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Abstract:We extend the quantitative Balian–Low theorem of Nitzan and Olsen to higher dimensions. We use
Zak transform methods and dimension reduction. The characterization of the Gabor–Riesz bases by the Zak
transformallows us to reduce the problem to the quasiperiodicity and the boundedness frombelowof the Zak
transforms of the Gabor–Riesz basis generators, two properties for which dimension reduction is possible.
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1 Introduction
Uncertainty principles are statements that limit the simultaneous concentrationof functions and their Fourier
transforms. In the last two decades significant attention has been paid to quantifying the maximum concen-
tration that can be achieved. In the same vein, Nazarov proved, in his seminal work [9], that for a function
g ∈ L2(ℝ) and two sets of finite measure R,L, we have

∫ℝ\R |g(x)|2 dx + ∫ℝ\L |ĝ(ξ )|2 dξ ≥ e−C|R| |L|‖g‖2L2(ℝ)
for an absolute constant C > 0. This result quantifies the Heisenberg uncertainty principle. Similarly, it is
possible to quantify the Balian–Low theorem [1, 3, 8], which states that if the Gabor system

G(g) := {e2πinxg(x − m)}(m,n)∈ℤ2 ,
generated by the function g, is a Riesz basis, then we must have

∫ℝ |g(x)|2x2 dx = ∞ or ∫ℝ |ĝ(ξ )|2ξ2 dξ = ∞.
Nitzan and Olsen [10] quantified this theorem by proving for g as above and two real numbers R, L, with
R, L ≥ 1, that

∫|x|≥R |g(x)|2 dx + ∫|ξ |≥L |ĝ(ξ )|2 dξ ≥ C
RL

,

where C depends only on the Riesz basis bounds for the function g.
As is seen, all these results are one-dimensional in nature. Although analogous results for higher di-

mensions are conjectured, due to possibly much more complicated geometry of an arbitrary set in higher
dimensions, progress has been limited. The most basic results for higher dimensions are the extensions of
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the Balian–Low theorem in its qualitative form, and these were carried out in [6]. One quantitative result in
this direction is that of Jaming [7] stating that for g ∈ L2(ℝd) and two sets of finite measure R, L, we have

∫ℝd\R |g(x)|2 dx + ∫ℝd\L |ĝ(ξ )|2 dξ ≥ e−CD‖g‖2L2(ℝd),
where D = min{|R| |L|, α(R)|L|1/d , α(L)|R|1/d}, with α denoting the mean width of a set S given by

α(S) := ∫
SO(d) Pρ(S) dvd(ρ),

with dvd being the normalized Haar measure on the group of rotations SO(d), and Pρ(S) being the mea-
sure of the projection of S on the line obtained by applying the rotation ρ to the line spanned by the vector
(1, 0, . . . , 0). It is conjectured that D can be replaced by |R|1/d|L|1/d. Thus, this result is essentially optimal if
one of the setsR,L is round, but it is far from optimal even when both sets are simple rectangles. Our aim in
this work is to extend the work of Nitzan and Olsen [10] to higher dimensions and to investigate localization
on rectangles.

Theorem 1.1. Let g ∈ L2(ℝd) be such that the Gabor system generated by g

G(g) := {e2πinxg(x − m)}(m,n)∈ℤ2d
is a Riesz basis. Let Ri , Li ≥ 1 be real numbers for each 1 ≤ i ≤ d. Let R and L be the d-dimensional rectangles
R := (−R1, R1) × ⋅ ⋅ ⋅ × (−Rn , Rn) and L := (−L1, L1) × ⋅ ⋅ ⋅ × (−Ln , Ln). Then for a constant C depending only on
the Riesz basis bounds of g, we have

∫ℝn\R |g(x)|2 dx + ∫ℝn\L |ĝ(ξ )|2 dξ ≥ C
RiLi

for any 1 ≤ i ≤ d. The theorem is sharp in the sense that the term C/RiLi cannot be replaced by C log RiLi/RiLi.

We observe that the theorem allows us to choose the index i that makes the right-hand side the largest.
Since we must have RiLi ≤ |R|1/d|L|1/d at least for some values of i, the term C/RiLi can be replaced by
C/|R|1/d|L|1/d in the theorem.

The rest of the paper is organized as follows. In Section 2, we introduce some standard definitions and
results needed for our discussion. Then, in Section 3, we give certain properties of quasiperiodic functions
that Nitzan and Olsen uncovered in their work. In Section 4, we use these properties to prove our estimate,
and then discuss certain extensions of it. Also, using the function introduced in [2], we construct a function
to show that our estimate is sharp.

2 Preliminaries
In this section we will introduce the concepts that will be used throughout the rest of the paper. Further
information on these concepts can be found in [5]. We start with Riesz bases. For a separable Hilbert space H,
a system {vn} in H is a Riesz basis if it is complete in H and

A∑|an|2 ≤
󵄩󵄩󵄩󵄩󵄩󵄩∑ anvn

󵄩󵄩󵄩󵄩󵄩󵄩
2
≤ B∑|an|2

for any sequence {an} ∈ ℓ2 and two positive constants A and B. The largest such A and smallest such B are
called theRiesz basis bounds. An equivalent definition of a Riesz basis is that it is the image of an orthonormal
basis under a bounded and invertible linear operator.

We now introduce the Zak transform, which is an extremely useful tool in the study of Gabor systems. Let
g ∈ L1(ℝd). The Zak transform of g is defined for (x, y) ∈ ℝ2d as

Zg(x, y) = ∑
k∈ℤd g(x − k)e2πik⋅y .
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It immediately follows from this definition and the Plancherel theorem that the Zak transform induces a uni-
tary operator from L2(ℝd) to L2([0, 1]2d). Thus, for g ∈ L2(ℝd), the Zak transform Zg takes complex values
for almost all (x, y) ∈ ℝ2d. We let e1, e2, . . . , ed be the canonical basis of ℝd. For g ∈ L2(ℝd) and 1 ≤ i ≤ d,
the function Zg satisfies

Zg(x, y + ei) = Zg(x, y) and Zg(x + ei , y) = e2πiyiZg(x, y). (2.1)

We call this property quasiperiodicity. The Zak transform relates to the Fourier transform as follows:

Zĝ(x, y) = e2πix⋅yZg(−y, x). (2.2)

Furthermore, for any Schwarz class function ϕ, we have

Z(g ∗ ϕ) = Zg ∗1 ϕ, (2.3)

where for Zg = Zg(x, y), the notation ∗1 means convolution in the first variable x. With the Zak transform we
can easily characterize the Gabor systems that are Riesz bases. A Gabor system G(g) is a Riesz basis if and
only if

A ≤ |Zg(x, y)|2 ≤ B, (2.4)

where A, B are Riesz basis bounds. This fact makes the Zak transform a fundamental tool in the study of the
Gabor systems. For the proofs and an extensive discussion of formulas (2.1)–(2.4), see [5, Sections 8.2–8.3].

3 Properties of quasiperiodic functions
Nitzan and Olsen deduced their result by quantifying the discontinuous behavior of arguments of quasiperi-
odic functions. It is well known that a branch of the argument of a quasiperiodic function on ℝ2 cannot be
continuous. Nitzan and Olsen went further and quantified this fact with the following lemma. For the sake of
completeness, we provide a proof.

Lemma 3.1. Let G be a complex valued quasiperiodic function on ℝ2, and let H be a branch of its argument,
that is,

G(x, y) = |G(x, y)|e2πiH(x,y).
Let k, n ≥ 8 be two integers, and let (x, y) ∈ [0, 1/k) × [0, 1/n). Then there exist two integers 1 ≤ i < k, 1 ≤ j < n
such that at least one of the following is true for every m ∈ ℤ:

󵄨󵄨󵄨󵄨H(x + (i + 1)/k, y + j/n) − H(x + i/k, y + j/n) − m
󵄨󵄨󵄨󵄨 > 1/8,

󵄨󵄨󵄨󵄨H(x + i/k, y + (j + 1)/n) − H(x + i/k, y + j/n) − m
󵄨󵄨󵄨󵄨 > 1/8.

Proof. We assume to the contrary that there is a branch of the argument H for which the claim does not hold
for a point (x, y) ∈ [0, 1/k) × [0, 1/n), with k, n ≥ 8. We let for i, j the integers hi,j denote H(x + i/k, y + j/n).
We observe that if this H presents a counterexample to the lemma, then so do infinitely many others, because
by adding integers to H at points (x + i/k, y + j/n), we obtain other counterexamples. Since H can be chosen
from an infinite collection of counterexamples, we can, to some extent, dictate the values hi,j. Below we will
do this to obtain a contradiction with quasiperiodicity.

We fix h0,0 and choose hi,0, 1 ≤ i ≤ k, so as to satisfy |hi,0 − hi−1,0| ≤ 1/8. Thus, given h0,0 fixed, we
choose hi,0, 1 < i < k, one by one, starting with h1,0, so that their distance from the choice before is not more
than 1/8. Now we have hi,0, 0 ≤ i ≤ k, all fixed. Using hi,0, 0 ≤ i < k, we choose hi,j, 1 ≤ j ≤ n, so as to satisfy
|hi,j − hi,j−1| ≤ 1/8. Finally, we choose hk,j for 1 < j ≤ n. By quasiperiodicity we must have hk,0 = h0,0 + y + l
for some integer l. We choose hk,j = h0,j + y + j/n + l for 1 < j ≤ n. Thus, we have |hk,j − hk,j−1| ≤ 1/4 for
1 ≤ j ≤ n.

We claim thatwith these choiceswealsohave |hi,n − hi−1,n| ≤ 1/8 for 1 ≤ i ≤ k. Thiswewill prove through
iteration.Weobserve that sinceH is assumed to be a counterexample to the lemma, |hi,1 − hi−1,1 − mi,1| ≤ 1/8
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for an integermi,1 for each 1 ≤ i ≤ k. But it is also clear, from the construction ofH and the triangle inequality,
that we have |hi,1 − hi−1,1| ≤ 1/2, since for i < k,

|hi,1 − hi−1,1| ≤ |hi,1 − hi,0| + |hi,0 − hi−1,0| + |hi−1,1 − hi−1,0| ≤ 1/8 + 1/8 + 1/8,
whereas for i = k,

|hk,1 − hk−1,1| ≤ |hk,1 − hk,0| + |hk,0 − hk−1,0| + |hk−1,1 − hk−1,0| ≤ 1/4 + 1/8 + 1/8.
Therefore, mi,1 = 0 for each value of i. If we apply the same reasoning, we can obtain that for each 0 ≤ j < n,
we have |hi,j − hi−1,j| ≤ 1/8. By quasiperiodicity, |hi,n − hi−1,n − mi,n| ≤ 1/8, for some integer mi,n for each
1 ≤ i ≤ k. But we have just discovered that |hi,n−1 − hi−1,n−1| ≤ 1/8 for each 1 ≤ i ≤ k. This, together with the
triangle inequality, and the construction of H establishes the claim.

We now obtain the contradiction promised by calculating the two sides of the obvious equality

(hk,n − hk,0) − (h0,n − h0,0) = (hk,n − h0,n) − (hk,0 − h0,0)

in two different ways. By the quasiperiodicity of H, for any 0 ≤ i ≤ k, the difference hi,n − hi,0 must be an
integer. But since we know that |hi,n − hi−1,n| ≤ 1/8 and |hi,0 − hi−1,0| ≤ 1/8 for each 0 < i ≤ k, the inte-
gers hi,n − hi,0 and hi−1,n − hi−1,0 must be the same. Thus, hk,n − hk,0 and h0,n − h0,0 must be the same,
hence (hk,n − hk,0) − (h0,n − h0,0) must be zero. On the other hand, from our construction of H, we have
(hk,j − h0,j) − (hk,j−1 − h0,j−1) = 1/n for each 1 ≤ j ≤ n. Thus, it follows that (hk,n − h0,n) − (hk,0 − h0,0) = 1,
a contradiction.

The lemma we have just proved suggests that the set of points for which a branch of the argument of a
quasiperiodic function changes very quickly must have a measure at least k−1 ⋅ n−1. The next lemma makes
this rigorous.

Lemma 3.2. Let A > 0 be a constant, and let G be a complex valued quasiperiodic function onℝ2 with |G| ≥ A.
Then for any two integers k, n ≥ 8, we have a set S ⊆ [0, 1]2 of measure at least k−1 ⋅ n−1 such that for all
(x, y) ∈ S, we have

|G(x + k−1, y) − G(x, y)| ≥ A/3 or |G(x, y + n−1) − G(x, y)| ≥ A/3.
Proof. Let H be a measurable branch of the argument of G. We will apply Lemma 3.1 to this H. Let 1 ≤ i < k,
1 ≤ j < n, and let m be an integer. Let S󸀠i,j,m,1 be the set of all (x, y) ∈ [0, k−1) × [0, n−1) for which the first
inequality of the previous lemma holds. We similarly define S󸀠i,j,m,2. Clearly, these sets are measurable. From
these sets, we define

S󸀠i,j,1 := ⋂
m∈ℤ Si,j,m,1, S󸀠i,j,2 := ⋂

m∈ℤ Si,j,m,2,
and we let S󸀠i,j := S󸀠i,j,1 ∪ S󸀠i,j,2. Then from the previous lemma, we have the equality

[0, k−1) × [0, n−1) = ⋃
i,j
S󸀠i,j .

Thus, the sum of measures of the sets on the right-hand side is at least k−1 ⋅ n−1. For each i, j, we define Si,j to
be the translate of S󸀠i,j by (ik−1, jn−1). Thus, the sets Si,j are disjoint, and for fixed i, j the set Si,j has the same
measure as S󸀠i,j. If we define S to be the union of all Si,j, its measure is at least k−1 ⋅ n−1, and for an element
(x, y) ∈ S, one of the following is true for all integers m:

|H(x + k−1, y) − H(x, y) − m| > 1/8, |H(x, y + n−1) − H(x, y) − m| > 1/8. (3.1)

Now suppose the first inequality is true for all m. We know that |G(x, y)|, |G(x + k−1, y)| ≥ A, but we do not
know their exact relation to each other, and this prevents us from immediately concluding the proof. To cir-
cumvent this we consider two cases. If ||G(x + k−1, y)| − |G(x, y)|| ≥ A/3, then we have the crude estimate

|G(x + k−1, y) − G(x, y)| ≥ ||G(x + k−1, y)| − |G(x, y)|| ≥ A/3.
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If, on the other hand, ||G(x + k−1, y)| − |G(x, y)|| < A/3, then by adding and subtracting the same term, we
can write |G(x + k−1, y) − G(x, y)| as

󵄨󵄨󵄨󵄨[|G(x + k
−1, y)| − |G(x, y)|]e2πiH(x+k−1 ,y) + |G(x, y)|[e2πiH(x+k−1 ,y) − e2πiH(x,y)]󵄨󵄨󵄨󵄨.

This, by the triangle inequality, cannot be less than

|G(x, y)||e2πiH(x+k−1 ,y) − e2πiH(x,y)| − ||G(x + k−1, y)| − |G(x, y)||.
We observe that

|e2πiH(x+k−1 ,y) − e2πiH(x,y)| = 󵄨󵄨󵄨󵄨e2πiH(x,y)[e2πi[H(x+k−1 ,y)−H(x,y)] − 1]󵄨󵄨󵄨󵄨 = |e2πi[H(x+k−1 ,y)−H(x,y)] − 1|.
We know that the distance of H(x + k−1, y) − H(x, y) to any integer is more than 1/8, which means that the
last term is, as can be seen by considering the location of these numbers on the unit circle, more than 2/3.
Thus returning with this information back to our estimate we have

|G(x, y)||e2πiH(x+k−1 ,y) − e2πiH(x,y)| − ||G(x + k−1, y)| − |G(x, y)|| ≥ A/3.
Thus, in any case, if the first inequality in (3.1) holds for all integers, we have |G(x + k−1, y) − G(x, y)| ≥ A/3.
Similarly, if the second inequality in (3.1) holds for all integers, we have |G(x, y + n−1) − G(x, y)| ≥ A/3, and
this concludes the proof.

4 Proof of the main result
We start with a lemma that will be the fundamental tool in proving our theorem. The last lemma tells us
that given a quasiperiodic function, there is a set of certain size near which the function changes rapidly.
Therefore, on this set the function must also differ from its average over balls of large enough size. The next
lemma makes rigorous this idea, using convolutions with Schwartz class functions instead of averages over
balls.

Lemma 4.1. Let A, B > 0 and 1 ≤ i ≤ d. Given two Schwartz functions ϕ, ψ on ℝd and any g ∈ L2(ℝd), with
A ≤ |Zg| ≤ B a.e., there exists a set Si ⊆ [0, 1]2d of measure at least A2/4000B2(1 + ‖ϕi‖1)(1 + ‖ψi‖1), with
ϕi , ψi denoting the ith partial derivatives of ϕ, ψ, such that for all (x, y) ∈ Si, we have

|Zg(x, y) − Z(g ∗ ϕ)(x, y)| ≥ A/12 or |Zĝ(x, y) − Z(ĝ ∗ ψ)(x, y)| ≥ A/12.

Proof. For any ki > 0, and any 1 ≤ i ≤ d from property (2.3) of the Zak transform, we can write

I = 󵄨󵄨󵄨󵄨Z(g ∗ ϕ)(x + k
−1
i ⋅ ei , y) − Z(g ∗ ϕ)(x, y)

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨Zg ∗1 ϕ(x + k

−1
i ⋅ ei , y) − Zg ∗1 ϕ(x, y)

󵄨󵄨󵄨󵄨.

Then we have

I ≤ ∫ℝd |Zg(u, y)|󵄨󵄨󵄨󵄨ϕ(x − u + k−1i ⋅ ei) − ϕ(x − u)󵄨󵄨󵄨󵄨 du ≤ B ⋅ ∫ℝd 󵄨󵄨󵄨󵄨ϕ(x − u + k−1i ⋅ ei) − ϕ(x − u)󵄨󵄨󵄨󵄨 du.
Let ui ∈ ℝ denote the ith coordinate of u and let u ∈ ℝd−1 be obtained from u by removing ui. Since ϕ is a
Schwartz function, we can write

I ≤ B ⋅ ∫ℝd−1 ∫ℝ 󵄨󵄨󵄨󵄨ϕ(x − u + k−1i ⋅ ei) − ϕ(x − u)󵄨󵄨󵄨󵄨 dui du
= B ⋅ ∫ℝd−1 ∫ℝ

k−1i
∫
0

|ϕi(x − u + vi ⋅ ei)| dvi dui du

= B ⋅ ∫ℝd−1
k−1i
∫
0

∫ℝ |ϕi(x − u + vi ⋅ ei)| dui dvi du.
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Observing that the inner integral is independent of vi, we can write

B ⋅ ∫ℝd−1
k−1i
∫
0

∫ℝ |ϕi(x − u)| dui dvi du = B ⋅ ki−1 ⋅ ∫ℝd−1 ∫ℝ |ϕi(x − u)| dui du,
and obviously this last term is B ⋅ ki−1 ⋅ ‖ϕi‖1. Since we have property (2.2), we can apply the same process
to obtain, for any ni > 0 and (x, y) ∈ ℝ2d,

󵄨󵄨󵄨󵄨Z(ĝ ∗ ψ)(y + ni
−1 ⋅ ei , −x) − Z(ĝ ∗ ψ)(y, −x)󵄨󵄨󵄨󵄨 ≤ B ⋅ ni−1 ⋅ ‖ψi‖1. (4.1)

If we choose ki , ni ≥ 8 to be the smallest integers that satisfy

ki ≥
8B
A
(1 + ‖ϕi‖1) and ni ≥

24πB
A
(1 + ‖ψi‖1),

we have
󵄨󵄨󵄨󵄨Z(g ∗ ϕ)(x + k

−1
i ⋅ ei , y) − Z(g ∗ ϕ)(x, y)

󵄨󵄨󵄨󵄨 ≤ A/8,
󵄨󵄨󵄨󵄨Z(ĝ ∗ ψ)(y + ni

−1 ⋅ ei , −x) − Z(ĝ ∗ ψ)(y, −x)󵄨󵄨󵄨󵄨 ≤ A/72.
We will use the properties of quasiperiodic functions derived in the last section to obtain another es-

timate, which, combined with the last two, will suffice to complete the proof. To this end, we introduce
a slight modification of Zg(x, y) as follows. Let G(x, y) := Zg(x, y) when A ≤ |Zg(x, y)| ≤ B, and when this
is not the case, let G(x, y) = B for (x, y) ∈ [0, 1)2d, and extend it so that it will be quasiperiodic. This G is
a measurable, complex-valued, quasiperiodic function, and A ≤ |G(x, y)| ≤ B everywhere. Now we define
Gx,y(xi , yi) = G(x, y), with (x, y) denoting an element ofℝ2d−2 obtained by removing xi , yi from (x, y) ∈ ℝ2d.
To this Gx,y(xi , yi) we wish to apply Lemma 3.2. We see that for any (x, y), by definition, it is complex val-
ued, quasiperiodic, and satisfies A ≤ |Gx,y(x, y)| ≤ B for all (xi , yi). Also, by applying the Fubini–Tonelli the-
orem for complete measures (see [4, Theorem 2.39], or [11, Theorem 8.12]) to Gχ[0,1)2d , we see that for al-
most all (x, y) ∈ ℝ2d−2, the function Gx,yχ[0,1)2 is measurable, and hence, by quasiperiodicity, for almost all
(x, y) ∈ ℝ2d−2, the function Gx,y(x, y) is measurable. Thus, we can apply Lemma 3.2 to this function for al-
most all (x, y) ∈ [0, 1)2d−2. Let Sx,y,i be the set described in Lemma 3.2 for such a point (x, y) with ki , ni as
chosen above. Then for (xi , yi) ∈ Sx,y,i, we have

|Gx,y(xi + k−1i , yi) − Gx,y(xi , yi)| ≥ A/3 or |Gx,y(xi , yi + n−1i ) − Gx,y(xi , yi)| ≥ A/3,
|G(x + k−1i ⋅ ei , y) − G(x, y)| ≥ A/3 or |G(x, y + n−1i ⋅ ei) − G(x, y)| ≥ A/3.

Then if (xi , yi) ∈ Sx,y,i, we have (x, y) ∈ S󸀠󸀠i . Hence, again by the Fubini–Tonelli theorem for complete mea-
sures, this set has measure at least k−1i ⋅ n−1i . Since the set F of points for which Zg ̸= G has measure zero,
if we remove from S󸀠󸀠i the set F and its translations by −k−1i ⋅ ei and, −n−1i ⋅ ei, the remainder has the same
measure as S󸀠󸀠i , and for (x, y) in this remainder, which we denote by S󸀠i , we have

|Zg(x + k−1i ⋅ ei , y) − Zg(x, y)| ≥ A/3 or |Zg(x, y + n−1i ⋅ ei) − Zg(x, y)| ≥ A/3.
We let S󸀠i = U󸀠i ∪ V󸀠i , where for elements of U󸀠i , the first of these inequalities holds, and for elements of V󸀠i ,

the second one holds. Then for (x, y) ∈ U󸀠i , we have
|Zg(x, y) − Z(g ∗ ϕ)(x, y)| + 󵄨󵄨󵄨󵄨Zg(x + k

−1
i ⋅ ei , y) − Z(g ∗ ϕ)(x + k

−1
i ⋅ ei , y)

󵄨󵄨󵄨󵄨
≥ 󵄨󵄨󵄨󵄨Zg(x + k

−1
i ⋅ ei , y) − Zg(x, y) − Z(g ∗ ϕ)(x + k

−1
i ⋅ ei , y) + Z(g ∗ ϕ)(x, y)

󵄨󵄨󵄨󵄨
≥ |Zg(x + k−1i ⋅ ei , y) − Zg(x, y)| − 󵄨󵄨󵄨󵄨Z(g ∗ ϕ)(x + k−1i ⋅ ei , y) − Z(g ∗ ϕ)(x, y)󵄨󵄨󵄨󵄨
≥ A/6.

Therefore, one of the following is certainly true for any element (x, y) ∈ U󸀠i :
|Zg(x, y) − Z(g ∗ ϕ)(x, y)| ≥ A/12,
󵄨󵄨󵄨󵄨Zg(x + k

−1
i ⋅ ei , y) − Z(g ∗ ϕ)(x + k

−1
i ⋅ ei , y)

󵄨󵄨󵄨󵄨 ≥ A/12.
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We thus have U󸀠i = U󸀠i1 ∪ U󸀠i2 , with the element (x, y) belonging to the set U󸀠i1 if the first inequality holds, and
to U󸀠i2 if the second holds, and to both if both inequalities hold. Obviously, at least one of these sets has a
measure not less than half themeasure of U󸀠i . Thus, if we consider the union of U󸀠i1 and the translate of U󸀠i2 by
(k−1i ⋅ ei , 0), then its measure is not less than half the measure of U󸀠i . But it may be that some of the elements
of this union are not in [0, 1]2d due to the translation. Therefore, we define Ui to be the union of the set of
all elements in [0, 1]2d and the set of all elements outside [0, 1]2d translated by (−ei , 0). This Ui then has at
least a quarter of the measure of U󸀠i , and any element of this set satisfies the first inequality of our lemma.

We now turn to (x, y) ∈ V󸀠i . We have equation (4.1). We also have

|Zĝ(y + n−1i ⋅ ei , −x) − Zĝ(y, −x)| ≥ 󵄨󵄨󵄨󵄨e−2πi(x⋅y+n−1i xi)Zg(x, y + n−1i ⋅ ei) − e−2πix⋅yZg(x, y)󵄨󵄨󵄨󵄨
≥ 󵄨󵄨󵄨󵄨e
−2πin−1i xiZg(x, y + n−1i ⋅ ei) − Zg(x, y)󵄨󵄨󵄨󵄨

≥ 󵄨󵄨󵄨󵄨e
−2πin−1i xi [Zg(x, y + n−1i ⋅ ei) − Zg(x, y)] − Zg(x, y)[1 − e−2πin−1i xi ]󵄨󵄨󵄨󵄨

≥ |Zg(x, y + n−1i ⋅ ei) − Zg(x, y)| − |Zg(x, y)[1 − e−2πin−1i xi ]|
≥ |Zg(x, y + n−1i ⋅ ei) − Zg(x, y)| − B ⋅ |1 − e−2πin−1i xi |.

We can easily estimate, using the unit circle, that |1 − e−2πin−1i xi | ≤ A/12B, thus the last term is not less
than A/4. Combining this with (4.1), as we did in the case of elements of U󸀠i , we have for (x, y) ∈ V󸀠i that one
of the following is certainly true:

|Zĝ(y, −x) − Z(ĝ ∗ ψ)(y, −x)| ≥ A/12,
󵄨󵄨󵄨󵄨Zĝ(y + n

−1
i ⋅ ei , −x) − Z(ĝ ∗ ψ)(y + n

−1
i ⋅ ei , −x)

󵄨󵄨󵄨󵄨 ≥ A/12.

We let V󸀠i = V󸀠i1 ∪ V󸀠i2 as before, and obviously at least one of these sets has a measure not less than half the
measure of V󸀠i . Thus, if we consider the union of V󸀠i1 and the translate of V󸀠i2 by (0, n−1i ⋅ ei), then its measure
is not less than half the measure of V󸀠i . But it may be that some of the elements of this set are not in [0, 1]2d

due to the translation applied. We therefore take the union of elements in [0, 1]2d with (0, −ei) translates of
those that are not in [0, 1]2d, and if we set Vi to be the set of points (y, −x) such that (x, y) is in this last union,
its measure is not less than a quarter of that of V󸀠i , it lies entirely in [0, 1]2d and any element of it satisfies
the second inequality of our lemma.We finally define Si = Ui ∪ Vi and easily observe that it satisfies all of the
required properties.

We will use what we have learned from the study of the Zak transform of Riesz basis generators to prove
Theorem 1.1. Let g be a function as in the theorem. We pick a Schwarz class function ρ on ℝd such that ρ̂ is
radially symmetric, satisfies |ρ̂| ≤ 1 everywhere, and

ρ̂(ξ ) =
{
{
{

1 if |ξ | ≤ 1,
0 if |ξ | ≥ 2.

We define two Schwarz functions ϕ, ψ by

ϕ(x1, x2, . . . , xd) := R1R2 ⋅ ⋅ ⋅ Rd ⋅ ρ(R1x1, R2x2, . . . , Rdxd),
ψ(x1, x2, . . . , xd) := L1L2 ⋅ ⋅ ⋅ Ld ⋅ ρ(L1x1, L2x2, . . . , Ldxd).

Therefore, we have ‖ϕi‖1 = Ri‖ρi‖1 and ‖ψi‖1 = Li‖ρi‖1. Since ρ is a fixed radial Schwarz function, ‖ρi‖1 is a
fixed constant for every i, which we denote by Γ. We apply Lemma 4.1 to obtain, for any chosen 1 ≤ i ≤ d, a
set Si ⊆ [0, 1]2d with measure at least A/4000B(1 + RiΓ)(1 + LiΓ) such that all (x, y) ∈ Si satisfy

A/144 ≤ |Zĝ(x, y) − Z(ĝ ∗ ϕ)(x, y)|2 + |Zg(x, y) − Z(g ∗ ψ)(x, y)|2.

Since we have assumed in the theorem Ri , Li ≥ 1 for every 1 ≤ i ≤ d, we have A/4000B(1 + RiΓ)(1 + LiΓ) ≥
A/24103BΓ2RiLi. Thus, if we integrate over Si, then

A2/108BΓ2RiLi ≤ 󵄩󵄩󵄩󵄩|Zĝ − Z(ĝ ∗ ϕ)|
2 + |Zg − Z(g ∗ ψ)|2󵄩󵄩󵄩󵄩L1([0,1]2d)

≤ ‖Zĝ − Z(ĝ ∗ ϕ)‖2L2([0,1]2d) + ‖Zg − Z(g ∗ ψ)‖2L2([0,1]2d)
≤ ‖Z[ĝ − (ĝ ∗ ϕ)]‖2L2([0,1]2d) + ‖Z[g − (g ∗ ψ)]‖2L2([0,1]2d).
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As the Zak transform is a unitary operator from L2([0, 1]2d) to L2(ℝd), we have

A2/108BΓ2RiLi ≤ ‖ĝ − (ĝ ∗ ϕ)‖2L2(ℝd) + ‖g − (g ∗ ψ)‖2L2(ℝd).
We apply the Plancherel theorem and use the assumption that ρ̂ is radially symmetric to obtain

A2/108BΓ2RiLi ≤ ‖g(1 − ϕ̂)‖2L2(ℝd) + ‖ĝ(1 − ψ̂)‖2L2(ℝd) ≤ ∫ℝd\R |g(x)|2 dx + ∫ℝd\L |ĝ(ξ )|2 dξ,
which proves our theorem with the constant C in the theorem being not more than A2/108BΓ2.

Our theorem can be extended without much effort in two different directions. The first is to take the rect-
anglesR,L directed along not the canonical basis but a different orthonormal basis. As long as we take both
rectangles directed along the sameorthonormal basis, our theoremgeneralizes easily by employing rotations.
The second extension is to more general Gabor systems that are produced by simple scaling of the canonical
lattice: for real numbers a, b, we define

G(g, a, b) := {e2πibnxg(x − ma)}(m,n)∈ℤ2d .
It is possible for such a system to be a Riesz basis if ab = 1. Our result also holds for these more general
systems, and this can be seen by employing appropriate dilations.

We now present the counterexample showing that our estimate is sharp. Nitzan and Olsen observed that
a function f ∈ L2(ℝ) constructed in [2] satisfies |Zf | = 1 on all ofℝ2, and for R, L ≥ 1,

∫|x|≥R |f(x)|2 dx + ∫|ξ |≥L |f̂ (ξ )|2 dξ ≤ 1
R2
+
log L
L2

.

Since the Zak transform is unitary, we have ‖f ‖L2(ℝ) = 1, and hence from the Plancherel theorem, we further
have ‖f̂ ‖L2(ℝ) = 1. This function is a counterexample showing that the result of Nitzan and Olsen, which is the
case where d = 1 of our result, is sharp. We will construct a counterexample from this function to show that
our result cannot be improved in any dimension d.

Let x denote (x1, x2, . . . , xd) and define on ℝd the function g ∈ L2(ℝd) by g(x) := f(x1)f(x2) ⋅ ⋅ ⋅ f(xd).
Since ‖g‖L2(ℝd) = ‖ĝ‖L2(ℝd) = 1, we then have the same relation between the Fourier transforms of f and g:
ĝ(ξ ) = f̂ (ξ1)f̂ (ξ2)⋅ ⋅ ⋅ f̂ (ξd), andbetween the Zak transforms,wehave Zg(x, y) = Zf(x1, y1)Zf(x2, y2)⋅ ⋅ ⋅Z(xd , yd).
Therefore, |Zg| = 1 everywhere on ℝ2d, and this means that g generates a Gabor frame and satisfies the
hypothesis of our theorem. On the other hand, for the rectangles R = (−R1, R1) × ⋅ ⋅ ⋅ × (−Rd , Rd) and L =
(−L1, L1) × ⋅ ⋅ ⋅ × (−Ld , Ld), observe that by the definition of g, we have

∫|xi |≥Ri |g(x)|2 dx = ∫|xi |≥Ri |f(xi)|2dxi , ∫|ξi |≥Li |ĝ(ξ )|2 dξ = ∫|ξi |≥Li |f̂ (ξi)|2 dξi
for any index i. Therefore,

∫ℝd\R |g(x)|2 dx + ∫ℝd\L |ĝ(ξ )|2 dξ ≤
d
∑
i=1 ∫|xi |≥Ri |g(x)|2 dx + ∫|ξi |≥Li |ĝ(ξ )|2 dξ
=

d
∑
i=1 ∫|xi |≥Ri |f(xi)|2 dxi + ∫|ξi |≥Li |f̂ (ξi)|2 dξi =

d
∑
i=1 1

R2i
+
log Li
L2i

.

If we choose R1 = R2 = ⋅ ⋅ ⋅ = Rd = R, L1 = L2 = ⋅ ⋅ ⋅ = Ld = L and L = R log1/2 R, we obtain
∫ℝd\R |g(x)|2 dx + ∫ℝd\L |ĝ(ξ )|2 dξ ≤ d ⋅ ( 1R2 + log(R log

1/2 R)
R2 log R

) ≤ 3d ⋅ 1
R2

,

whereas if we could improve the right-hand side of our estimate as mentioned we would, with such choices
of Ri , Li, have

∫ℝd\R |g(x)|2 dx + ∫ℝd\L |ĝ(ξ )|2 dξ ≥ C ⋅ log(R
2 log1/2 R)

R2 log1/2 R ≥ C ⋅ log1/2 RR2
,

with a constant C independent of R, which is a clear contradiction.
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