
Vol.:(0123456789)

The Journal of Supercomputing (2021) 77:2689–2712
https://doi.org/10.1007/s11227-020-03369-w

1 3

Scalable parallel implementation of migrating birds
optimization for the multi‑objective task allocation
problem

Dindar Öz1 · Işıl Öz2

Published online: 1 July 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
As the distributed computing systems have been widely used in many research and
industrial areas, the problem of allocating tasks to available processors in the system
efficiently has been an important concern. Since the problem is proven to be NP-
hard, heuristic-based optimization techniques have been proposed to solve the task
allocation problem. Particularly, the current cloud-based systems have been grown
massively requiring multiple features like lower cost, higher reliability, and higher
throughput; therefore, the problem has become more challenging and approximate
methods have gained more importance. Migrating birds optimization (MBO) algo-
rithm offers successful solutions, especially for quadratic assignment problems.
Inspired by the movement of the birds, it exhibits good results by its population-
based approach . Since the algorithm needs to deal with many individuals in the
population, and the neighbor solution generation phase takes substantial time for
large problem instances, we need parallelism to have execution time improvements
and make the algorithm practical for large-scale problems. In this work, we pro-
pose a scalable parallel implementation of the MBO algorithm, PMBO, for the
multi-objective task allocation problem. We redesigned the implementation of the
MBO algorithm so that its computationally heavy independent tasks are executed
concurrently in separate threads. We compare our implementation with three paral-
lel island-based approaches. The experimental results demonstrate that our imple-
mentation exhibits substantial solution quality improvements for difficult problem
instances as the computing resources, namely parallelism, increase. Our scalability
analysis also presents that higher parallelism levels offer larger solution improve-
ment for the PMBO over the island-based parallel implementations on very hard
problem instances.

Keywords Parallel algorithm · Combinatorial optimization · Task allocation
problem · Migrating birds optimization

 * Işıl Öz
 isiloz@iyte.edu.tr

Extended author information available on the last page of the article

http://orcid.org/0000-0002-8310-1143
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03369-w&domain=pdf

2690 D. Öz, I. Öz

1 3

1 Introduction

The problem of task allocation in heterogeneous distributed systems tries to
assign each task partitioned from an application to the processors in the system.
Utilizing the parallel execution units for computation-intensive parallel and dis-
tributed applications plays an important role in the efficiency of executing an
application on those systems. The problem has been tackled with many different
objectives such as maximizing the overall performance of the system, minimiz-
ing the probability of the errors during the execution, or maximizing the load
balance of the processors in terms of the memory or the workload. Even with a
single objective, the task allocation problem is an NP-hard problem for which
achieving the optimal solution requires impractical times for most of the real-
world instances. Therefore, many studies have been focusing on applying subopti-
mal algorithms consisting of both problem-specific greedy heuristics and generic
metaheuristic solutions for the multi-objective task allocation problem (MOTAP)
[7, 10, 17, 39, 43].

By the increase in the usage of cloud-based systems for many industrial and sci-
entific applications, the distributed systems have gained importance [45]. Addition-
ally, the size of those systems has risen to solve more difficult scientific problems
and support large companies. With a high number of task execution requests in
those large-scale systems, allocating tasks onto available processors has been a more
complex problem. Particularly, for a highly available service running on multiple
containers, the allocation of system resources becomes more critical. Therefore, the
demand for a good solution for the task allocation problem has increased.

Modern hardware systems offer high performance with their parallel execu-
tion units [27, 40]. Moreover, parallel programming models provide practical
implementation for computationally intensive applications to exploit the paral-
lelism in modern systems. Consequently, the algorithms designed to solve dif-
ficult problems started to utilize parallel computation more and more in order to
achieve better performance. In this context, metaheuristic algorithms, due to their
iterative nature, containing independent execution blocks, are good candidates for
applying parallel computation.

In this paper, we design and analyze two different parallelization models of
migrating birds optimization algorithm (MBO) for MOTAP. MBO is a population-
based metaheuristic algorithm that is proven to be successful on quadratic assign-
ment problem [9]. In the first model, we apply the island model parallelization to
the MBO and implement IMBO. In the second model, we present a scalable parallel
implementation for the migrating birds optimization algorithm with problem-spe-
cific neighboring heuristics. We design and implement a parallel algorithm (PMBO)
to reduce the execution time by parallelizing the time-consuming neighboring
function calculations. We compare our algorithm performance with island model
implementations of migrating birds optimization, genetic algorithm, and simplified
swarm optimization algorithm [43]. Our results yield that our parallel implemen-
tation exhibits substantial solution quality improvements for very difficult problem
instances as the computing resources in the parallel system increase.

2691

1 3

Scalable parallel implementation of migrating birds…

The remainder of this paper is organized as follows: Sect. 2 presents the related
work on both task allocation problem and parallelization methods for metaheuristic
algorithms. Section 3 provides a general description and a formal definition of the
multi-objective task allocation problem and the basics of the MBO algorithm. Sec-
tion 4 presents our parallel implementation by introducing general parallelism con-
structs. Then, the experimental results are outlined in Sect. 5. Finally, in Sect. 6, we
summarize the work with some conclusive remarks.

2 Related work

Task allocation problem (TAP) has been studied in the literature by considering
especially the system performance and reliability [5, 9, 12, 21, 31, 32, 35, 36, 44].
Besides the system performance, which is critical for the execution of real-time
applications on distributed systems, the system reliability becomes a crucial con-
cern due to high machine and network failure rates in large-scale systems [36]. In
safety-critical systems such as power plants, being free from errors and malfunctions
becomes the primary objective.

Many research studies have explored the task allocation problem by starting with
the work of Stone [37]. While some methods consider performance criteria by mini-
mizing the total sum of execution and communication time [7, 10, 17, 39, 43], or
target higher system reliability by minimizing the probability of failure [5, 15, 16,
36], some of them try to optimize both objectives solving the multi-objective task
allocation problem [12, 21, 32, 44]. Since the problems with both objectives are
NP-hard, many suboptimal heuristic algorithms have been proposed. Mathemati-
cal approach-based exact solutions have achieved reasonable times for only smaller
instances of the problem [10].

Use of evolutionary metaheuristic optimization algorithms and stochastic search
algorithms has been popular for the task allocation problem [5, 9, 11, 13–15, 26, 32,
41, 42]. As the evolutionary algorithms target harder and larger problems, the execu-
tion time required to find an acceptable solution increases. Therefore, the parallel
implementations have been proposed in order to decrease the execution times [1, 2].
While the island model achieves performance improvement by executing multiple
populations in parallel [18, 19, 28], the parallelization of neighborhood search pro-
cedures (e.g., mutation or crossover operations) decreases the execution time of the
algorithms by a larger amount.

Island model partitions the population into subpopulations in which serial
computations are performed in isolation [38]. To introduce diversity into sub-
populations, the model exchanges a set of individuals by migrating them into
other subpopulations. While each island performs independently in parallel, the
migration among the islands provides possible enhancement on solution qual-
ity [18]. Alba and Troya [3] propose an island model for a set of optimization
problems and conduct an experimental study on a distributed system to ana-
lyze the effect of the migration frequency on runtime and diversity. Beside dis-
tributed systems, the island model has also been implemented for GPU archi-
tectures. Luong et al. [24] propose three different island model schemes for

2692 D. Öz, I. Öz

1 3

Weierstrass–Mandelbrot function optimizations. While the first scheme evalu-
ates only the populations in different GPU thread blocks, the others are based
on a fully distributed model by offloading the overall computation from CPU
to the GPU cores. Pospichal et al. [33] also present a GPU-based island model
for parallel execution of a set of benchmark functions. While the island model
is successfully implemented in parallel systems to decrease the execution time,
it also improves the solution quality without parallel execution support. Limmer
and Fey [20] present a comparison study for island model and the global paral-
lelization-based evolutionary algorithms for multi-core CPUs, clusters, GPUs,
and grid platforms. Al-Betar et al. [4] propose an island model for the flower
pollination algorithm (FPA) which is a swarm-based evolutionary algorithm.
Even the proposed model is not implemented in parallel, it can produce better
results than the regular FPA by maintaining diversity. Liu and Wang [22] present
a scalable parallel genetic algorithm (PGAP) to exploit massively parallel high-
end computing resources for solving large problem instances of the generalized
assignment problem (GAP). To be able to improve performance by overlapping
communication and computation, the authors propose an asynchronous migra-
tion strategy for efficient migrations among populations. While the asynchro-
nous communication leads to a reduction in the solution quality due to the loss
of good solutions obtained from migration, the technique provides higher speed-
ups in a large-scale parallel computing environment with acceptable solutions.

Luo et al. [23] present a parallel bees algorithm by considering several paral-
lelization concerns. The proposed method not only partitions the colonies (pop-
ulations) into subcolonies (subpopulations) but also performs multiple instances
of local searches in different processing units simultaneously for parallelism.

Randall and Lewis [34] propose parallel implementations of ant colony
optimization (ACO) based on parallel ants and multiple colonies and conduct
experiments for TSP problem instances in a distributed memory architecture.
While Chu et al. [8] present a parallel ACO scheme for protein structure predic-
tion, Middendorf et al. [25] introduce multi-colony approach to solve traveling
salesperson problem and the quadratic assignment problem. Delevacq et al. [34]
adapt parallel ACO for GPU architectures.

ParadisEO [6] presents a framework for the development of parallel and dis-
tributed metaheuristic algorithms. It supports different parallel models includ-
ing parallel distributed evolutionary algorithms and parallel local searches. The
developers can implement their own parallel algorithms by using object-oriented
components based on standard distributed memory or shared memory libraries.

Duman et al. [9] propose a novel metaheuristic optimization algorithm,
namely migrating bird optimization (MBO) for quadratic assumption problem,
and achieve promising results. The MBO is further improved by Pan and Dong
[31], and Oz [30] by introducing problem-specific neighboring heuristics. While
the proposed neighboring functions improve the solution quality, the execution
time of the algorithms increases due to the higher computational effort of the
functions.

2693

1 3

Scalable parallel implementation of migrating birds…

3 Background

3.1 Task allocation problem

In this work, we consider multi-objective task allocation problem that tries to find
the efficient allocation of parallel application tasks onto processors of a distrib-
uted system. The objectives to be achieved are minimizing the assignment cost
and maximizing the system reliability. We use the problem statement given in [5,
13, 44] to formulate the task allocation problem.

3.1.1 System model

The heterogeneous distributed computing system consists of N processors
(P1,P2,… ,PN), and each processor (Pn) has the following computation and reli-
ability attributes:

– Cn : amount of computation resource
– Mn : amount of memory resource
– �n : failure rate

We assume that the processors are connected by an interconnection network,
and the communication link between two processors (Pn,Pm) has the following
attributes:

– DTRnm : data transfer rate between processors
– �nm : failure rate of the communication path between processors

We further assume that we have a parallel application including K tasks
(T1, T2,… , TK), as shown in Fig. 1. While the tasks may interact each other,
which incurs communication overhead for the tasks executing in different proces-
sors, our model does not contain information about precedence relations among
the tasks [13]. Each application task (Tk) has the following attributes:

– ck : computation resource requirement
– mk : memory resource requirement

Fig. 1 An example parallel application with several tasks and a target distributed system

2694 D. Öz, I. Öz

1 3

Each task pair (Tk, Tl) may communicate each other with an amount of data, and
this inter-task communication can be characterized as follows:

– Dkl : incurred communication time between tasks Tk and Tl

We assume that the execution time for one task may be different on different pro-
cessors in a heterogeneous system, and those execution times are known/predicted
before execution. ETkn represents the expected execution time of a task Tk on the
processor Pn , for each task and processor pair.

The task allocation scheme targets to find a task allocation represented by X, the
assignment of K tasks onto N processors, that minimizes the assignment cost and
maximizes the system reliability at the same time while satisfying memory and
computation resource constraints, where Xkn = 1 if task Tk is assigned to processor
Pn , and Xkn = 0 otherwise.

3.1.2 Assignment cost

For evaluating the cost for task assignment, we consider the execution and commu-
nication times. Given a task allocation X, since the execution time of all tasks in pro-
cessor Pn is

∑K

k=1
XknETkn , the execution cost of all processors is the total execution

time of the application, which can be computed as follows:

Similarly, since the required time for communications between processors Pn and
Pm is

∑K−1

k=1

∑K

l=k+1
XknXlm(Dkl∕DTRnm) , the total system communication cost can be

computed as follows:

Then, the assignment cost defined as the sum of the execution and communication
costs can be computed as follows:

3.1.3 System reliability cost

In order to quantify the reliability of a distributed system, we need to consider the
successful execution of all tasks in the system. For successful task execution, we can
assume that all processors and communication links are working correctly during
execution [36]. Since the reliability of a processor Pn during time t is e−�nt , and the

Cexec(X) =

N∑

n=1

K∑

k=1

XknETkn.

Ccomm(X) =

N−1∑

n=1

∑

m>n

K−1∑

k=1

K∑

l=k+1

XknXlm(Dkl∕DTRnm).

(1)

�(X) = Cexec(X) + Ccomm(X)

=

N∑

n=1

K∑

k=1

XknETkn +

N−1∑

n=1

∑

m>n

K−1∑

k=1

K∑

l=k+1

XknXlm(Dkl∕DTRnm).

2695

1 3

Scalable parallel implementation of migrating birds…

reliability of a processor Pn for a given task allocation X is e−�n
∑K

k=1
XknETkn , the reliability

of all processors can be computed as follows:

The reliability of a communication path between processors Pn and Pm is
e−�nm

∑K−1

k=1

∑K

l=k+1
XkmXln(Dkl∕DTRmn) ; the reliability of all communication paths can be com-

puted as follows:

Then, the system reliability that all involved processors and communication links
can be computed as follows:

Since the system reliability (R(X)) can be described by the system reliability cost
(RC(X)) as R(X) = e−RC(X) , the system reliability cost can be computed as follows:

3.1.4 Multi‑objective formulation

Using the formulations for the assignment cost (Eq. 1) and the system reliability cost
(Eq. 2), the mathematical formulation of task allocation problem is as follows:

Rexec(X) =

N�

n=1

e−�n
∑K

k=1
XknETkn .

Rcomm(X) =

N−1�

n=1

�

m>n

e−𝜇nm

∑K−1

k=1

∑K

l=k+1
XknXlm(Dkl∕DTRnm).

R(X) = Rexec(X) × Rcomm(X)

=

N�

n=1

e−𝜆n
∑K

k=1
XknETkn ×

N−1�

n=1

�

m>n

e−𝜇nm

∑K−1

k=1

∑K

l=k+1
XknXlm(Dkl∕DTRnm).

(2)��(X) =

N∑

n=1

K∑

k=1

𝜆nXknETkn +

N−1∑

n=1

∑

m>n

K−1∑

k=1

K∑

l=k+1

𝜇nmXknXlm(Dkl∕DTRnm).

(3)Minimize Z(X) = C(X) + RC(X)

(4)

Subject to

N∑

n=1

Xkn = 1 ∀k = 1, 2,… ,K

(5)
K∑

k=1

mkXkn ≤ Mk ∀n = 1, 2,… ,N

2696 D. Öz, I. Öz

1 3

Equation 3 represents the combined objective function including assignment cost
and reliability cost minimization. Equation 4 states that each task should be assigned
to exactly one processor. Equation 5, memory constraint, states that the total mem-
ory required by all tasks assigned to processor Pn does not exceed the available
memory size of the processor. Equation 6, computation resource constraint, pro-
vides that the processing load required by all tasks assigned to processor Pn does not
exceed the available processing load. The constraint in Eq. 7 guarantees that Xkn is
binary variable.

The model defines a 0–1 quadratic programming problem which is known as NP-
hard [13, 44], which implies that the optimum solution is not practical, especially for
big problem sizes.

3.2 Migrating birds optimization algorithm

Getting inspired by the behavioral pattern exhibited by migrating bird flocks, Duman
et al. [9] design a population-based metaheuristic algorithm, migrating birds optimi-
zation (MBO). Their work and the following studies show that it is particularly suc-
cessful in quadratic assignment problems [9, 29–31]. The algorithm basically main-
tains a number of solutions carried by a flock of n birds that are logically organized
in V formation as migrating flocks of birds. In this context, each bird (solution) fol-
lows the bird placed at its immediate front in the flock. This is achieved by shar-
ing a number of neighbor solutions between the birds at each iteration. The bird in
front of all other birds is called the leader bird. Imitating the natural migrating flock
behavior, the leader bird is changed after a number of iterations and the old leader
goes at the back of the flock, allowing the exploration of different parts of the search
space. The iterations are repeated until a predefined condition is satisfied. The algo-
rithm, listed in Algorithm 1, starts with the initialization phase that includes gen-
erating the initial solutions of the flock. This is followed by MBO iterations which
consist of three stages:

– Leader improvement A local search is applied to improve the leader solution by
generating its k neighbor according to a move operator. If any of the neighbors
improves the leader, then the leader is replaced. This is followed by sharing the
remaining x neighbor solutions with the bird next to the leader.

– Follower improvement Other birds in the flock are tried to be improved in a simi-
lar way as the leader. Each bird, combined with the x solutions shared from the
bird it is following, generates k − x new solutions using the move operator. If the
best solution improves the bird, the bird updates its current solution. Like the
leader bird, each bird in the flock gives their best x neighbor solutions to their
followers.

(6)
K∑

k=1

ckXkn ≤ Ck ∀n = 1, 2,… ,N

(7)Xkn ∈ {0, 1}∀n, k.

2697

1 3

Scalable parallel implementation of migrating birds…

– Leader change Mimicking the flock behavior in nature, after a certain number
of iterations (m) the leader bird switches to one end of the flock and a new bird
becomes leader.

Algorithm 1 MBO algorithm [9].
1: Generate n initial solutions
2: while not termination do
3: for each replication (1 to m) do
4: Generate and evaluate k neighbors for the leader
5: if there is an improvement then
6: Update the leader
7: end if
8: Move the x leader neighbors to the other solutions
9: for each follower in the flock do
10: Generate and evaluate k neighbors
11: if there is an improvement then
12: Update the follower
13: end if
14: end for
15: end for
16: Move the leader to the end and assign a solution as the leader
17: end while

3.2.1 Solution representation

Following the previous studies [5, 13, 21, 44], integer vector representation is used
where the vector P = (p1, p2,… pK)

T stores the processors assigned to each task. In
this context, p[i] = j denotes Xij = 1 where Xij s are the Boolean variables used in the
formal definition of the problem.

3.2.2 Objective function calculation

To avoid infeasible solutions violating the constraints stated in the inequalities (5)
and (6), a penalty value is added to the original objective function of the problem
(i.e., Eq. 3). The penalty value for a solution P is calculated as follows:

Therefore, the fitness value of a solution P is:

where � denotes the penalty coefficient used for scaling purposes, as applied in
other studies [13, 30].

(8)Penalty (P) =

N∑

n=1

(
max

(
0,

∑

i|p[i]=n
mi −Mn

)
+ max

(
0,

∑

i|p[i]=n
ci − Cn

))
.

(9)Fitness (P) = Z(P) + � ∗ Penalty (P)

2698 D. Öz, I. Öz

1 3

3.2.3 Problem‑specific neighboring for MBO: GR‑MR

A problem-specific neighboring function proposed in [30] is used as the neighbor-
ing function of the MBO algorithm. This function, Greedy Reassignment Maximum
Release (GR-MR), basically tries to reassign a randomly selected task to the proces-
sor which causes the maximum amount of fitness improvement. If no improvement
possible for a number of attempts, then GR-MR switches to the maximum release
phase, and in this phase, it tries to release the mostly loaded processor by removing
a task from that processor in order to enable further profitable reassignments. The
details of the neighboring function can be found in [30].

4 Parallel MBO

In this study, we redesigned the implementation of the MBO algorithm so that
its computationally heavy independent tasks are executed concurrently in sepa-
rate threads. The largest portion of the execution time in MBO is the generation
of the neighbor solutions while trying to improve each bird in the flock. Mainly,
the GR-MR function is executed k times for the leader and n ∗ (k − x) times for the
other birds. In the original MBO design, the bird improvement is performed sequen-
tially making the birds waiting for each other. This can be justified to an extent, as
each bird in the flock requires a number of shared solutions from the bird it is fol-
lowing, making the improvement process nonindependent. However, if the neighbor
generation and neighbor sharing are separated from each other, the former opera-
tion, which is an independent task, can be performed in parallel. In our parallel
MBO implementation (PMBO), at each iteration of the algorithm, each bird gener-
ates a number of neighbor solutions simultaneously. After the neighbors are calcu-
lated, each bird performs neighbor sharing and any improvement that may possibly
be achieved. Figures 2 and 3 depict the design difference between MBO and PMBO
algorithms. As shown in Fig. 3, the generation of the neighbors is performed in par-
allel for all of the birds in the flock, and then they wait for each other before trying to
improve via generated and shared neighbors.

To compare the performance of the PMBO, we implement the genetic algorithm
(GA), migrating birds optimization (MBO) algorithm [9], and simplified swarm
optimization (SSO) algorithm [43]. We also implement the parallel versions of GA,
MBO, and SSO algorithms based on the island model (IGA, IMBO, and ISSO,
respectively). As mentioned in Sect. 1, the island model partitions the population
into subpopulations in which serial computations are performed in isolation [38].
Both serial and parallel executions of the island model-based implementations pro-
vide an increase in the population diversity, while the parallel execution reduces the
execution time substantially. Figure 4 presents the structure of the IMBO, where
multiple MBO populations run concurrently, and they change the leaders for some
time migration periods. We implement IGA, IMBO, and ISSO and execute them in
parallel with the same number of threads as PMBO executions. All implementations
including serial and parallel versions employ GR-MR function as their mutation
operator/neighboring function if they are using any.

2699

1 3

Scalable parallel implementation of migrating birds…

5 Experimental study

5.1 Experimental setup

We execute our parallel implementations in a multicore platform, which is based
on Intel Xeon Gold 6148 processors (40 cores), located in the National Center for
High-Performance Computing (UHeM).

We conduct experiments for a set of randomly generated problem instances due
to the lack of a standard benchmark for the multi-objective task allocation problem.
We generate a set of test cases by using the same methodology as proposed by the
work in the literature [13, 30]. The main configuration parameters for the problem
instances and their values are given in Table 1, where task interaction density (D)

Fig. 2 MBO algorithm flow

2700 D. Öz, I. Öz

1 3

Fig. 3 Parallel MBO algorithm flow

Fig. 4 Island-based MBO structure

Table 1 Configuration
parameters for problem
instances

Parameter name Parameter value

Number of tasks (K) 20, 30, 40
Number of processors (N) 8
Task interaction density (D) 0.3, 0.5, 0.8
Communication-to-computation time ratio (CCR) 0.5, 1.0, 2.0

2701

1 3

Scalable parallel implementation of migrating birds…

quantifies the ratio of the inter-task communication demands for a task interaction
graph, and communication-to-computation time ratio (CCR) represents the amount
of resulting communication between tasks in a task graph comprising a parallel
application.

In our experiments, 10 problem instances are generated for each parameter con-
figuration, resulting in a total of 270 different problem instances for evaluating
the performance of the parallel algorithm. We execute each problem instance for
10 times and take the average of the cost and the running time values. The values
of the other system parameters are generated at random from the uniform distribu-
tions between the following ranges: the expected execution times of tasks on differ-
ent processors: 15–25, the data transfer rate between processors: 1–10, the amount
of data to be transferred between tasks: such that the CCR is 0.5, 1.0, or 2.0, the
failure rate of the processors and the communication path: 0.00005–0.00010 and
0.00015–0.00030, memory resource requirement of each task: 5–10, amount of
memory resource of each processor: x∕N − 2x∕N where x =

∑K

i=1
mi , computation

resource requirement of each task: 5–10, amount of computation resource of each
processor: x∕N − 2x∕N, where x =

∑K

i=1
ci.

5.2 Experimental results

To evaluate the performance of the PMBO and compare it to the other algorithms,
we conduct three main experiments:

– Comparison on normal instances
– Comparison on hard instances
– Scalability analysis on very hard instances

Before conducting the performance evaluation experiments, we execute our target
implementations by different parameters and fix the parameters that yield the best
performance results for the performance comparison experiments.

5.2.1 Parameter tuning

Since the previous work [9, 30] conducts detailed experiments to find the optimal
parameters of the MBO algorithm for quadratic assignment problem, we take those
values as the following: GreedyAttemptCount = 3 , k = 3 , x = 1 , n = 51 , m = 10.

We also take the values determined as the best for MOTAP by the previous work
[13] for GA algorithm:

– Population size = number of tasks × 2
– Crossover rate = 0.8
– Mutation rate = 0.2

As for the parameters of SSO algorithm, we use the values that are picked in [43]:

2702 D. Öz, I. Öz

1 3

– Cg = 0.50
– Cp = 0.85
– Cw = 0.95
– Population size = 50

In order to decide the optimal parameters for island model-based implementations,
we conduct experiments by considering multiple values for each parameter includ-
ing population count, which is the number of islands; immigration period, which
represents the number of iterations between two migrations; and immigration
count (for IMBO, it is always 1), which represents the number of individuals to be
migrated to the other island. The values for each parameter that we execute our IGA,
IMBO, and ISSO are as follows:

– Population count = 2, 4, 8, 16
– Immigration period = 5, 10, 20, 50
– Immigration count = 2, 3, 4, 5

We fix the number of threads to eight in this pre-experimentation phase.
The values that achieved the best results for the IGA, IMBO, and ISSO are given

in Table 2.

5.2.2 Comparison on normal instances

In the first set of the comparison experiments, we run each algorithm on the normal
instances which have a relatively easy configuration of the problem (the allocation
of 20/30/40 tasks onto 8 processors). Our aim is to see how much improvement we
gain by the parallelization of the algorithm in terms of the time required to explore
a certain amount of the search space. To achieve this, we run each algorithm for the
same number of neighboring function calls.

Tables 3 and 4 present time and cost values of the algorithms for the normal
instances, respectively. The tables include the results for serial genetic algorithm
(GA), serial migrating birds optimization (MBO), serial simplified swarm optimiza-
tion (SSO) algorithm, parallel migrating birds optimization (PMBO), island-based
parallel genetic algorithm (IGA), island-based parallel migrating birds optimization
(IMBO), and island-based simplified swarm optimization (ISSO) algorithm. Each
row presents the time/cost values for each problem instance, while the columns

Table 2 The optimal values for
island-based implementations
observed in parameter tuning
experiments

Population count Immigration period Immi-
gration
count

IGA 16 20 5
IMBO 16 50 1
ISSO 16 100 5

2703

1 3

Scalable parallel implementation of migrating birds…

Ta
bl

e
3

 T
im

e
va

lu
es

 o
n

th
e

no
rm

al
 in

st
an

ce
s (

Ta
sk

: 2
0,

 3
0,

 4
0

Pr
oc

es
so

r:
8)

 w
ith

 fi
xe

d
ne

ig
hb

or
in

g
fu

nc
tio

n
co

un
t

G
A

M
BO

SS
O

PM
BO

IG
A

IM
BO

IS
SO

1
2

4
8

16
1

2
4

8
16

1
2

4
8

16
1

2
4

8
16

20
3.

39
3.

57
3.

85
6.

54
3.

68
2.

83
2.

10
2.

35
1.

41
0.

89
0.

62
0.

61
0.

65
3.

95
2.

03
1.

12
0.

61
0.

38
3.

95
4.

38
6.

00
7.

73
7.

68
20

3.
40

3.
53

3.
85

6.
54

3.
69

2.
41

2.
07

2.
36

1.
41

0.
91

0.
62

0.
62

0.
66

3.
93

1.
98

1.
09

0.
59

0.
35

3.
96

4.
47

6.
33

7.
73

7.
63

20
3.

46
3.

55
3.

84
6.

46
3.

68
2.

43
2.

06
2.

34
1.

41
0.

89
0.

62
0.

61
0.

66
3.

96
1.

99
1.

06
0.

61
0.

47
3.

97
4.

23
6.

17
7.

71
7.

55
20

3.
39

3.
80

3.
91

6.
81

3.
87

2.
47

2.
05

2.
32

1.
46

0.
93

0.
62

0.
61

0.
67

4.
18

2.
08

1.
14

0.
60

0.
37

4.
00

4.
12

6.
15

7.
71

7.
63

20
3.

59
3.

75
3.

91
6.

82
3.

82
2.

49
2.

08
2.

36
1.

49
0.

93
0.

63
0.

61
0.

67
4.

20
2.

12
1.

12
0.

59
0.

37
4.

03
4.

47
6.

13
7.

86
7.

64
20

3.
60

3.
78

3.
90

6.
79

3.
83

2.
51

2.
05

2.
31

1.
47

0.
91

0.
63

0.
62

0.
66

4.
23

2.
13

1.
14

0.
59

0.
43

4.
03

4.
63

5.
91

7.
78

7.
68

20
3.

50
3.

86
3.

95
6.

85
3.

85
2.

50
2.

03
2.

30
1.

52
0.

93
0.

64
0.

62
0.

64
4.

28
2.

18
1.

14
0.

63
0.

38
4.

04
4.

15
5.

90
7.

85
7.

69
20

3.
61

3.
82

3.
97

6.
75

3.
79

2.
50

2.
09

2.
31

1.
54

0.
97

0.
64

0.
62

0.
67

4.
21

2.
12

1.
11

0.
60

0.
37

4.
04

4.
24

5.
99

7.
80

7.
65

20
3.

71
3.

89
3.

97
6.

81
3.

83
2.

49
2.

07
2.

33
1.

55
0.

95
0.

64
0.

61
0.

67
4.

29
2.

15
1.

13
0.

61
0.

37
4.

09
4.

82
5.

99
7.

78
7.

56
30

7.
53

10
.4

5
10

.0
4

15
.3

0
8.

17
4.

98
3.

40
3.

61
4.

70
2.

70
1.

62
1.

10
1.

02
11

.3
5

5.
68

3.
03

1.
56

0.
86

11
.0

7
9.

99
13

.3
8

18
.4

4
18

.0
4

30
7.

78
10

.4
5

10
.1

1
15

.3
2

8.
18

4.
95

3.
40

3.
63

4.
76

2.
72

1.
64

1.
11

1.
02

11
.3

9
5.

71
3.

05
1.

56
0.

89
11

.1
8

9.
78

13
.7

6
18

.0
6

18
.1

8
30

7.
89

10
.5

5
10

.0
2

15
.3

8
8.

20
4.

94
3.

37
3.

61
4.

81
2.

69
1.

64
1.

11
1.

04
11

.5
2

5.
81

3.
12

1.
59

0.
91

11
.3

2
10

.3
5

13
.6

3
18

.3
9

18
.3

1
30

7.
74

10
.1

9
10

.0
8

15
.0

7
8.

07
4.

88
3.

37
3.

64
4.

79
2.

73
1.

64
1.

10
1.

03
11

.2
2

5.
67

2.
95

1.
53

0.
85

11
.1

4
9.

96
12

.8
5

18
.1

1
18

.0
1

30
8.

04
10

.6
8

10
.1

2
15

.0
1

8.
02

4.
88

3.
34

3.
59

4.
79

2.
73

1.
65

1.
12

1.
04

11
.4

8
5.

75
2.

98
1.

63
0.

86
11

.3
0

9.
93

13
.3

7
18

.2
0

18
.0

5
30

8.
36

10
.7

5
10

.1
0

15
.0

8
8.

06
4.

88
3.

33
3.

57
4.

85
2.

76
1.

68
1.

12
1.

03
11

.5
8

5.
80

3.
01

1.
58

0.
87

11
.5

2
10

.1
1

13
.5

0
18

.0
9

17
.9

5
30

8.
16

10
.9

7
10

.2
3

15
.4

1
8.

27
4.

97
3.

37
3.

61
5.

02
2.

90
1.

73
1.

15
1.

04
11

.7
5

5.
84

3.
02

1.
60

0.
90

11
.4

4
10

.1
9

13
.1

2
18

.1
7

18
.2

1
30

8.
56

11
.2

3
10

.3
1

15
.4

4
8.

20
4.

98
3.

38
3.

59
5.

13
2.

93
1.

75
1.

16
1.

04
11

.9
3

5.
92

3.
10

1.
63

0.
89

11
.7

5
10

.3
9

13
.5

8
18

.1
9

18
.1

0
30

8.
79

11
.1

9
10

.3
0

15
.3

8
8.

18
4.

96
3.

36
3.

56
5.

08
2.

98
1.

76
1.

16
1.

05
11

.8
8

5.
93

3.
08

1.
66

1.
14

11
.8

2
10

.0
6

13
.1

0
18

.3
4

18
.2

7
40

15
.1

1
22

.9
6

21
.2

0
27

.7
8

14
.3

8
8.

38
5.

26
5.

02
12

.3
3

6.
74

3.
87

2.
37

1.
60

23
.9

0
11

.8
8

6.
21

3.
43

1.
90

21
.9

6
18

.2
0

20
.7

0
30

.2
5

29
.9

9
40

15
.6

8
23

.0
1

21
.0

2
27

.7
0

14
.3

5
8.

36
5.

24
5.

03
12

.3
4

6.
84

3.
93

2.
39

1.
61

24
.1

1
11

.8
9

6.
21

3.
40

1.
79

22
.3

5
18

.3
1

21
.0

4
30

.3
1

30
.3

0
40

16
.3

0
23

.1
3

21
.0

8
27

.4
4

14
.3

5
8.

36
5.

23
4.

96
12

.6
0

6.
84

3.
92

2.
40

1.
63

24
.3

3
12

.0
3

6.
24

3.
42

1.
79

22
.7

4
18

.6
0

21
.2

1
30

.7
1

30
.1

4
40

15
.7

1
22

.5
7

21
.1

1
27

.1
4

14
.1

8
8.

32
5.

19
5.

03
12

.1
8

6.
71

3.
87

2.
35

1.
61

23
.5

8
11

.7
9

6.
11

3.
33

1.
75

22
.2

0
17

.9
7

21
.0

8
31

.9
5

29
.9

7
40

16
.0

2
23

.0
4

21
.1

0
27

.2
3

14
.1

3
8.

28
5.

20
4.

97
12

.3
1

6.
92

3.
91

2.
39

1.
66

23
.8

6
11

.8
5

6.
23

3.
38

1.
80

22
.6

3
18

.3
1

20
.8

7
31

.2
1

29
.9

7

2704 D. Öz, I. Öz

1 3

Ta
bl

e
3

 (c
on

tin
ue

d)

G
A

M
BO

SS
O

PM
BO

IG
A

IM
BO

IS
SO

1
2

4
8

16
1

2
4

8
16

1
2

4
8

16
1

2
4

8
16

40
16

.7
7

23
.1

5
20

.9
4

27
.2

0
14

.1
4

8.
27

5.
20

4.
82

12
.4

7
6.

83
3.

93
2.

39
1.

61
24

.0
8

12
.0

1
6.

22
3.

37
1.

82
23

.1
7

18
.5

9
21

.3
7

31
.5

6
29

.7
9

40
17

.0
5

24
.2

5
21

.7
1

28
.2

7
14

.6
6

8.
58

5.
32

4.
91

13
.1

2
7.

36
4.

18
2.

52
1.

67
25

.5
4

12
.5

3
6.

53
3.

57
1.

84
23

.3
4

18
.6

9
21

.6
3

31
.3

4
30

.1
9

40
17

.2
3

24
.2

0
21

.5
9

28
.2

0
14

.6
6

8.
53

5.
32

4.
90

13
.2

4
7.

37
4.

17
2.

51
1.

68
25

.3
4

12
.5

7
6.

50
3.

64
1.

83
23

.7
6

18
.5

9
21

.1
1

31
.3

9
30

.2
8

40
17

.6
9

24
.3

7
21

.6
7

28
.2

8
14

.6
8

9.
61

5.
31

4.
83

13
.2

8
7.

39
4.

22
2.

79
1.

70
25

.4
6

12
.6

5
6.

74
3.

54
1.

85
23

.9
4

18
.6

5
20

.3
0

31
.0

2
29

.4
0

2705

1 3

Scalable parallel implementation of migrating birds…

Ta
bl

e
4

 C
os

t v
al

ue
s o

n
th

e
no

rm
al

 in
st

an
ce

s (
Ta

sk
: 2

0,
 3

0,
 4

0
Pr

oc
es

so
r:

8)
 w

ith
 fi

xe
d

ne
ig

hb
or

in
g

fu
nc

tio
n

co
un

t

G
A

M
BO

SS
O

PM
BO

IG
A

IM
BO

IS
SO

1
2

4
8

16
1

2
4

8
16

1
2

4
8

16
1

2
4

8
16

20
57

.5
54

.8
56

.0
53

.8
53

.8
53

.8
53

.7
53

.7
56

.8
57

.3
56

.9
56

.8
56

.8
53

.8
53

.7
53

.7
53

.7
53

.7
54

.5
52

.5
52

.6
53

.1
53

.4
20

73
.5

70
.6

71
.8

66
.6

66
.8

66
.6

66
.7

66
.8

73
.4

73
.5

73
.8

73
.4

73
.1

67
.8

67
.6

67
.5

67
.5

67
.4

70
.2

67
.4

67
.8

68
.0

68
.5

20
80

.1
76

.6
78

.8
74

.0
74

.1
74

.1
74

.1
74

.2
79

.0
79

.0
79

.5
79

.5
79

.4
74

.0
74

.1
74

.1
74

.1
74

.1
76

.9
73

.3
73

.8
74

.6
75

.1
20

64
.5

62
.5

63
.7

61
.0

61
.1

60
.9

61
.0

60
.9

63
.5

63
.2

63
.1

63
.4

63
.7

61
.1

61
.2

61
.3

61
.2

61
.2

62
.2

59
.9

59
.8

60
.2

60
.6

20
87

.8
83

.2
84

.1
79

.2
79

.3
79

.4
79

.4
79

.3
86

.0
85

.9
86

.4
86

.6
86

.7
79

.6
79

.7
79

.6
79

.5
79

.7
82

.8
79

.8
79

.3
80

.6
80

.3
20

10
9.

4
10

5.
9

10
9.

2
10

2.
7

10
2.

4
10

2.
6

10
2.

7
10

2.
6

10
8.

5
10

9.
0

10
9.

1
10

9.
1

10
9.

2
10

2.
6

10
2.

5
10

2.
6

10
2.

4
10

2.
5

10
5.

9
10

2.
7

10
2.

9
10

3.
7

10
4.

3
20

79
.8

78
.2

80
.0

76
.2

76
.2

76
.3

76
.2

76
.2

79
.3

79
.0

79
.2

79
.4

79
.5

76
.2

76
.3

76
.2

76
.2

76
.2

77
.0

74
.1

74
.0

74
.6

75
.5

20
97

.5
93

.9
95

.5
90

.5
90

.5
90

.6
90

.4
90

.5
96

.9
96

.2
97

.1
96

.8
96

.6
91

.0
91

.2
91

.2
90

.9
91

.0
93

.4
90

.4
90

.1
90

.6
91

.2
20

15
7.

9
15

1.
8

15
6.

6
14

5.
7

14
5.

6
14

6.
0

14
5.

7
14

5.
6

15
6.

2
15

6.
8

15
7.

3
15

7.
5

15
6.

7
14

6.
5

14
6.

2
14

6.
4

14
6.

5
14

6.
5

15
3.

3
14

7.
0

14
8.

1
14

8.
8

14
9.

6
30

87
.8

85
.6

86
.4

84
.5

84
.4

84
.5

84
.5

84
.5

88
.9

88
.6

89
.3

88
.9

88
.7

84
.4

84
.4

84
.5

84
.4

84
.4

85
.1

82
.3

82
.3

82
.6

83
.0

30
10

6.
8

10
2.

7
10

4.
6

10
0.

8
10

0.
6

10
0.

6
10

0.
7

10
0.

6
10

8.
5

10
8.

5
10

9.
0

10
8.

2
10

8.
7

10
0.

7
10

0.
7

10
0.

6
10

0.
7

10
0.

6
10

1.
4

99
.0

98
.5

99
.5

99
.3

30
13

8.
7

13
2.

5
13

5.
9

12
9.

4
12

9.
5

12
9.

8
12

9.
4

12
9.

6
14

0.
1

14
0.

4
13

9.
5

14
0.

7
14

0.
7

12
9.

6
12

9.
4

12
9.

6
12

9.
7

12
9.

6
13

2.
4

12
8.

6
12

8.
5

12
9.

0
12

9.
4

30
10

6.
3

10
2.

0
10

3.
2

10
0.

0
10

0.
1

10
0.

0
10

0.
0

10
0.

0
10

7.
9

10
7.

4
10

7.
4

10
7.

6
10

7.
1

10
0.

1
10

0.
1

10
0.

1
10

0.
1

10
0.

1
10

0.
8

98
.3

98
.0

98
.4

98
.8

30
14

0.
0

13
5.

6
13

6.
9

13
3.

0
13

3.
0

13
3.

1
13

3.
0

13
3.

1
14

2.
1

14
1.

6
14

1.
8

14
1.

7
14

1.
8

13
3.

3
13

3.
4

13
3.

3
13

3.
2

13
3.

2
13

4.
5

13
1.

0
13

0.
9

13
1.

9
13

1.
8

30
19

3.
6

18
4.

3
18

7.
7

17
9.

6
17

9.
6

17
9.

6
17

9.
6

17
9.

7
19

6.
7

19
6.

7
19

7.
5

19
7.

2
19

6.
7

18
0.

1
18

0.
3

18
0.

2
18

0.
2

18
0.

3
18

4.
1

18
0.

5
18

0.
4

18
0.

4
18

0.
7

30
14

3.
0

13
9.

0
14

0.
0

13
6.

5
13

6.
2

13
6.

3
13

6.
2

13
6.

4
14

4.
9

14
5.

3
14

5.
1

14
5.

1
14

5.
3

13
6.

5
13

6.
5

13
6.

6
13

6.
6

13
6.

6
13

7.
4

13
3.

6
13

3.
3

13
4.

1
13

4.
6

30
21

7.
4

20
9.

0
20

8.
8

19
8.

8
19

8.
7

19
9.

0
19

9.
0

19
8.

9
22

1.
0

22
1.

4
22

1.
3

22
1.

4
22

0.
6

20
1.

1
20

1.
8

20
1.

6
20

1.
8

20
1.

4
20

9.
7

20
2.

4
20

2.
5

20
3.

5
20

3.
8

30
33

2.
4

31
9.

3
31

5.
1

30
2.

5
30

2.
8

30
2.

9
30

3.
2

30
3.

5
33

6.
2

33
7.

8
33

6.
4

33
8.

0
33

8.
9

30
9.

4
31

0.
4

30
9.

9
30

9.
8

30
9.

8
32

0.
9

30
9.

8
31

1.
1

31
2.

9
31

4.
3

40
11

7.
3

11
4.

9
11

5.
7

11
4.

2
11

4.
2

11
4.

2
11

4.
2

11
4.

2
12

0.
9

12
0.

7
12

0.
7

12
0.

7
12

0.
7

11
4.

1
11

4.
2

11
4.

1
11

4.
1

11
4.

1
11

4.
3

11
2.

1
11

1.
6

11
2.

1
11

2.
5

40
15

9.
0

15
4.

4
15

6.
0

15
2.

3
15

1.
9

15
2.

0
15

2.
0

15
2.

0
16

3.
5

16
3.

9
16

4.
0

16
4.

4
16

3.
9

15
2.

1
15

2.
1

15
2.

1
15

2.
1

15
2.

1
15

3.
7

15
1.

3
15

0.
5

15
0.

3
15

0.
8

40
22

2.
4

21
2.

2
21

4.
0

20
7.

5
20

7.
3

20
7.

3
20

7.
6

20
7.

5
23

1.
5

23
2.

5
23

1.
6

23
2.

4
23

1.
8

20
8.

0
20

7.
9

20
7.

8
20

8.
0

20
8.

1
21

4.
1

21
0.

7
20

9.
8

20
9.

7
21

0.
4

40
16

0.
4

15
5.

0
15

5.
7

15
2.

9
15

3.
0

15
2.

8
15

2.
9

15
3.

1
16

5.
9

16
6.

1
16

5.
9

16
6.

6
16

6.
0

15
3.

0
15

2.
9

15
2.

9
15

3.
0

15
3.

0
15

4.
3

15
1.

9
15

0.
5

15
1.

5
15

1.
7

40
23

5.
7

22
5.

4
22

6.
6

21
8.

3
21

8.
1

21
8.

3
21

8.
3

21
7.

9
24

4.
8

24
5.

4
24

6.
2

24
6.

1
24

6.
0

21
9.

8
22

0.
0

21
9.

7
22

0.
0

21
9.

7
22

4.
2

22
0.

4
21

9.
3

21
9.

5
21

9.
5

40
33

4.
6

31
7.

9
31

8.
1

30
8.

2
30

7.
8

30
7.

9
30

7.
7

30
8.

0
34

8.
6

34
8.

9
34

8.
5

34
7.

5
34

7.
5

31
0.

6
31

1.
3

31
0.

2
31

0.
6

31
0.

4
32

3.
6

31
6.

9
31

7.
2

31
8.

1
31

7.
4

40
21

7.
1

21
0.

0
20

9.
2

20
3.

4
20

3.
2

20
3.

2
20

3.
1

20
3.

3
22

5.
0

22
4.

4
22

4.
4

22
3.

8
22

4.
9

20
4.

6
20

4.
3

20
4.

2
20

4.
5

20
4.

4
20

8.
2

20
3.

4
20

4.
0

20
3.

3
20

3.
9

2706 D. Öz, I. Öz

1 3

Ta
bl

e
4

 (c
on

tin
ue

d)

G
A

M
BO

SS
O

PM
BO

IG
A

IM
BO

IS
SO

1
2

4
8

16
1

2
4

8
16

1
2

4
8

16
1

2
4

8
16

40
32

0.
2

30
6.

6
30

4.
5

29
3.

9
29

4.
8

29
3.

5
29

4.
5

29
4.

0
32

9.
5

32
9.

8
33

0.
6

32
9.

4
33

0.
9

29
9.

1
29

8.
9

29
9.

4
29

9.
9

29
9.

5
30

7.
1

30
0.

8
29

9.
8

30
2.

4
30

1.
1

40
49

8.
2

48
0.

0
46

9.
4

45
7.

9
45

7.
8

45
7.

5
45

8.
2

45
8.

6
51

2.
3

51
1.

9
51

1.
1

51
3.

9
51

2.
6

46
6.

6
46

7.
9

46
7.

4
46

6.
8

46
8.

2
48

7.
2

47
4.

4
47

2.
6

47
3.

6
47

4.
2

2707

1 3

Scalable parallel implementation of migrating birds…

represent the different algorithm executions. For parallel versions, we include the
executions with 1, 2, 4, 8, and 16 threads.

If we look at the results, we can see that IGA and IMBO complete their execution
in shorter time; however, PMBO achieves the best cost values especially for larger
problem instances (allocating 40 tasks) with reasonable times. By this observation,
PMBO seems promising for better solutions for much larger problems.

Since our aim is to find out the performance effect of the parallel implementa-
tions, we present the average execution time values for each parallel algorithm
(namely PMBO, IMBO, IGA, ISSO) in Fig. 5. While we expect lower execution
times as the thread count increases, the results do not have this trend for the first
two cases (8_20 and 8_30, allocating 20 tasks and 30 tasks onto 8 processors,
respectively). Since threading incurs some cost in terms of time, and the total execu-
tion time is low for smaller problem sizes, threading cost increases the total exe-
cution time for the larger thread counts for those cases. However, as the problem
size increases, total execution time increases for each algorithm, and the ratio of
the threading cost decreases. Thus, we have smaller total execution times for larger
thread counts in the last case (8_40).

5.2.3 Comparison on hard instances

To observe the performance of the algorithms on the cost values in a given time,
we perform a set of experiments for hard(er) problem instances by limiting the

Fig. 5 Average execution time values on the normal instances

2708 D. Öz, I. Öz

1 3

execution time to 60 seconds. We aim to see how much improvement the paral-
lelism provides on solution qualities if we have a limited time budget. Figure 6
demonstrates the average cost values for two problem instances, assigning 80
tasks onto 16 processors (16_80) and assigning 120 tasks onto 16 processors
(16_120).

While the number of threads increases, the cost values for PMBO, IMBO,
and IGA tend to decrease while PMBO maintains the smallest values. However,
ISSO yields almost the same values for the 2-thread, 4-thread, 8-thread execu-
tion scenarios; it even produces larger cost values for the 16-thread execution,
which is not promising for larger parallelism.

5.2.4 Scalability analysis

To be able to understand the behavior of our parallel implementations for the
larger level of parallelism (larger thread counts), we perform a set of experi-
ments for very hard problem instances on a 40-core parallel system, as one
node of our cluster. We execute our parallel implementations for three prob-
lem instances (32_240 , 40_320 , 64_480) by 8-thread, 16-thread, 32-thread, and
40-thread configurations. Figure 7 presents the average cost values for three
problem instances. The results demonstrate that PMBO maintains a reduction in
the cost values as the thread counts increase for very hard problem instances. (It
is much clear in the 40_320 , 64_480 instances.)

To see the relative performance of PMBO over other parallel implementa-
tions, we also present cost improvement rate of PMBO in Fig. 8. We specifi-
cally include the values calculated by the division of the cost values of the IGA,

Fig. 6 Average cost values on the hard instances

2709

1 3

Scalable parallel implementation of migrating birds…

IMBO, and ISSO by the cost values of the PMBO. The results demonstrate that
as the parallelism level increases, the efficiency of PMBO also increases rel-
atively if we consider the cost values produced by the island-based methods.
These results indicate the scalability of the PMBO, in which the higher parallel-
ism level, namely higher computational resources, provides an improvement on
the solution quality.

6 Conclusion

In this work, we propose a parallel implementation for migrating birds optimization
algorithm to solve the task allocation problem with performance and reliability con-
straints. Our scalable algorithm provides an efficient execution in a parallel environ-
ment providing concurrent execution of multiple threads. The scalability analysis,
we perform as part of our experimental study, demonstrates that high parallelism
provides substantial solution improvement for hard problem instances with a large
number of tasks and processors.

Fig. 7 Average cost values on the very hard instances

2710 D. Öz, I. Öz

1 3

Acknowledgements Computing resources used in this work were provided by the National Center for
High-Performance Computing of Turkey (UHeM) under Grant Number 1006722019. This work was sup-
ported within the scope of the scientific research project which was accepted by the Project Evaluation
Commission of Yasar University under the project number of BAP071 and the title of “Parallelization of
Evolutionary Algorithms for The Multi-objective Task Allocation Problem.”

References

 1. Alba E, Tomassini M (2002) Parallelism and evolutionary algorithms. IEEE Trans Evol Comput
6(5):443–462

 2. Alba E, Troya JM (1999) A survey of parallel distributed genetic algorithms. Complexity 4(4):31–52
 3. Alba E, Troya JM (2000) Influence of the migration policy in parallel distributed gas with structured

and panmictic populations. Appl Intell 12:163–181
 4. Al-Betar MA, Awadallah MA, Doush IA, Hammouri AI, Mafarja M, Alyasseri ZAA (2019) Island

flower pollination algorithm for global optimization. J Supercomput 75(8):5280–5323
 5. Attiya G, Hamam Y (2006) Task allocation for maximizing reliability of distributed systems: a sim-

ulated annealing approach. J Parallel Distrib Comput 66(10):1259–1266
 6. Cahon S, Melab N, Talbi EG (2004) Paradiseo: a framework for the reusable design of parallel and

distributed metaheuristics. J Heuristics 10(3):357–380
 7. Chen WH, Lin CS (2000) A hybrid heuristic to solve a task allocation problem. Comput Oper Res

27(3):287–303
 8. Chu D, Till M, Zomaya A (2005) Parallel ant colony optimization for 3d protein structure prediction

using the hp lattice model. In: 19th IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS)

Fig. 8 Average cost improvement values of PMBO over island-based parallel algorithms on the very hard
instances

2711

1 3

Scalable parallel implementation of migrating birds…

 9. Duman E, Uysal M, Alkaya AF (2012) Migrating birds optimization: a new metaheuristic approach
and its performance on quadratic assignment problem. Inf Sci 217:65–77

 10. Ernst A, Jiang H, Krishnamoorthy M (2006) Exact solutions to task allocation problems. Manage
Sci 52(10):1634–1646

 11. Hadj-Alouane A (1996) A hybrid genetic/optimization algorithm for a task allocation problem
 12. Kang Q, He H, Deng R (1997) Bi-objective task assignment in heterogeneous distributed systems

using honeybee mating optimization. In: IBM Microelectronics Division
 13. Kang Q, He H, Deng R (2012) Bi-objective task assignment in heterogeneous distributed systems

using honeybee mating optimization. Appl Math Comput 219(5):2589–2600
 14. Kang Q, He H, Wei J (2013) An effective iterated greedy algorithm for reliability-oriented task allo-

cation in distributed computing systems. J Parallel Distrib Comput 73(8):1106–1115
 15. Kang QM, He H, Song HM, Deng R (2010) Task allocation for maximizing reliability of distributed

computing systems using honeybee mating optimization. J Syst Softw 83(11):2165–2174
 16. Kartik S, Murthy CSR (1997) Task allocation algorithms for maximizing reliability of distributed

computing systems. IEEE Trans Comput 46(6):719–724
 17. Lai CM, Yeh WC, Huang YC (2017) Entropic simplified swarm optimization for the task assign-

ment problem. Appl Soft Comput 58:115–127
 18. Lassig J, Sudholt D (2010) The benefit of migration in parallel evolutionary algorithms. In: Pro-

ceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (GECCO)
 19. Lassig J, Sudholt D (2013) Design and analysis of migration in parallel evolutionary algorithms.

Soft Comput 17(7):1121–1144
 20. Limmer S, Fey D (2017) Comparison of common parallel architectures for the execution of the

island model and the global parallelization of evolutionary algorithms. Concurr Comput Practice
Exp 29(9):e3797

 21. Lin SW, Ying KC, Huang CY (2013) Multiprocessor task scheduling in multistage hybrid
flowshops: a hybrid artificial bee colony algorithm with bi-directional planning. Comput Oper
Res 40(5):1186–1195

 22. Liu YY, Wang S (2015) A scalable parallel genetic algorithm for the generalized assignment
problem. Parallel Comput 46((C)):98–119

 23. Luo GH, Huang SK, Chang YS, Yuan SM (2014) A parallel bees algorithm implementation on
gpu. J Syst Architect 60:271–279

 24. Luong TV, Melab N, Talbi EG (2010) Gpu-based island model for evolutionary algorithms. In:
Annual Conference on Genetic and Evolutionary Computation (GECCO)

 25. Middendorf M, Reischle F, Schmeck H (2002) Multi colony ant algorithms. J Heuristics
8(3):305–320

 26. Mirzazadeh M, Shirdel GH, Masoumi B (2011) A honey bee algorithm to solve quadratic assign-
ment problem. J Optim Ind Eng 4(9):27–36

 27. Mittal S (2016) A survey of techniques for architecting and managing asymmetric multicore pro-
cessors. ACM Comput Surv 48:3

 28. Neumann F, Oliveto PS, Rudolph G, Sudholt D (2011) On the effectiveness of crossover for
migration in parallel evolutionary algorithms. In: Proceedings of the 13th Annual Conference on
Genetic and Evolutionary Computation (GECCO)

 29. Niroomand S, Hadi-Vencheh A, şahin R, Vizvári B (2015) Modified migrating birds optimiza-
tion algorithm for closed loop layout with exact distances in flexible manufacturing systems.
Expert Syst Appl 42(19):6586–6597

 30. Oz D (2017) An improvement on the migrating birds optimization with a problem-specific neigh-
boring function for the multi-objective task allocation problem. Expert Syst Appl 67:304–311

 31. Pan QK, Dong Y (2014) An improved migrating birds optimisation for a hybrid flowshop sched-
uling with total flowtime minimisation. Inf Sci 277:643–655

 32. Pendharkar PC (2015) An ant colony optimization heuristic for constrained task allocation prob-
lem. J Comput Sci 7:37–47

 33. Pospichal P, Jaros J, Schwarz J (2010) Parallel genetic algorithm on the cuda architecture. In:
European Conference on the Applications of Evolutionary Computation (EvoApplications)

 34. Randall M, Lewis A (2002) A parallel implementation of ant colony optimization. J Parallel Dis-
trib Comput 62:1421–1432

 35. Salman A, Ahmad I, Al-Madani S (2002) Particle swarm optimization for task assignment prob-
lem. Microprocess Microsyst 26(8):363–371

2712 D. Öz, I. Öz

1 3

 36. Shatz S, Wang JP, Goto M (1992) Task allocation for maximizing reliability of distributed com-
puter systems. IEEE Trans Comput 41(9):1156–1168

 37. Stone HS (1977) Multiprocessor scheduling with the aid of network flow algorithms. IEEE Trans
Software Eng 3(1):85–93

 38. Tanese R (1989) Distributed genetic algorithms. In: Proceedings of the 3rd International Confer-
ence on Genetic Algorithms (ICGA)

 39. Ucar B, Aykanat C, Kaya K, Ikinci M (2006) Task assignment in heterogeneous computing sys-
tems. J Parallel Distrib Comput 66(1):32–46

 40. Vajda A (2011) Programming Many-Core chips, 1st edn. Springer, Berlin
 41. Vidyarthi DP, Tripathi AK (2001) Maximizing reliability of distributed computing system with

task allocation using simple genetic algorithm. J Syst Architect 47(6):549–554
 42. Yadav PK, Singh MP, Sharma K (2011) Article: an optimal task allocation model for system

cost analysis in heterogeneous distributed computing systems: a heuristic approach. Int J Comput
Appl 28(4):30–37

 43. Yeh WC, Lai CM, Huang YC, Cheng TW, Huang HP, Jiang Y (2017) Simplified swarm optimiza-
tion for task assignment problem in distributed computing system. In: International Conference on
Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)

 44. Yin PY, Yu SS, Wang PP, Wang YT (2007) Multi-objective task allocation in distributed computing
systems by hybrid particle swarm optimization. Appl Math Comput 184(2):407–420

 45. Zhang Q, Cheng L, Boutaba R (2010) loud computing: state-of-the-art and research challenges. J
Internet Serv Appl 1:7–18

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Dindar Öz1 · Işıl Öz2

 Dindar Öz
 dindar.oz@yasar.edu.tr

1 Software Engineering Department, Yaşar University, Izmir, Turkey
2 Computer Engineering Department, Izmir Institute of Technology, Izmir, Turkey

http://orcid.org/0000-0002-8310-1143

	Scalable parallel implementation of migrating birds optimization for the multi-objective task allocation problem
	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Task allocation problem
	3.1.1 System model
	3.1.2 Assignment cost
	3.1.3 System reliability cost
	3.1.4 Multi-objective formulation

	3.2 Migrating birds optimization algorithm
	3.2.1 Solution representation
	3.2.2 Objective function calculation
	3.2.3 Problem-specific neighboring for MBO: GR-MR

	4 Parallel MBO
	5 Experimental study
	5.1 Experimental setup
	5.2 Experimental results
	5.2.1 Parameter tuning
	5.2.2 Comparison on normal instances
	5.2.3 Comparison on hard instances
	5.2.4 Scalability analysis

	6 Conclusion
	Acknowledgements
	References

