Þ

�k
� ‘

�k
! 1 as k ! 1ð Þ: (2.39)

On the other hand, the energy dissipation law yields

Ekn, 0 T0ð Þ ¼ Ekn, 0 0ð Þ �
ðT0

0

ð
X
a xð Þjykn x, tð Þj2dxdt: (2.40)

Combining (2.17) and (2.40), we inferðT
0
Ekn, 0 tð Þdt � 1

a0
Ek
n, 0 0ð Þ þ 1

2

ðT0

0

ð
Xnx

jyknj
2dxdt

� 1
a0

Ekn, 0 T0ð Þ þ
ðT
0

ð
X
a xð Þjyknj

2dxdt

" #

þ 1
2

ðT0

0

ð
Xnx

jyknj
2dxdt:
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Since Ek
n, 0 tð Þ is a non-increasing function, one has from the above inequality the follow-

ing estimate:

Ek
n, 0 T0ð Þ T0 �

1
a0

� �
� 1

a0

ðT0

0

ð
X
a xð Þjyknj

2dxdt

þ 1
2

ðT0

0

ð
Xnx

jyknj
2dxdt:

(2.41)

From (2.41), we deduce that, for sufficiently large T0 > 0, there exists C ¼ C a0,T0ð Þ
verifying

Ekn, 0 T0ð Þ � C
ðT0

0

ð
X
a xð Þjyknj

2dxdt þ
ðT0

0

ð
Xnx

jyknj
2dxdt

" #
: (2.42)

Combining (2.40) and (2.42) we finally deduce that

Ekn, 0 0ð Þ � Ĉ
ðT0

0

ð
X
a xð Þjyknj

2dxdt þ
ðT0

0

ð
Xnx

jyknj
2dxdt

 !
: (2.43)

From (2.43) we infer for any k 2 N, that

Ek
0, n 0ð Þ
�2k

� Ĉ
ðT0

0

ð
X
a xð Þjvkj2dxdt þ 1

 !
: (2.44)

Thus, we guarantee the existence of M> 0 such that

1
2
kvk 0ð Þk2L2 Xð Þ ¼

kykn, 0k
2
L2 Xð Þ

2�2k
¼

Ek0, n 0ð Þ
�2k

� M for all k 2 N, (2.45)

which establishes a bound for the initial data vk 0ð Þ in L2-norm. This contradicts with
(2.39). Hence, by contradiction, yn must satisfy (2.29). w

We notice that the equations (2.40)–(2.43) are all valid for ykn replaced by yn, too. It
follows from (2.14) that

En, 0 T0ð Þ � En, 0 0ð Þ � C
ðT0

0

ð
X
a xð Þjynj2dxdt, (2.46)

where C is a positive constant.
Now, combining (2.14) and (2.43), and using the inequality (2.29) given in the above

lemma, we obtain

En, 0 T0ð Þ � C
ðT0

0

ð
X
a xð Þjynj2dxdt

¼ C En, 0 0ð Þ � En, 0 T0ð Þ
� �

:

(2.47)

Therefore,

En, 0 T0ð Þ � C
1þ C

� �
En, 0 0ð Þ: (2.48)

Repeating the procedure for nT0, n 2 N, we deduce
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En, 0 nT0ð Þ � 1

1þ Ĉð Þn En, 0 0ð Þ

for all n � 1:
Let us consider, now, t � T0, and then write t ¼ nT0 þ r, 0 � r < T0: Thus,

En, 0 tð Þ � En, 0 t � rð Þ ¼ En, 0 nT0ð Þ � 1

1þ Ĉð Þn En, 0 0ð Þ ¼ 1

1þ Ĉð Þ
t�r
T0

En, 0 0ð Þ:

Setting C0 ¼ e
r
T0
ln 1þĈð Þ

and k0 ¼ ln 1þĈð Þ
T0

> 0, we obtain

En, 0 tð Þ � C0 e�k0tEn, 0 0ð Þ; 8t � T0, (2.49)

which proves the exponential decay to problem (2.8).
Combining (2.7), (2.49), and (2.28), it follows that

kyn tð Þk2H1
0 Xð Þ þ w Jn ynð Þ

� � � C0C
k0�2

kyn0kX : (2.50)

The inequality (2.50) and the boundedness of the sequence fyn, 0g in X enable us to
conclude that

fyng is bounded in L1 0,T;H1
0 Xð Þ

� �
(2.51)

fJn ynð Þg is bounded in L1 0,T; L pþ2ð Þ Xð Þ
� �

,! L pþ2ð Þ 0,T; L pþ2ð Þ Xð Þ
� �

: (2.52)

Notice that

Bn ynð Þ ¼ B Jn ynð Þ
� � ¼ jJn ynð Þjp Jn ynð Þ: (2.53)

So, from (2.52) and (2.53), we get

fBn yng is bounded in L pþ2ð Þ0 0,T; L pþ2ð Þ0 Xð Þ
� �

: (2.54)

On the other hand, by (2.51) and (2.54) we observe

k@t ynkX0 ¼ sup
kukX¼1

@t yn,uð ÞL2 Xð Þ
� �

¼ sup
kukX¼1

f iDyn ,uð ÞL2 Xð Þ � iBn ynð Þ,u
� �

L2 Xð Þ � a xð Þ yn ,uð ÞL2 Xð Þg

� sup
kukX¼1

krynkL2 Xð Þ krukL2 Xð Þ þ kBnynkL pþ2ð Þ0 Xð Þ kukLpþ2 Xð Þ
�

þkak1 kynkL2 Xð Þ kukL2 Xð Þ
�
< þ1,

so that

f@t yng is bounded in L1 0,T;X0ð Þ: (2.55)

Combining (2.51), (2.52), (2.54) and (2.55), it follows that fyng has a subsequence
(still denoted by fyng) such that

yn *



y in L1 0,T;H1
0 Xð Þ

� �
: (2.56)

Jn ynð Þ*

 Y in L1 0,T; Lpþ2 Xð Þ

� �
: (2.57)
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Bn ynð Þ*

 Z in L1 0,T; L pþ2ð Þ0 Xð Þ

� �
: (2.58)

@t yn * @t y in L pþ2ð Þ0 0,T;X0ð Þ: (2.59)

By Aubin-Lions’ Theorem, J. L. Lions, [35, Lemma 5.2 on page 57], there exist a y 2
L2 0,T; L2 Xð Þ
� �

and a subsequence fyng (still denoted by fyng) such that

yn ! y in L2 0,T; L2 Xð Þ
� �

(2.60)

yn ! y a:e: in X � 0, Tð Þ: (2.61)

Note that the operator B is also m-accretive when considered on C: So, by
Showalter, [34, page 211], we have that the resolvents Jn given in (2.3) are contractions
in C, that is,

jJn zð Þ � Jn wð Þj � jz � wj, 8z,w 2 C, (2.62)

Note that in the pointwise sense Bn and Jn are essentially the same operators given in
the beginning of this section, except that we are considering them on C instead L2 Xð Þ:
From above, let’s define

kj C kj ¼ inffjxj : x 2 Cg:
Thanks to Showalter [34, Proposition 7.1, item c, page 211], we obtain

jBn wð Þj � kjB wð Þkj ¼ jB wð Þj, 8w 2 C, (2.63)

where the equality on the right hand side of (2.63) is due to the fact that the operator
B given in (2.2) is single-valued in C:

On the other hand, from (2.4), we have w� Jn wð Þ ¼ 1
n Bn wð Þ: Thus, combining this

fact with (2.62) and (2.63), we obtain

jJn zð Þ � wj � jJn zð Þ � Jn wð Þj þ jJn wð Þ � wj

� jz � wj þ 1
n

jBn wð Þj

� jz � wj þ 1
n

jB wð Þj, 8w, z 2 C:

(2.64)

It follows from (2.61) that

jyn � yj ! 0 a:e: in X� 0, Tð Þ: (2.65)

Now, let x, tð Þ 2 X� 0,Tð Þ such that the convergence (2.65) holds and z ¼ yn and
w ¼ y in (2.64) and letting n ! 1, taking into account (2.65), it follows that

Jn ynð Þ ! y a:e: in X � 0,1ð Þ: (2.66)

Moreover, taking into account (2.66) and the fact that the map B zð Þ ¼ jzjp z is con-
tinuous, we infer

B Jn ynð Þ
� �! B yð Þ ¼ jyjpy a:e: in X � 0,1ð Þ:

Making use of the definition of the Yosida aproximations Bn given in (2.53), it results that

Bn ynð Þ ! jyjp y a:e: in X � 0,1ð Þ: (2.67)
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Now, combining (2.52), (2.66) and (2.54), (2.67), we have, thanks to Lions’ Lemma,
[J. L. Lions, [35], Lemma 1.3, page 12], the following convergences:

Jn ynð Þ * y in L1 0,T; Lpþ2 Xð Þ
� �

: (2.68)

Bn ynð Þ * jyjp y in L pþ2ð Þ0 0,T; L pþ2ð Þ0 Xð Þ
� �

: (2.69)

So, by convergences (2.57), (2.58) (2.68) and (2.69), we get that Y ¼ y and Z ¼ jyjp y
almost everywhere in X � 0,Tð Þ:
Moreover, the convergence (2.68) allows us to infer jointly with (2.56) that

y 2 L1 0,T;Xð Þ: (2.70)

Finally, let u 2 C1
0 0,T½ Þ;Xð Þ: Then, from (2.8), we haveðT

0
� yn tð Þ, @t u tð Þ
� �

L2 Xð Þ þ i ryn tð Þ,ru tð Þ
� �

L2 Xð Þdt

þ i
ðT
0

hjyn tð Þjp yn tð Þ,u tð ÞiL pþ2ð Þ0 Xð Þ, Lpþ2 Xð Þ � i a xð Þ yn tð Þ,u tð Þ
� �

L2 Xð Þ

h i
dt ¼ 0:

From (2.56) and (2.69) by passing to the limit as n ! 1, we obtain the variational for-
mula given in (1.4).
From (1.4), it follows that y belongs to the space

W ¼ fy 2 L2 0,T;Xð Þ such that @t y 2 L2 0,T;X0ð Þg:
Then, employing Showalter [[34], proposition 1.2, page 106], we have that W can be

continuously embedded in the space C 0,T½ �; L2 Xð Þ
� �

and, therefore, combining this fact
with (2.70), we obtain that y satisfies Definition 1.1. Moreover, from (2.49), (2.56) and
weak lower - semicontinuity of the norm, we obtain the decay estimate (2.49). Hence,
the proof of Theorem 1.2 is complete.

3. Unbounded domains

The results presented in this article for bounded domains extend easily to the whole
space and exterior domains. To this end, we consider the damping term ia xð Þy with

a xð Þ � a0 > 0 in R
NnBR0 where BR0 represents a ball of radius R0 > 0:

(i) If X ¼ R
N , then we can take some r> 0 such that r > R0 and work locally in the

bounded set Br. Following the steps in the proof of Lemma 2.2, we can find u¼ 0
in BrnBR0 and then employ Lemma 2.1 to conclude that u¼ 0 in BR0 as well, and
consequently u¼ 0 everywhere because the ball Br was taken arbitrary.

(ii) Similarly, the result remains valid for an exterior domain X :¼ R
NnO, where O is

a compact star-shaped obstacle whose boundary C0 is smooth and associated with
Dirichlet b.c. as in [9] and m xð Þ � � xð Þ � 0 on C0: As in the case of the whole
space, we can consider a ball BR0 which contains the obstacle strictly, namely,
O �� BR0 and we take, as before, a xð Þ � a0 > 0 in XnBR0 : Now, the observer x0
must be taken in the interior of the obstacle O: So, let us consider r> 0 such that
r > R0: The idea is to employ Lemma 2.1 in order to conclude that if u¼ 0 in
X \ Brð Þn X \ BR0ð Þ then u¼ 0 in X \ BR0 :
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For an observer x0 located in the interior of the obstacle O, we have that the inner
product x� x0ð Þ � � xð Þ � 0 on C0, namely, C0 is the uncontrolled or unobserved part
according to terminology used in [9], so that the unique continuation principle pre-
sented by [9] is verified. Finally, it is worth mentioning that in the context of
unbounded domains, the convergence (2.68) remains valid by considering ideas similar
to those used in Cavalcanti et al. [15, (3.43)].

Remark 3.1. It is important to mention that the UCP developed in [9] can be naturally
extended to a finite number of the observers x1, x2, :::, xn with a finite number of
respective compact star-shaped obstacles Oi whose closures are pairwise disjoint. To
this end, one can simply use the following vector field:

q xð Þ :¼
x� xj, j ¼ 1, :::, n with xj 2 Oj, x 2 X

and smootly extended in Xn O1 [ O2 [ ::: [ Onð Þ:

(
(3.71)

4. Numerical approximation

In this final section, we will show some numerical results supporting 1.2 in R
2: In par-

ticular, a Finite Volume scheme is implemented.

4.1. Presentation of the scheme

We consider that the domain X � R
2 in (1.1). We approximate the domain using an

admisible mesh (see [36]) composed by a set T of convex polygons, denoted as the con-
trol volumes or cells, a set of faces E contained in hyperplanes of R2, and a set of points
P, representing the centroids of the control volumes. The size of the mesh will be given
by h :¼ maxK2T fdiam Kð Þg:
To generate the mesh, we have made use of the open-source code PolyMesher

[37], which contructs Voronoï tessellations iteratively refined through a Lloyd’s method
in order to guarantee its regularity.
We will denote by K 2 T a control volume or cell inside the mesh, which in turn

has centroid xK 2 R
2, a measure m(K) (in our case: the area of K), a set of neighboring

cells N Kð Þ, and a set EK of faces r 2 EK � E ¼ Eint [ Eext , where Eint is the set of
inner faces and Eext is the set of boundary faces. We will also write tn ¼ nDt for a given
timestep Dt: We will denote ynK as the numerical approximation of the solution of prob-

lem (1.1) over the cell K at the time tn. We will also write y
nþ1

2
K :¼ ynþ1

K þynK
2 : 8K 2 T , the

proposed Finite Volume scheme for this problem will be defined as follows;

im Kið Þ y
nþ1
K �ynK
Dt þ

P
r2EK F

nþ1
2

K,r � m Kð Þ
2p

jynþ1
K j2p � jynK j

2p

jynþ1
K j2 � jynK j

2 ynþ1
K þ ynK

� �
þ im Kð Þa xKð Þynþ

1
2

K ¼ 0

FnK,r ¼ sr ynL � ynKð Þ, r 2 Eint , r ¼ KjL, L 2 T
FnK,r ¼ �srynK , r 2 Eext : r 2 EK

sr ¼ m rð Þ=jxK � xLj, r 2 Eint , L 2 T : r ¼ KjL
sr ¼ m rð Þ=d xK , rð Þ, r 2 Eext : r 2 EK

8>>>>>>>>><
>>>>>>>>>:

(4.72)
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The discretization of the nonlinear term comes from the work of Delfour, Fortin and
Payre [38], which was proposed in order to preserve the Energy at H1 level if there is
no damping term. The numerical solution over he whole domain 0,T½ � � X will de
denoted by yT ,Dt , such that yT ,Dt xK , tnð Þ ¼ ynK : In some cases, we will write yn instead
of yT ,Dt tnð Þ for the sake of clarity.
Given the symmetric structure of the matrix involved in the induced linear system of

equations, a GMRES method is used to solve it. The nonlinear problem is solved using
a Picard Fixed Point iteration with a tolerance equal to 10�6 before moving to the
next timestep.

4.2. Properties and convergence analysis

In order to state the properties of the scheme (4.72), we will need some notation. We
will denote the discrete L2 norm as follows:

kynk2L2T Xð Þ :¼
X
K2T

jynK j
2m Kð Þ:

In a similar fashion, we define the discrete L2p norm as

kynk2p
L2pT Xð Þ :¼

X
K2T

jynK j
2pm Kð Þ:

The discrete version of the H0 norm will be defined as:

kynk2H1
0, T Xð Þ ¼

X
r2E

srjDry
nj2,

where sr is defined as in (4.72), and for K 2 T and L 2 N Kð Þ,

Dry
n ¼

ynL � ynK , if r ¼ KjL 2 Eint

�ynK , if r 2 Eext:

(

The following property holds:

Theorem 4.1. The numerical scheme (4.72) admits the existence of a unique solu-
tion yT ,Dt:

Proof. For a given n 2 f0, 1, :::,Ng, and assuming that ynK ¼ 0, 8K 2 T , we take (4.72)
and multiply it by �ynþ1

K , sum over K 2 T , and extract the imaginary part. This will
lead us to conclude that ynþ1

K ¼ 0, 8K 2 T , and hence the existence of solutions is
proved. Uniqueness follows after noticing that the linear system induced by the numer-
ical scheme has finite dimension with respect to the vector of unknowns ynþ1

K , and
hence has unique solution. w

Let us define the discrete version of the mass functional E0 y tð Þ
� �

as follows:

E nð Þ
0 :¼ 1

2

X
K2T

jynK j
2m Kð Þ, n 2 N:

If we multiply the numerical scheme by �y
nþ1

2
K , sum over K 2 T , and extract the imagin-

ary part, we get the following result:
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Theorem 4.2. If a xð Þ 	 0, 8x 2 X in (4.72), then the following property is true 8n 2 N:

E nð Þ
0 ¼ E nþ1ð Þ

0 (4.73)

If a xð Þ � a0 > 0, x 2 x � X, then

E 0ð Þ
0 � E nð Þ

0 , 8n 2 N:

A consequence of the previous procedure reads as follows:

Corollary 4.3. Let yT ,Dt be the solution of (4.72) such that E 0ð Þ
0 < 1. Then, there exists a

constant C1, depending on y0 and T, such that

kyT ,Dtk1 < C1 (4.74)

where kynk1 :¼ maxK2T jynK j:

We will also define the discrete version of the Energy functional at H1 level:

E nð Þ
1 :¼ 1

2

X
r2E

srjDry
nj2 þ

X
K2T

1
2p

jynK j
2pm Kð Þ (4.75)

The following property holds:

Theorem 4.4. Let yT ,Dt be the numerical solution induced by the scheme (4.72) such that

ky0T ,Dtk
2
L2T Xð Þ

< 1. If a xð Þ 	 0, 8x 2 X in (4.72); then the following property holds true

8n 2 N:

E nþ1ð Þ
1 ¼ E nð Þ

1 : (4.76)

If a xð Þ � a0 > 0, x 2 x � X and a xð Þ 2 W1,1 Xð Þ, then there exists a constant C> 0,
depending on T, a(x), and y0, such that

E nð Þ
1 � E 0ð Þ

1 þ C: (4.77)

Proof. We multiply (4.72) by
�ynþ1
K ��ynK
Dt , sum over K 2 T , and extract the real part. We get

Re
X
K2T

X
r2EK

F
nþ1

2
K,r

�ynþ1
K � �ynK

Dt

 !
�
X
K2T

m Kð Þ
2pDt

jynþ1
K j2p � jynK j

2p

 �

þRe i
X
K2T

m Kð Þa xKð Þynþ
1
2

K
�ynþ1
K � �ynK

Dt

 !
¼ 0:

(4.78)

After using the identity Re a �b � �að Þð Þ ¼ 1
2 jbj2 � jaj2 � jb� aj2
� �

for a, b 2 C, and reor-
dening the sum, the first term in (4.78) becomes

Re
X
K2T

X
r2EK

F
nþ1

2
K,r

�ynþ1
K � �ynK

Dt

 !
¼
X
r2E

sr
2

jynL � ynK j
2 � jynþ1

L � ynþ1
K j2


 �

¼
X
r2E

sr
2

jDry
nj2 � jDnþ1

r j2

 �

:

With this, (4.78) turns into the following:
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1
Dt

E nþ1ð Þ
1 ¼ 1

Dt
E nð Þ
1 þ Re i

X
K2T

m Kð Þa xKð Þynþ
1
2

K
�ynþ1
K � �ynK

Dt

 !
: (4.79)

If a xð Þ 	 0, then we get (4.76). If not, then we will need to recall the following from
the numerical scheme:

ynþ1
K � ynK

Dt
¼ i

m Kð Þ
X
r2EK

F
nþ1

2
K, r �

i
2p

jynþ1
K j2p � jynK j

2p

jynþ1
K j2 � jynK j

2 ynþ1
K þ ynK

� �
� a xKð Þynþ

1
2

K : (4.80)

Replacing (4.80) in (4.79) will lead us to study the following:

i
X
K2T

m Kð Þa xKð Þynþ
1
2

K
�ynþ1
K � �ynK

Dt
¼
X
K2T

a xKð Þynþ
1
2

K

X
r2EK

�F
nþ1

2
K,r

�
X
K2T

a xKð Þ
m Kð Þ
p

jynþ1
K j2p � jynK j

2p

jynþ1
K j2 � jynK j

2 jynþ
1
2

K j2

� i
X
K2T

m Kð Þ a xKð Þð Þ2jynþ
1
2

K j2:

(4.81)

After extracting the real part in (4.81) the third term at the right hand side vanishes
and the second term is a strictly negative number. For the first term, again using the

identity Re a �b � �að Þð Þ ¼ 1
2 jbj2 � jaj2 � jb� aj2
� �

and reordering the sum, we get

Re
X
K2T

a xKð Þynþ
1
2

K

X
r2EK

�F
nþ1

2
K,r

 !
¼
X
K2T

X
r2EK

sr
8

jynþ1
K j2 þ jynK j

2

 �

a xLð Þ � a xKð Þð Þ

�
X
K2T

X
r2EK

sr
8
a xKð Þ jynþ1

L � ynþ1
K j2 þ jynL � ynK j

2

 �

þ
X
K2T

X
r2EK

sr
4
a xKð ÞRe ynþ1

K �ynL � �ynK
� �

þ ynK �ynþ1
L � �ynþ1

K

� �
 �
:

(4.82)

The second term in (4.82) is strictly negative. Hence, and given the regularity condition
of the damping function a xð Þ 2 W1,1 Xð Þ, we can infer the existence of a constant C1,
depending on a(x), such that

Re
X
K2T

a xKð Þynþ
1
2

K

X
r2EK

�F
nþ1

2
K, r

 !
� C1

X
K2T

X
r2EK

sr
8

jynþ1
K j2 þ jynK j

2

 �

þ C1

X
K2T

X
r2EK

sr
4
jynþ1

K �ynL � �ynK
� �

þ ynK �ynþ1
L � �ynþ1

K

� �
j

� C1

8
kynþ1k2L2T Xð Þ

þ kynk2L2T Xð Þ


 �
þ C1

4

X
K2T

X
r2EK

sr 4jynþ1
K j2 þ 4jynK j

2

 �

� 9
4
C1ky0k2L2T Xð Þ

:

Hence, (4.79) will turn into
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1
Dt

E nþ1ð Þ
1 ¼ 1

Dt
E nð Þ
1 þ Re i

X
K2T

m Kð Þa xKð Þynþ
1
2

K
�ynþ1
K � �ynK

Dt

 !

� 1
Dt

E nð Þ
1 þ 9

4
C1ky0k2L2T Xð Þ

:

Multiplying the previous result by Dt and repeating the upper bound n times will lead us to

E nþ1ð Þ
1 � E 0ð Þ

1 þ 9C
4
nDtky0k2L2T Xð Þ

,

and because ky0k2L2T Xð Þ
< 1, we can infer the existence of a constant C, depending on T,

y0, and a(x), such that

E nþ1ð Þ
1 � E 0ð Þ

1 þ C:

Thus, the theorem is proved. w

On the other hand, if we go back to (4.77) and compare it with the definition (4.75),
we get the following result:

Corollary 4.5. Let yn be the solution of (4.72) such that ky0k2L2T Xð Þ < 1 and E 0ð Þ
1 < 1.

Then, there exist some constants C1 and C2, depending on y0, a(x), and T, such that

kynkH1
0, T Xð Þ < C1, 8n 2 N: (4.83)

and

kynkL2pT Xð Þ < C2, 8n 2 N: (4.84)

This upper bound will help us to prove the convergence of the numerical scheme.

Theorem 4.6. For m 2 N, let fymgm2N, ym ¼ yT m ,Dtm x, tð Þ be a sequence of solutions of
(4.72) induced by their respective initial conditions fy0mgm2N � X , while using a sequence of
admissible meshes T m and timesteps Dtm such that hm ! 0 and Dtm ! 0 when m ! 1.
Then, there exists a subsequence of the sequence of numerical solutions, still denoted by
fymgm2N, which converges to the weak solution y(t) given by the Definition 1.1 when m ! 1:

Proof. We will start by proving that @tym is bounded in X0; this is

k@tymkX0
m
:¼ sup

kukXm¼1
fj @ym,uð ÞL2T m

Xð Þjg

¼ sup
kukXm¼1

(����i X
K2T m

X
r2EK

sr y
nþ1

2
L � y

nþ1
2

K


 �
�uK

 !

� i
2p

X
K2T m

jynþ1
K j2p � jynK j

2p

jynþ1
K j2 � jynK j

2 ynþ1
K þ ynK

� �
�uKm Kð Þ

 !

�
X
K2K

a xKð Þynþ
1
2

K �uKm Kð Þ

 �����

)

< 1:

(4.85)
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The first term in the right hand side of (4.85) can be rewritten as followsXN
n¼0

X
K2T

X
r2EK

sr y
nþ1

2
L � y

nþ1
2

K


 �
�uKDt

¼
XN
n¼0

X
KjL2Eint

m KjLð Þ y
nþ1

2
L � y

nþ1
2

K


 �
�uK � �uL

dKjL
Dt:

After (4.83) and the regularity of u, we can writeX
K2T m

X
r2EK

sr y
nþ1

2
L � y

nþ1
2

K


 �
�uK < 1: (4.86)

For the second term in (4.85), we will consider three cases.

� If p � 1, we have����� X
K2T m

jynþ1
K j2p � jynK j

2p

jynþ1
K j2 � jynK j

2 ynþ1
K þ ynK

� �
�uKm Kð Þ

����� � X
K2T m

j ynþ1
K þ ynK

� �
�uK jm Kð Þ

� 2kukL1T m
Xð Þky0k2L2T m

Xð Þ

which is bounded.
� If 1 < p < 2, then����� X

K2T m

jynþ1
K j2p � jynK j

2p

jynþ1
K j2 � jynK j

2 ynþ1
K þ ynK

� �
�uKm Kð Þ

�����
� 2kukL1T m

ky0kL1T m

X
K2T m

jynþ1
k j2p�2 þ jynK j

2p�2

 �

m Kð Þ:

Using Young’s inequality, we getX
K2T m

jynþ1
k j2p�2 þ jynK j

2p�2

 �

m Kð Þ �
X
K2T m

2p� 2
2p

� �
jynþ1

k j2p þ jynK j
2p


 �
þ 2
p

� �
m Kð Þ

which is also bounded due to (4.84), (4.74), and by the fact that jXj < 1:

� If p � 2, then we have����� X
K2T m

jynþ1
K j2p � jynK j

2p

jynþ1
K j2 � jynK j

2 ynþ1
K þ ynK

� �
�uKm Kð Þ

�����
� 2kukL1T m

ky0kL1T m

X
K2T m

p
2

jynþ1
k j2p�2 þ jynK j

2p�2

 �

m Kð Þ

which is bounded by the same reasons argued in the previous point.

Hence, we conclude that the second term in (4.85) is bounded for any p> 0; this is,����� X
K2T m

jynþ1
K j2p � jynK j

2p

jynþ1
K j2 � jynK j

2 ynþ1
K þ ynK

� �
�uKm Kð Þ

����� < 1: (4.87)
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Regarding the third term in (4.85): thanks to (4.73), and the regularity properties of
a(x), we observe that

X
K2K

a xKð Þynþ
1
2

K �uKm Kð Þ � C2

2
kynþ1

2k2L2T m
Xð Þ þ kuk2L2T m

Xð Þ

 �

< 1 (4.88)

where C2 is a constant depending on a(x). Combining (4.86), (4.87) and (4.88), we con-
clude that

f@tymg is bounded in L1 0,T;X0ð Þ: (4.89)

Therefore, due to the fact that

H1
0 Xð Þ ,!c L2 Xð Þ ,!H�2 Xð Þ,

and thanks to the Aubin-Lions Theorem, we can extract a subsequence, still denoted by
fymgm2N, such that

ym ! y strongly in L2 0,T; L2 Xð Þ
� �

: (4.90)

We will now prove that this y is the weak solution given by Definition 1.1. Let u 2
C1
0 0,T;Xð Þ such that ru � n̂ ¼0 in @X� 0,T½ �: Multiplying the numerical scheme

(4.72) by Dt
2 �u xK , nDtð Þ þ �u xK , nþ 1ð ÞDtð Þ
� �

¼: Dt2 �u xK , tnþ1
2

� �
, and summing over K 2

T and over n ¼ 0, :::, N with T ¼ NDt, we get:

i
XN
n¼0

X
K2T

m Kð Þ ynþ1
K � ynK

� �
�u xK , tnþ1

2

� �þXN
n¼0

X
K2T

X
N Kð Þ

sKjL y
nþ1

2
L � y

nþ1
2

K


 �
�u xK , tnþ1

2

� �
Dt

�
XN
n¼0

X
K2T

jynþ
1
2

k jpynþ
1
2

K �u xK , tnþ1
2

� �
Dt þ i

XN
n¼0

X
K2T

a xKð Þynþ
1
2

K �u xK , tnþ1
2

� �
Dt ¼ 0:

(4.91)

We can re-write the first term in (4.91), after using summation by parts and recalling
that u 2 C1

0 0,T;Xð Þ:

i
XN
n¼0

X
K2T

m Kð Þ ynþ1
K � ynK

� �
�u xK , tnþ1

2

� � ¼ �i
XN
n¼0

X
K2T

m Kð ÞynK
�u xK , tnþ1ð Þ � �u xK , tn�1ð Þ

2

� �
:

Hence, because fymgm2N is bounded in L1 0,Tð Þ � , L2 Xð Þ
� �

, then as m ! 1,

�i
XN
n¼0

X
K2T

m Kð ÞynK
�u xK , tnþ1ð Þ � �u xK , tn�1ð Þ

2

� �
! �i

ðT
0

ð
X
y x, tð Þ�ut x, tð Þdxdt: (4.92)

The second term in (4.91) can also be re-written as follows:

1156 M. M. CAVALCANTI ET AL.



XN
n¼0

X
K2T

X
L2N Kð Þ

sKjL y
nþ1

2
L � y

nþ1
2

K


 �
�u xK , tnþ1

2

� �
Dt

¼
XN
n¼0

X
KjL2Eint

m KjLð Þ y
nþ1

2
L � y

nþ1
2

K


 � �u xK , tnþ1
2

� �� �u xL, tnþ1
2

� �
dKjL

Dt:

(4.93)

On the other hand,

XN
n¼0

ð nþ1ð ÞDt

nDt

ð
X
yT ,Dt x, tð ÞD�u x, nDtð Þdxdt ¼

Xn
n¼0

X
K2T

y
nþ1

2
K

ð
K
D�u x, tnþ1

2

� �
dxDt (4.94)

¼
XN
n¼0

X
KjL2Eint

y
nþ1

2
K � y

nþ1
2

L


 �ð
KjL

r�u x, tnþ1
2

� � � nK, Ldc: (4.95)

By the same reasons argued in (4.92), we have that

XN
n¼0

ð nþ1ð ÞDt

nDt

ð
X
yT ,Dt x, tð ÞD�u x, nDtð Þdxdt !

ðT
0

ð
X
y x, tð ÞD�u x, tð Þdxdt (4.96)

as m ! 1: Now, subtracting the right hand side of (4.93) from (4.95),

XN
n¼0

X
KjL2Eint

m KjLð Þ y
nþ1

2
K � y

nþ1
2

L


 � ð
KjL

r�u x, tnþ1
2

� � � nK, Ldc�
�u xK , tnþ1

2

� �� �u xL, tnþ1
2

� �
dKjL

 !
Dt:

(4.97)

Because of the regularity properties of u, we have that (4.97) goes to 0 when m ! 1:

Hence, and thanks to (4.94) and (4.96),

XN
n¼0

X
KjL2Eint

m KjLð Þ y
nþ1

2
L � y

nþ1
2

K


 � �u xK , tnþ1
2

� �� �u xL, tnþ1
2

� �
dKjL

Dt !
ðT
0

ð
X
y x, tð ÞD�u x, tð Þdxdt:

The third and fourth terms in (4.91) can be treated in a similar way because ym 2
L1 0,T;Xð Þ; hence, and due to (4.90), we have

XN
n¼0

X
K2T

jynþ
1
2

K jpynþ
1
2

K �u xK , tnþ1
2

� �
Dt !

ðT
0

ð
X
jy x, tð Þjpy x, tð Þ�u x, tð Þdxdt, as m ! 1:

Finally,

i
XN
n¼0

X
K2T

a xKð Þynþ
1
2

K �u xK , tnþ1
2

� �
Dt ! i

ðT
0

ð
X
a xð Þy x, tð Þ�u x, tð Þdxdt, as m ! 1:

Thus, when passing to the limit in (4.91) and integrating by parts, we conclude that y is
the weak solution of (1.1); concluding the proof. w
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4.3. Example I

In the following example, we will use the given numerical scheme to solve equation
(1.1) for p¼ 2, T¼ 500, X being disk with ratio r¼ 10, x � X : x2 þ y2 > 82, and a
damping function defined as follows:

a x, yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2ð Þ

p
� 8


 �2
, 82 � x2 þ y2 � 102

0, otherwise:

8<
:

Observe that the damping fulfills condition (1.3). The initial condition is given by

y0 ¼
1
2
exp � x� 1ð Þ2 þ y� 1ð Þ2 þ

i
2

x� 1ð Þ
� �� �

: (4.98)

In our computations, we’ve used Dt ¼ 1
26 ¼ 0:015625 and h¼ 0.64851, where 2000 poly-

gons were used to approximate the domain. Figure 1 illustrates the state of the numer-
ical solution at different times, while Figure 2 left shows the evolution of the energy
with time. In this case the decay is exponential, as expected from Theorem 1.2.

4.4. Example II

As a second experiment, we will repeat Example I but using p¼ 2, T¼ 500, and the
damping function

Figure 1. Numerical solution at different timesteps. Cells with black dots indicate the zone where the
damping function is in place.
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a x, yð Þ ¼ exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 8


 �
� 1


 �2
, 82 � x2 þ y2 � 102

0, in othercase:

8<
:

This function also fulfills condition (1.3). Figure 2 right shows the time evolution of the
energy. The decay in this case is also exponential, replicating the theoretical result (1.2)
proved in the previous sections.

4.5. Example III

We will now consider an exterior domain, as stated in Section 3. The new domain X
will be defined as:

X ¼ f x, yð Þ 2 R
2 : 5 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 20g,

while the effective damping subset will be given by

x ¼ f x, yð Þ 2 R
2 :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 17g:

The initial condition to be used is

y x, 0ð Þ ¼ exp � x2 þ y� 10ð Þ2 þ
i
2
x

� �� �
:

For these calculations, we’ve done Dt ¼ 1
26 ¼ 0:0156, and the domain was approximated

using 5000 polygons with h¼ 0.76172. Figure 3 illustrates the initial condition and the time
evolution of the mass functional. Its decay follows an exponential trend, as expected.

4.6. Example IV

As a final experiment, we will repeat the previous case but using the following
domain

X ¼ f x, yð Þ 2 R
2 : 7 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 20g:

Figure 2. Energy decays for both examples. Left: decay for Example I. Right: decay for Example II.
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The effective damping subset will be given by x ¼ f x, yð Þ 2 R
2 :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 17�a 2

�p, 0ð Þg, where a is the angle of the point (x, y) with respect to the positive x axis.
This is equivalent to the geometric condition (1.2) for a point x0 ¼ 0, yð Þ such
that y ! þ1:

For our calculations, we’ve used Dt ¼ 1
25 ¼ 0:0312, T¼ 10000, and h¼ 0.80958 for a

domain approximated using 5000 polygons. The left panel of Figure 4 shows the initial
condition and the zone where the damping is acting effectively; while the right panel
shows the decay of the Mass funcional in semi-log scale. We can clearly see the expo-
nential decay rate, as expected from Section 3.

5. Final conclusions

The following table summarizes the new contributions of the present paper compared
with the works cited in the introduction.

Figure 3. Results for the experiment with an exterior domain. Left: the initial condition. Right: semi-
log plot for the time-evolution of the mass funcion.

Figure 4. Left: The initial condition. Black dots denote the cells where the damping function is acting
effectively. Right: Time evolution of the mass functional, at semi-log scale.
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5.1. Strong stability versus uniform energy decay rates

Making use of the assumption (1.3), we obtain exponential decay at the L2 level. When
(1.3) is no longer valid, the constant on the right hand side of (2.28) will depend on
C ¼ C T, ky0kX

� �
: In this case, instead of exponential decay rate estimates one just has

that the energy E0 tð Þ goes to zero when t goes to infinity (as in Cavalcanti et al. [23]).
Indeed, fix T


0 > T0, where T0 > 0 considered large enough comes from the unique
continuation property. Then, from (2.46) there exists a constant C ¼ C L,T


0ð Þ such that

E0 0ð Þ � C L,T

0

� � ðT

0

0

ð
X
a xð Þ jyj2 dxdt: (5.1)

The identity of the energy yieldsðT

0

0

ð
X
a xð Þ jyj2 dxdt ¼ �E0 T


0

� �
þ E0 0ð Þ: (5.2)

Combining (5.1) and (5.2) and since E0 T

0ð Þ � E0 0ð Þ, we infer

E0 T

0

� �
1þ C L,T


0

� �� �
� C L,T


0

� �
E0 0ð Þ,

from which we conclude that

E0 T

0

� �
� C L,T


0ð Þ
1þ C L,T


0ð Þ

� �
E0 0ð Þ,

and, consequently, since the map t 7!E0 tð Þ is non-increasing, we deduce

E0 Tð Þ � c1E0 0ð Þ, 8T > T0, where c1 :¼
1

~C0 þ 1

� �
, (5.3)

and ~C0 ¼ ~C0 L,T

0ð Þ: From the boundedness ky tð ÞkH1

0 Xð Þ � C T, ky0kX
� �

one has

ky Tð ÞkH1 Mð Þ � C1 Tð Þ, and as we have proceed above we conclude that

E0 2Tð Þ � c2E0 Tð Þ, 8T > T0, where c2 :¼
1

~C1 þ 1

� �
(5.4)

and ~C1 ¼ ~C1 C1 Tð Þ,T

0

� �
: Thus, from (5.3) and (5.4) we arrive at

E0 2Tð Þ � c1c2ð Þ E0 0ð Þ, 8T > T0, with c1, c2 < 1,

and recursively we obtain for all n 2 N, that

E0 nTð Þ � c1c2 � � � cnð Þ E0 0ð Þ, 8T > T0, with c1, c2, :::, cn < 1: (5.5)

Thus, if we assume, by contradiction, that the map t 7!E0 tð Þ is bounded from below,
namely, if there exists a > 0 such that E0 tð Þ � a for all t> 0, then from (5.5) it follows
that E0 nTð Þ � cn E0 0ð Þ for some c < 1, and we obtain a contradiction. Consequently
E0 tð Þ goes to zero when t goes to infinity. w

From the above, we are adjusted with Liu and Rao final results [10], namely, uniform
stability or just uniform and exponential decay rate estimates. However, they exploit the
assumption (1.3), looking for resolvent estimates, while in our case we are looking for
global solutions in H1� level bounded by ku tð ÞkH1

0 Xð Þ � C ky0kX
� �

:
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