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a b s t r a c t

In this note, we give an elementary proof of the lack of null controllability for
the heat equation on the half line by employing the machinery inherited by the
unified transform, known also as the Fokas method. This approach also extends in
a uniform way to higher dimensions and different initial–boundary value problems
governed by the heat equation, suggesting a novel methodology for studying
problems related to controllability.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The Uniform Transform Method (UTM), also known as the Fokas method, is a powerful tool for obtaining
solutions of initial–(inhomogeneous) boundary value problems. This method was first introduced in [1] for
the analysis of initial–boundary value problems for integrable nonlinear partial differential equations (PDEs).
However, in later works it was proven to produce novel results for a general class of linear PDEs; see [2,3].
Recently researchers utilized the UTM to produce rigorous wellposedness results in Sobolev and Bourgain
spaces for dispersive PDEs; see for instance [4] and [5] for the local and global wellposedness analysis of
nonlinear Schrödinger type PDEs and [6] for a similar analysis on the Korteweg–de Vries equation.

To date, there is no work on the boundary controllability of PDEs that utilizes the advantages of the
UTM. This method has two basic elements: (i) the so-called global relation, an identity that relates the
initial datum and a suitable time transform of known and unknown boundary values, and (ii) the integral
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representation of the solution. We illustrate a new methodology by making use of these two elements in
order to provide an elementary proof of the lack of null controllability for the heat equation on the half line.

To this end, let us consider the following canonical initial–boundary value problem:

ut = uxx, x ∈ R+, t ∈ (0, T ), (1.1)
u(x, 0) = u0(x), x ∈ R+, (1.2)
u(0, t) = g(t), t ∈ (0, T ). (1.3)

We say (1.1)–(1.3) is null controllable in [0, T ] if given u0 ∈ L2(R+) there is g ∈ L2(0, T ) such that
u(x, T ) ≡ 0.

It is well known that the above property does not hold for (1.1)–(1.3) for those solutions in C([0, T ]; L2

(R+)); see for example [7] for a proof of this result. Our goal is to provide an alternate, yet very short proof
of this fact. More precisely, we prove the following theorem.

Theorem 1.1. There exists u0 ∈ L2(R+) such that u(x, T ) ̸≡ 0 for any g ∈ L2(0, T ) if u ∈ C([0, T ]; L2(R+))
and it solves (1.1)–(1.3).

Orientation

In Section 2, we provide a proof of Theorem 1.1 via the global relation. In Section 3, we extend
Theorem 1.1 to the N -dimensional half space by outlining the straightforward and simple extension of the
proof presented in Section 2 to N dimensions. In Section 4, we discuss alternative pathways through the
Fokas method, introducing also a characterization for the null-controllability problem on the finite interval.
In Section 5, we discuss the main results of this work, as well as its future implications.

2. Proof of Theorem 1.1

By introducing the half-line Fourier x-transform, namely

f̂(λ) =
∫ ∞

0
e−iλxf(x)dx, Imλ ≤ 0, (2.1)

and
F̂ (λ, t) =

∫ ∞

0
e−iλxF (x, t)dx, Imλ ≤ 0,

as well as the t-transform
f̃(λ, t) =

∫ t

0
eλτ f(τ)dτ, t > 0, λ ∈ C, (2.2)

the global relation for (1.1)–(1.3), given by the Fokas method (equation (12) in [3]) can be written in the
following form:

eλ2tû(λ, t) = û0(λ) − r̃(λ2, t) − iλg̃(λ2, t), Imλ ≤ 0, (2.3)

where r(t) = ux(0, t) and g(t) = u(0, t), t > 0. For matters of completeness we derive here the global
relation using the half-Fourier transform. Indeed, through integration by parts we obtain

ût(λ, t) =
∫ ∞

0
e−iλxut(x, t)dx =

∫ ∞

0
e−iλxuxx(x, t)dx

= ux(x, t)e−iλx
⏐⏐∞
x=0 + iλu(x, t)e−iλx

⏐⏐∞
x=0 − λ2û(λ, t).

Thus,
ût + λ2û = −r(t) − iλg(t).
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Integrating the above ordinary differential equation we obtain

ûeλ2t = û0 −
∫ t

0
eλ2τ [r(τ) + iλg(τ)]dτ,

which is (2.3).
Applying the condition u(x, T ) ≡ 0 in (2.3), we obtain that

0 = û0(λ) − r̃(λ2, T ) − iλg̃(λ2, T ), Imλ ≤ 0. (2.4)

Letting λ → −λ in (2.4) and subtracting the resultant expression (which is valid for Imλ ≥ 0) from (2.4) we
obtain the following equation:

2iλg̃(λ2, T ) = û0(λ) − û0(−λ), λ ∈ R. (2.5)

Let 0 ̸≡ u0 ∈ L1 ∩ L2(R+). Employing this assumption in (2.5) along with the definition of g̃, we obtain
the following uniform bound for some M > 0:⏐⏐⏐⏐⏐

∫ T

0
eλ2tg(t)dt

⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐ 1
2λ

[û0(λ) − û0(−λ)]
⏐⏐⏐⏐ < M, λ2 > 1. (2.6)

Then g ≡ 0 due to Lemma 2.1.
It is clear that if g ≡ 0, then û0(λ) = û0(−λ) for all λ ∈ R, which would contradict with the assumption

that 0 ̸≡ u(0) = u0.

Lemma 2.1 ([8], page 167, Lemma 2). Let g ∈ L2(0, T ). If there is M > 0 such that
⏐⏐⏐∫ T

0 eαtg(t)dt
⏐⏐⏐ < M for

every α > 1, then g ≡ 0.

We note that the proof in [8] is given for g being a continuous function; the proof extends to L2 functions
via density, namely g is vanishing almost everywhere.

3. The N -dimensional half space

In this section we extend Theorem 1.1 to the higher dimensional half space RN
+ = RN−1 × R+, N > 1

(see also [9]). The methodology we used previously for the proof of Theorem 1.1 provides a straightforward
path to study the (lack of) null controllability for

ut = ∆u, x = (x′, xN ) ∈ RN
+ , t ∈ (0, T ), (3.1)

u(x, 0) = u0(x), x ∈ RN
+ , (3.2)

u(x′, 0, t) = g(x′, t), x′ ∈ RN−1, t ∈ (0, T ). (3.3)

The relevant result can be obtained by using half space Fourier x-transform

û(λ) .=
∫
RN−1

∫ ∞

0
e−iλ·xu(x)dxndx′, λ = (λ′, λN ) ∈ RN−1 × C, ImλN ≤ 0

and applying the Fokas method only to the last variable xN . Indeed, half space Fourier transform yields the
global relation

e|λ|2tû(λ, t) = û0(λ) − h̃(λ, t) − iλN g̃(λ, t), ImλN ≤ 0, (3.4)

where
g̃(λ, t) .=

∫ t

0
e|λ|2sĝx′(λ′, s)ds and h̃(λ, t) .=

∫ t

0
e|λ|2sĥx′(λ′, s)ds, (3.5)

with h(x′, t) .= uxN
(x′, 0, t) and ĝx′ , ĥx′ denoting Fourier transforms of g and h with respect to x′.
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Fig. 1. The contours ∂D±.

The proof of the lack of null controllability for solutions in the class C([0, T ]; L2(RN
+ )) follows the exact

same steps with the proof of Theorem 1.1. Hence, (2.6) is now replaced with⏐⏐⏐⏐⏐
∫ T

0
eλ2

N tF (λ′, t)dt

⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐ 1
2λN

[û0(λ′, λN ) − û0(λ′, −λN )]
⏐⏐⏐⏐ < M, λ2

N > 1, (3.6)

where F (λ′, t) := e|λ′|2tĝx′(λ′, t). Applying Lemma 2.1 for each fixed λ′ ∈ RN−1, we conclude that F ≡ 0,
which in turn implies that g ≡ 0.

4. Alternative pathways

In this section, we provide an alternative pathway to obtain a proof of Theorem 1.1 via the integral
representation of the Fokas method. Furthermore, this pathway provides a characterization of the control
for the finite interval problem given in (4.6). In this sense it suggests a more general viewpoint on studying
controllability problems through this methodology.

The half line

The integral representation of the solution of (1.1)–(1.3) given by the Fokas method (equation (16) in [3])
takes the form:

u(x, t) = 1
2π

∫ ∞

−∞
eiλx−λ2tû0(λ)dλ

− 1
2π

∫
∂D+

eiλx−λ2t
[
2iλg̃(λ2, t) + û0(−λ)

]
dλ, (4.1)

where ∂D+ is depicted in Fig. 1.
By applying u(x, T ) ≡ 0, deforming ∂D+ to the real line and taking the inverse Fourier transform of both

sides in the resultant expression, we obtain (2.5). Then, the proof of Theorem 1.1 follows by the exact same
arguments of Section 2.

The finite interval

It is well known that the null controllability is true, for instance in C([0, T ]; L2(Ω)), if one replaces the
infinite domain R+ by the finite one (0, L). Here, we wish to give a characterization of the set of suitable
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boundary controllers, say acting at the right Dirichlet boundary condition, using the integral representation
obtained from the Fokas method. Thus, we consider the following problem:⎧⎪⎨⎪⎩

ut = uxx, x ∈ (0, L), t ∈ (0, T ),
u(0, t) = 0, u(L, t) = h(t), t ∈ (0, T )
u(x, 0) = u0(x), x ∈ (0, L)

(4.2)

and the goal is to find a sufficient condition for the boundary controller h so that it steers the given initial
datum u0 to uT ≡ 0 at t = T .

In analogy with the half line problem, one introduces the following Fourier x-transform where the integral
is taken over the given spatial domain (0, L):

û(λ, t) =
∫ L

0
e−iλxu(x, t)dx, λ ∈ C. (4.3)

Then, the corresponding global relation (equation (2.10) in [3]) for the above problem evaluated at t = T

becomes
0 = û0(λ) + iλe−iλLh̃(λ2, T ) − g̃1(λ2, T ) + e−iλLh̃1(λ2, T ), λ ∈ C, (4.4)

with g1(t) = ux(0, t), h1(t) = ux(L, t), and h(t) = u(L, t).
Similarly, the integral representation of the solution (equation (2.6) in [3]) evaluated at t = T becomes

0 = u(x, T ) = 1
2π

∫ ∞

−∞
eiλx−λ2T û0(λ)dλ − 1

2π

∫
∂D+

eiλx−λ2T g̃1(λ2, T )dλ (4.5)

− 1
2π

∫
∂D−

e−iλ(L−x)−λ2T
[
h̃1(λ2, T ) + iλh̃(λ2, T )

]
dλ,

for all x ∈ (0, L), where the contours ∂D± are depicted in Fig. 1.
We next utilize the standard approach of Fokas method: Using the invariances of the global relation

under the transformation λ ↦→ −λ, the unknown boundary transforms (g̃1 and h̃1) can be eliminated from
the integral representation (see equation (32) in [3]). Through short and straightforward calculations, and
by employing the definition of h̃, Eq. (4.5) yields the following relation:∫

∂D+

R(λ; x, T, L)dλ +
∫

∂D−

R(λ; x, T, L)dλ = U0(x; T ), ∀ x ∈ (0, L), (4.6)

where the integrand R(λ; x, T, L) is given by

R(λ; x, T, L) := i

π

λeiλx−λ2T

eiλL − e−iλL

[∫ T

0
eλ2sh(s)ds

]
(4.7)

and the known U0(x; T ) is given by

U0(x; T ) = 1
2π

∫ ∞

−∞
eiλx−λ2T û0(λ)dλ (4.8)

− 1
2π

∫
∂D+

eiλx−λ2T

[
eiλLû0(λ) − e−iλLû0(−λ)

eiλL − e−iλL

]
dλ

− 1
2π

∫
∂D−

e−iλ(L−x)−λ2T

[
û0(λ) − û0(−λ)

eiλL − e−iλL

]
dλ,

with the contours ∂D± depicted in Fig. 1, and the red dots denoting the zeros of exp(iλL) − exp(−iλL) on
the real axis.

Thus, we obtain the following characterization for the problem of null controllability: The problem (4.2)
is null controllable at time t = T if and only if there exists h = h(t) which satisfies (4.6).
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5. Discussion

In this work we analyze a family of null-controllability problems governed by the heat equation, using the
machinery provided by the Fokas method. In this connection we make the following three remarks:

• It is straightforward but more technical to generalize the proof of Theorem 1.1, so that one constructs
a function u0 satisfying Theorem 1.1, with u0 ∈ L2(R+), but not necessarily u0 ∈ L1(R+).

• The methodology appearing in the current work can be applied to boundary value problems of higher
dimensions such as (R+)N , N > 1, where all the spatial coordinates are positive. The relevant proof,
which will be presented elsewhere, is based on the analysis of the Fokas method presented in [2] for the
case of N = 2, namely the quarter plane.

• If u0 ∈ L2(R+) and g ∈ L2(0, T ), then (1.1)–(1.3) possess a solution u ∈ C([0, T ]; L2(R+)) in the
transposition sense, and moreover this solution can be represented as in (4.1). Therefore, Theorem 1.1
concerns such solutions. If the condition u ∈ C([0, T ]; L2(R+)) is removed, then one can recover the null
controllability in a larger class of solutions. This was proved in [10] for the linearized KdV, heat, and
Schrödinger equations.

The Fokas method provides the basic tools which are needed for the extension of the methodology
introduced in the current work to linear PDEs, other than the heat equation. Indeed, one could obtain
the Global Relation of the initial and boundary conditions, as well as the Integral Representation of the
solution for problems which are posed on the half line and the finite interval and satisfy evolution equations
where the rhs of (1.1) is substituted by a higher order linear differential operator with constant coefficients
(see [3]). The possibility of applying this methodology to null-controllability problems governed by other
linear evolution PDEs is currently under investigation.
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original draft, Writing review & editing. Türker Özsarı: Conceptualization, Formal analysis, Investigation,
Methodology, Writing - original draft, Writing review & editing.

References

[1] Athanassios S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. R. Soc. Lond.
Ser. A Math. Phys. Eng. Sci. 453 (1962) (1997) 1411–1443.

[2] Athanassios S. Fokas, A new transform method for evolution partial differential equations, IMA J. Appl. Math. 67 (6)
(2002) 559–590.

[3] Athanassios S. Fokas, A unified approach to boundary value problems, in: CBMS-NSF Regional Conference Series
in Applied Mathematics, vol. 78, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2008,
p. xvi+336, MR 2451953.

[4] Athanassios S. Fokas, A. Alexandrou Himonas, Dionyssios Mantzavinos, The nonlinear Schrödinger equation on the
half-line, Trans. Amer. Math. Soc. 369 (1) (2017) 681–709, MR 3557790.
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