Chapter 9

Differential Expression of Toxoplasma
gondii MicroRNAs in Murine and Human
Hosts

Miiserref Duygu Sacar Demirci, Caner Bagci and Jens Allmer

Abstract MicroRNAs are short RNA sequences involved in post-transcriptional
gene regulation. MicroRNAs are known for a wide variety of species ranging from
bacteria to plants. It has become clear that some cross-kingdom regulation is
possible especially between viruses and their hosts. We hypothesized that intra-
cellular parasites, like Toxoplasma gondii, similar to viruses would be able to
modulate their host’s gene expression. We were able to show that 7. gondii pro-
duces many putative pre-miRNAs which are actually transcribed. Furthermore,
some of these expressed pre-miRNAs have a striking resemblance to host mature
miRNAs. Previous studies indicated that 7. gondii infection coincides with
increased abundance of some miRNAs. Here we were able to show that many of
these miRNAs have close relatives in T. gondii which may not be distinguishable
using PCR. Taken together, the similarity to host miRNAs, their confirmed
expression, and their upregulation during infection, it suggests that 7. gondii
actively transfers miRNAs to regulate its host. We conclude, that this type of
cross-kingdom regulation may be possible, but that targeted analysis is necessary to
consolidate our computational findings.

9.1 Introduction

Mature microRNAs (miRNAs) are short (18-24 nt) nucleotide sequences which act
as a recognition key via base-pairing with their target mRNAs involved in
post-transcriptional gene regulation (Erson-Bensan 2014). Mature miRNAs are cut
from larger stem-loop structures (Dicer for animals and DCL1 in the nucleus for
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plants) and incorporated into protein complexes in the cytoplasm which then per-
form the regulatory action. The stem-loop structures are cut from pre-miRNAs
(hairpins) within the nucleus (Drosha for animals and DCLI1 for plants) and then
exported into the cytosol. The pre-miRNAs are excised from pri-miRNA during
transcription and they may derive from any part of a genome (Kim et al. 2009;
Rodriguez et al. 2004) transcribed by either RNA-Polymerase II or III. The exis-
tence of miRNAs has been shown for a wide range of organisms ranging from
protists (Gottesman 2005) and sponges (Kim et al. 2009) to plants (Xie et al. 2015)
and animals (Okamura 2012). Even viruses contain miRNAs (Grey 2015); likely to
also influence the host’s gene expression (Li et al. 2014; Skalsky and Cullen 2010).

For Toxoplasma gondii, it has been shown that miRNAs and the necessary
machinery for genesis and targeting exist (Braun et al. 2010) and that it is important
during development (Hakimi and Menard 2010). Interestingly, the miRNA genesis
pathway of T. gondii seems related to plant and fungal ones (Braun et al. 2010)
which is striking since the plant miRNA genesis pathway may have evolved
independently from the metazoan one (Chapman and Carrington 2007). It is even
more curious that the targeting machinery in 7. gondii seems related to the meta-
zoan one (Braun et al. 2010). Around the same time with these findings, we
predicted potential miRNA regulatory networks in 7. gondii under the assumption
of similarity to metazoan miRNAs (Cakir and Allmer 2010). This analysis may
have to be redone using a mixture model although it led to the interesting finding
that there are perhaps as many hub miRNAs in the 7. gondii genome as there are
major hosts. In summary, it has been established that 7. gondii uses miRNA for its
post transcriptional gene regulation.

Like viruses, obligatory intracellular parasites may benefit from influencing their
hosts’ gene expression. In this regard, it has been shown that 7. gondii increases the
amount of key miRNAs (miR-17 ~ 92 and miR-106b ~ 25), implicated in
numerous hyperproliferative diseases, during infection (Zeiner et al. 2010). Zeiner
et al. further demonstrated that this process is tied to 7. gondii and that at least one
other apicomplexan (Neospora caninum) does not impact the level of the selected
miRNAs. Fast miRNA evolution has been reported before (Liang and Li 2009; Lu
et al. 2008) and this seems to be further supported with the study by Zeiner et al.
supporting their implicit idea that such regulation may be parasite-host specific.
Other studies support this finding and show T. gondii dependent dysregulation of
miRNAs (Cai et al. 2014; Cannella et al. 2014; Thirugnanam et al. 2013; Xiao et al.
2014).

We pondered how such dysregulation may be caused and hypothesized that a
possible path would be for 7. gondii to export miRNAs into its host. We then
analyzed the miRNAs of 7. gondii and concluded that communication between
parasite and host via miRNAs is theoretically possible (Sacar et al. 2014) which is
further supported by studies which show that secretion is important for parasite host
communication (Boothroyd and Dubremetz 2008; Luder et al. 2009); for a recent
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review see (English et al. 2015). Since T. gondii is present in a large number of
hosts, we wondered whether some putative miRNAs are expressed host-specifically
or whether some are highly expressed in multiple hosts. To investigate this, we used
all human and mouse miRNAs available on miRBase (Griffiths-Jones et al. 2008) to
establish machine learned models and applied them to all hairpins of the T. gondii
ME49 genome. We acquired all available next generation sequencing datasets
where any toxoplasma strain was sequenced within a host cell or singly from SRA
(Leinonen et al. 2011) and evaluated the expression profiles of the predicted
miRNAs. Clearly, the results can only guide further research since it is necessary to
have evidence on the protein level for confident miRNA assignment as described in
(Sagar and Allmer 2013c) something which can be achieved using mass spec-
trometry with quantitation (Allmer 2010). Mass spectrometric experiments can be
guided by providing expected proteotypic peptide masses of proteins expected to be
miRNA targets using multiple reaction monitoring type experiments (Kondrat et al.
1978).

T. gondii is a unicellular protist and as such is not expected to have many
miRNAs with clear human or mouse like features. Yet, we found many such
examples (2761066 and 2299419 hairpins passed human and mouse models at a
prediction cutoff of 0.99) and they are conserved (5278 and 8190 hairpins showed
high similarity to human and mouse mature microRNAs with a matchScore above
or equal to 35) or differentially expressed (57789 and 64598 hairpins are differ-
entially expressed in human and murine hosts with an absolute log2 fold change
equal to or larger than 1 and a Benjamini Hochberg (BH) adjusted p-value equal to
or smaller than 0.01) in mouse and human hosts. Since 7. gondii’s targeting
machinery is metazoan like, there are two modes of directly influencing the host’s
post transcriptional gene regulation. We suggest that either 7. gondii transports
naked stem-loop structures into the host which are then processed by the host
machinery, or it can export loaded TgAgo (Al Riyahi et al. 2006) which may be
directly functional in the host.

Host like miRNAs which are highly expressed by 7. gondii in both hosts may
have indispensable function for 7. gondii; and gene enrichment using Reactome
(Croft et al. 2014) indicates that this is very likely true for the miRNAs identified in
this study. MicroRNAs that are differentially expressed between hosts may mod-
ulate 7. gondii’s interference with host gene expression to specific hosts. Since T.
gondii replicates in many hosts, and since it seems to be able to distinguish between
primary and secondary hosts, there must be a mechanism allowing this distinction
and miRNAs may play a role in communicating it. Both types of identified
miRNAs can aid in developing new diagnostic biomarkers and may serve as drug
targets (Hoy et al. 2014; Manzano-Roman and Siles-Lucas 2012). Although drugs
against 7. gondii are currently available, the need for novel ones is evident (Blader
and Saeij 2009).
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9.2 Materials and Methods

9.2.1 Hairpin Extraction from the T. gondii Genome

The genome assembly of T. gondii ME49 was downloaded from ToxoDB (Gajria
et al. 2008) Release 25 (http://toxodb.org/common/downloads/release-25/
TgondiiME49/fasta/data/). With an in-house script we divided the genome into
500 nt long sequences with 250 nt overlap for both strands. These sequence lengths
were chosen since there is no human or murine hairpin in miRBase longer than
250 nt; so all potential pre-miRNAs in the 7. gondii genome can be completely
captured within one 500 nt fragment. The resulting 263964 fragments were then
folded using RNAFold (Hofacker 2003). The structure provided by RNAFold was
parsed using an in-house script which extracted all hairpin-like structures only
requiring a stem with at least three consecutive bonds somewhere in the stem and a
terminal loop with at least 3 nucleotides. All extracted hairpins (~4.8 million) were
then examined with human and murine models established via machine learning.

9.2.2 MicroRNA Feature Calculation

There are no miRNA examples available on miRBase for 7. gondii or other
Apicomplexa and therefore targeted feature selection is not possible. Since the
interest of the present study is on how T. gondii may regulate its host gene
expression using miRNAs, this is not a problem and the study can draw from a
larger body of knowledge describing human miRNA prediction. About a dozen
studies performing ab initio pre-miRNA prediction have been published (Batuwita
and Palade 2009; Bentwich 2008; Bentwich et al. 2005; Ding et al. 2010; Gao et al.
2012; Gudys et al. 2013; Jiang et al. 2007; Lopes Ide et al. 2014; Ng and Mishra
2007; Ritchie et al. 2012; van der Burgt et al. 2009; Xu et al. 2008; Xue et al. 2005).
All features and their natural extensions and normalizations were implemented in
JAVA™ and since calculations for the analysis of all putative hairpins extracted
from the 7. gondii genome were time consuming, HTCondor (Thain et al. 2005)
was used for parallel computation.

9.2.3 Machine Learning

MicroRNA detection is quite involved experimentally and, therefore, computational
methods are indispensable (Ng and Mishra 2007). Numerous methods for com-
putational detection of pre-miRNAs have been developed (Allmer 2014; Allmer
and Yousef 2012; Sacar et al. 2014). Most approaches are based in machine
learning, specifically two-class classification although some use one-class
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classification (Yousef et al. 2008, 2015). For successful machine learning, the
pre-miRNAs need to be parameterized and many features to describe hairpins have
been proposed (Sagar and Allmer 2013b, 2013c). The most important factor for
effective machine learning is, however, data with positive and negative examples
correctly assigned (Sacgar and Allmer 2013b). We took into account problems with
available data (Sacar et al. 2013) and class-imbalance (Sagar and Allmer 2013b)
while training models using KNIME (Berthold et al. 2009). We previously showed
that as little as 50 features may be enough for training a classifier and, therefore, we
performed feature selection prior to training of the classifier (Fig. 9.1). We first
clustered the about 700 features using k-Means clustering into 100 clusters. Then 50
clusters were selected based on calculation speed and information gain and from
each cluster, the feature with highest information gain was included into our final
feature set (Supplementary Table 2). In previous studies we have not seen a great
impact of the classifier on classification efficiency (Sagar and Allmer 2013a) and,
therefore, chose to use decision tree as our model since it is very fast and allows
serialization of the model in KNIME.

For positive data we used all pre-miRNAs from miRBase for Homo sapiens
(hsa) and Mus musculus (mmu) and as negative data we used the pseudo dataset
(Ng and Mishra 2007). For the training of the classifier thousand fold Monte Carlo
(MC) cross validation (Xu and Liang 2001) was performed and for each fold
randomly sampled 70 % of the positive data for training and 30 % of it for testing.
Negative data was randomly sampled from the pseudo dataset such the number of
examples matched the number of positive examples. The models trained for hsa and
mmu were then applied to all hairpins that could be extracted from the 7. gondii

Data for Feature k-Means 50 Selected
Selection Clustering ' Features
miRBase Posiﬁvel Random
Pseudo - Negative Selection
Data ' | Training Decision
| =| Data / Tree
& Tesrr'n_d Model
8| Data / . Application |
Best Model |
Model | Performance |

1000 Fold Cross Validation

Fig. 9.1 Machine learning regime for establishing models that describe pre-miRNAs for different
organisms. Feature selection was performed on a per species basis
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ME49 genome assembly. Commonly used performance measures like specificity,
sensitivity and accuracy were calculated.

9.2.4 MicroRNA Expression Analysis

All T. gondii sequencing datasets (74) available on the small sequencing read
archive (Leinonen et al. 2011) were downloaded and analyzed using FastQC
(Andrews 2010). 14 datasets were finally accepted for further analysis
(Supplementary Table 1). Supplementary Table 1 also details why some of the
datasets did not fit the present study and why they were excluded with the major
reasons being low base-calling quality and overrepresentation of a dataset. The
datasets were from parasite cultures (3), human foreskin fibroblast cells (3), murine
bone-marrow macrophages (3) and mouse peritoneal exudate (5).

All accepted datasets were trimmed from adapter contaminations using an
in-house script to determine adapter sequences and cut adapt (Martin 2010) in
default settings to remove them. Remaining sequences were further trimmed from
low-quality and ambiguous base callings with sickle (http://omictools.com/sickle-
s714.html) using a quality threshold of 30 (implying a 0.001 base-calling error
probability). Reads shorter than 20 nt after the two step trimming processes were
discarded (Supplementary Table 1).

The ToxoDB Release 25 genome was indexed using Bowtie 2 (Langmead and
Salzberg 2012) and trimmed reads were aligned to the genome using Tophat 2 (Kim
et al. 2013) with default settings which include a maximum edit distance of 2 and
take splicing into account. Reads that were ambiguously mapped to multiple
locations on the genome and reads that did not map in respect to proper pairs for the
paired-end sequencing datasets (mate pairs mapped on different chromosomes or
wrong orientation) were excluded from further analysis.

Read counts were established using featureCounts (Liao et al. 2014) from the
Subread package (http://subread.sourceforge.net) for both annotated Toxoplasma
gondii genes from ToxoDB Release 25 and for the predicted hairpins that were mapped
back to the genome by BLAST (Altschul and Gish 1996). All blast hits were recorded
that pass two criteria: (1) predicted hairpin being longer than 40 nucleotides and (2) the
hairpin matching to the genome perfectly. Reads spanning two or more genes/hairpins
were assigned to the gene/hairpin with the largest overlap. For paired-end sequencing,
fragments (read pairs) were counted instead of reads.

We previously established a similarity measure to measure the similarity of
mature sequences among selected microRNAs and predicted hairpins (Sacar et al.
2014). Aligning them using BLAST with ‘blastn-short* option and disallowing any
mismatches from negative strand of both the mature sequences and the hairpins.
The resulting matchScore was assigned to each hit using the following formula:
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matchScore + (SM - 5) + M — (SMM -5) — MM

where SM is the number of matches in the seed region (first 8 nucleotides), M is the
number of matches in the non-seed region, SMM is the number of mismatches and
gaps in the seed region, MM is the number of mismatches and gaps in the non-seed
region. Some factors were tested for weighting of the seed region and 5 was
arbitrarily chosen from a number of promising candidates.

9.3 Results and Discussion

9.3.1 MicroRNA Detection Model Training

For human and murine miRNA detection models were trained. 50 selected features
(Supplementary Table 2) were calculated for positive and negative data and
1000-fold MC cross validation was performed. Accuracy for both models was
always above 75 % and never reached 90 % (Fig. 9.2). The median accuracy for
human was slightly above 83 % and thus about 1 % better than the murine one
which was about 82 %. Both range and interquartile range were slightly larger for
the generated murine model.

The models selected for miRNA detection for human and murine achieved an
accuracy of 0.875 and 0.865, respectively. This accuracy is slightly better than the
best accuracy achieved in our previous study (Sagar et al. 2014), but expectedly
lower when compared to accuracies achieved earlier using feature sets from
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ab initio studies trained with randomly generated negative data (Sacar and Allmer
2013b). Thus these models seemed applicable for the analysis of putative hairpins
extracted from the 7. gondii genome.

9.3.2 Hairpin Extraction and Analysis

Both strands of the genome were fragmented into 500 nt pieces with 250 nt
overlap. The secondary structures for all fragments were predicted using RNAFold.
About 2.4 million hairpin-like structures were found in both strands and two
examples are given in Fig. 9.3.

Only hairpins with a minimum of three consecutive bonds in the stem (Fig. 9.3;
A: 1-7) were extracted from the secondary structures of the folded 500-mers. The
murine and human machine learned models were applied to all ~4.8 million
hairpins extracted from the genome (Fig. 9.4). While forward and reverse strands
show similar prediction score distributions for hsa and mmu, hsa and murine dis-
play distinct prediction score distributions. For all further analyses, we determined a
prediction score threshold at 0.99 prediction score (Fig. 9.4).

Of the ~4.8 million extracted hairpins approximately 2.3 and 2.8 million pas-
sed the models at 99 % prediction score cutoff for murine and human, respectively.
In our previous study (Sagar et al. 2014), far less miRNAs passed the threshold
which may occur because we didn’t use hairpin length or stem length cutoffs.
Human and murine predictions for the forward strand share about half of the
predicted hairpins at a cutoff of 99 % model score (Fig. 9.5) and the same is true for
the reverse strand (data not shown).

Clearly, not all of these hairpins can represent true pre-miRNAs. The number
may also be inflated by a factor of up to two due to the creation of overlapping
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Fig. 9.3 The first two examples for stemloop structures from the forward strand of the 7. gondii
genome. The structures were drawn with RNAShapes (Steffen et al. 2006). Structure A is too short
to be considered for further analysis whereas B fulfills expectations for further analysis
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Fig. 9.4 Prediction score distribution for application of human (hsa) and mouse (mmu) models to
putative hairpins extracted from the 7. gondii genome. The 4.8 million hairpins were randomly
sampled down to 100.000 to enable plotting. The dashed line indicates the 99 % score cutoff

hsa mmu
734225 635282 525492
54% 45%

Fig. 9.5 Number of hairpins (coding strand only) passing the human (hsa) and mouse
(mmu) models at a score cutoff of 0.99. The percentages are in respect to the organism i.e.:
46 % of predicted T. gondii hairpins that pass the hsa model also pass the mmu model whereas,
when viewed from the mmu perspective it amounts to 55 %

fragments which was not accounted for, since folds are quite different and hairpins
that are found at the same locus may still be quite different in consecutive over-
lapping fragments. Another convoluting factor is that the models achieved an
accuracy of around 87 % which means that at least 13 % of hairpins that pass these
models at a cutoff of 99 % are still wrongly predicted. A good way to filter such a
large number of results is to check whether they are actually expressed.
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9.3.3 Hairpin Expression Analysis

Many parts of a genome can be folded into structures strongly resembling
pre-miRNAs. However, only if the hairpins are expressed can they perform any
function and therefore expression was analyzed using RPKM (Mortazavi et al.
2008) as the measure (Fig. 9.6). We further analyzed whether there is a relationship
between prediction score and hairpin expression abundance but were not able to
find any (Fig. 9.1 in Supplementary File 1).

Most of the predicted hairpins were not expressed in at least one sample and,
therefore, were not further considered. As can be expected, with increasing RPKM
less hairpins fall into the ranges (Fig. 9.6). It is of note, that some of the expression
values of the predicted hairpins for 7. gondii are above the median expression of
hairpins (hsa) provided in miRBase (~ 1000 RPKM).

Even more instructive than the pure expression of a predicted hairpin is whether
it is shared among multiple organisms (Fig. 9.7). With the exception of Kunming
mice which share only few highly expressed predicted pre-miRNAs with other
organisms (perhaps due to the sequencing strategy), the larger part of highly
expressed pre-miRNAs (~60 %) are shared among species (Fig. 9.7). 4071 pre-
dicted T. gondii pre-miRNAs are shared among the murine, human, and parasite

Hairpin Distribution by RPKM Ranges

Human

| Murine
KunmingMice
B FParasite
=+
-
c
3
(=]
&)
o
g
= N
1.5 [5,10)  [t0100) [100,250) [250,500) [500,1e3) [1e3,5¢3) [Sed,ied) [1ed,2ed) [2ed,ded) [ded,1e5) [1e5, 1.5¢5
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Fig. 9.6 Only hairpins that were expressed in at least one sample were considered for expression
analysis. The predicted 7. gondii hairpins were grouped by their RPKM and the counts are
provided for the samples (pooled by species). The groups were chosen arbitrarily such that a small
number of groups can capture the complete range of RPKM values
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Fig. 9.7 Predicted T. gondii hairpins that are expressed above 1000 RPKM in the samples and
how they are shared among species that were investigated

samples. Murine and parasite share an additional 5033, human and parasite 6314,
and human and murine 5608 of the highly expressed predicted 7. gondii
pre-miRNAs. The number of predicted hairpins which are uniquely expressed in
one of the species is, therefore, much lower than the miRNAs whose expression is
shared among samples from different species (human: 1394, murine: 1504, and
parasite: 1733). MicroRNAs modulate gene expression and this modulation can be
systemic or specific to the environment. It seems likely that the predicted hairpins
perform a fundamental function whereas the ones that are highly expressed in only
one or two samples perform a more specific function.

The shared predicted hairpins discussed above are expressed at similar rates as
hairpins typically presented on miRBase (http://www.mirbase.org/cgi-bin/miRNA _
summary.pl?org=hsa) which for human range between 0.1 and 135000 with a
median of 97 and an average of 1100 RPM. Unfortunately, these values cannot be
translated into absolute concentrations which would be essential for drawing con-
clusions about the abundance of miRNAs in the different samples.

It is of interest whether some of the miRNAs previously found to be dysregu-
lated in human or mouse hosts are expressed in 7. gondii. For this we matched the
predicted hairpins to human and mouse mature miRNAs using the matchScore with
a threshold of 35. The hairpins were further required to be expressed in at least one
sample.

It has been shown that miR-17 ~ 92, miR-106b ~ 25, and miR-106a ~ 363
increase in abundance within the host upon infection with 7. gondii (Cai et al. 2014;
Zeiner et al. 2010). Interestingly, predicted 7. gondii hairpins similar to miR-18a,
miR-20b, miR-92, and miR-363 were expressed in the human and murine samples
(Supplementary Table 3). Another study showed that mmu-miR-712-3p,
mmu-miR-511-5p and mmu-miR-217-5p are indicative for T. gondii infection in
mice. Very similar hairpins to the former two miRNAs are also predicted for T.
gondii in this study and they are expressed at relatively high levels (Supplementary
Table 3). Xiao et al. reported the upregulation of miR-30c-1, miR-125b-2,
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miR-132, mir-23b, and miR-17 ~ 92 (Xiao et al. 2014). Except for miR125-b-2
and miR-132 we also found similar 7. gondii hairpins expressed in human and
murine samples (Supplementary Table 3). Wang et al. analyzed T. gondii in respect
to its miRNAs and found 17 conserved miRNAs 2 of which were related to
metazoan miRNA families (Wang et al. 2012). Here, similar 7. gondii pre-miRNAs
to mmu-miR-466i-5p, mmu-miR-574-5p, and has-miR-574-5p are also found.
Toxoplasma persistence in human brain seems to be associated with miR-146a,
miR-155, and miR-1246 (Cannella et al. 2014). While we did not find miR-146a,
we found similar 7. gondii hairpins to miR-155 and miR-1246 to be expressed in
human and/or murine samples (Supplementary Table 3). In summary, for many of
the upregulated miRNAs indicative of toxoplasmosis there exist highly similar
hairpins in 7. gondii. Often PCR is performed to validate the existence of miRNAs
in the referenced studies, but it is not clear whether the host miRNAs can be
distinguished from the very similar 7. gondii hairpins.

The targets of the miRNAs which have previously been reported to be upreg-
ulated in the host were submitted to Reactome analysis (D’Eustachio 2011). For all
predicted 7. gondii miRNAs similar to the previously reported miRNAs (both
human and murine) that were expressed in both human and murine samples the
gene targets are always signifying increased metabolism and infection
(Supplementary Table 4).

9.3.4 Known Toxoplasma Gondii Pre-microRNAs

A recent study identified 339 novel miRNAs in Toxoplasma and compared
expression between RH and ME49 strains (Wang et al. 2012). In order to check
whether the miRNAs were also among the hairpins identified in this study, we
acquired their data. Only perfect complete matches of their mature miRNA
sequences to our putative pre-miRNAs were accepted using blastn-short
(Supplementary Table 5). 48 of the mature sequence were not part of our pre-
dicted hairpins. 43 out of these were found in the sequence assembly we used, but
were not part of hairpins that passed the human or mouse model. Finally, the
remaining 4 mature sequences were not found in the 7. gondii genome assembly we
used in this study. Interestingly, the average expression of matches in their data is
~2080 and ~2270 while the average expression for the reported mature sequences
without counterpart in our data is 1.4 and 4.3. All matching sequences also pass the
human model at a prediction score cutoff of 0.99 which indicates that the identified
miRNAs by Wang and colleagues (Wang et al. 2012) are very similar to human
type pre-miRNAs and thus confirms the claim that the miRNAs are metazoan like
(Braun et al. 2010).
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9.4 Conclusion

MicroRNAs in 7. gondii have metazoan like features in respect to targeting (Braun
et al. 2010). Therefore, predictive models based on human and murine miRNAs
seem to be applicable and the models trained here achieved around 87 % accuracy
(Fig. 9.2). Due to the similarity and the fact that transfer from 7. gondii to the host
cell is possible, it can be reasoned that 7. gondii hairpins may perform regulatory
function in the host. Some of the predicted hairpins are expressed in various hosts
and of these a large number is shared among them. Additionally, some predicted
hairpins are highly similar to host miRNAs and are relatively abundant. Many of
the miRNAs that have previously been shown to be upregulated in diseases have
highly expressed close T. gondii homologs. Together, these clues are suggestive,
but not fully conclusive, for the regulatory mechanism where T. gondii actively
transfers miRNAs into the host to modulate gene expression.

T. gondii miRNAs, different from host miRNAs, which are highly expressed in
all hosts would be good disease marker candidates. Differentially expressed
miRNAs that are similar to host miRNAs may provide therapeutic leads for
treatment of Toxoplasmosis. Unfortunately, sequencing data was only available for
human and murine hosts. We hope that in the future we will be able to acquire data
from more hosts; especially from cats.
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